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ABSTRACT 

Conventional reflection analyses assume that all waves propa-
gate with celerities described by the lst-order linear dispersion 
theory. However, finite amplitude waves are known to bind a certain 
amount of 2nd harmonic energy which travels with the celerity of the 
fundamental. When these waves are simulated in a laboratory using the 
classical lst-order generation, they produce additional 2nd-order free 
parasitic waves. The bound and free components have different celeri-
ties and therefore they cannot be analysed by the conventional analy-
sis. This report presents a non-linear reflection analysis technique 
which can separate these bound and free components. This technique is 
different from the Fourier approach and it is based on optimal fitting 
of sinusoids to the measured time series. Extensive numerical simula-
tion has been used to validate this technique with both linear and non-
linear regular waves. 

mime! 

Dans 1'analyse conventionnelle de r4flexion on suppose que 
toutes les composantes de houles se propagent avec leurs propres c4leri-
t4s; mais dans le cas des houles d'amplitude finie, il existe une compo-
sante d'harmonique de fr4quence double qui est rattach4e a la fondamen-
tale et se propage a la méme c414rit4 que la fondamentale. Quand ces 
houles sont engendr4es dans un canal A houle par la m4thode classique de 
g4n4ration (g4n4ration du ler ordre) des composantes du 24me ordre, 
4galement de double fr4quence, sont introduites. Ces composantes dites 
"houles parasites" ne sont pas rattach4es a leur fondamentale et se pro-
pagent donc suivant la loi de dispersion lin4aire. Comme ces composan-
tes rattach4es et non-rattach4es ont des c414rit4s diff4rentes, l'anal-
yse classique de r4flexion ne peut offrir une estimation correcte. Ce 
document pr4sente une nouvelle approche non-lin4aire qui peut identifier 
les composantes rattach4es et non-rattach4es dans un systAme de clapo-
tis. Cette mfthode n'utilise pas 1'analyse de Fourier, mais par contre 
elle utilise une technique qui ajuste d'une façon optimale des sinu-
sordes. Une simulation num4rique d4taill4e a 4t4 utilisée afin de vali-
der cette nouvelle méthode avec des houles régulidres linéaires ainsi 
que non-linéaires. 

(iii) 
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REFLECTION ANALYSIS OF NON-LINEAR REGULAR NAVES 

1.0 INTRODUCTION 

In many laboratories, design of beaches is often part of a 
continuous. research program which is aimed at developing an efficient 
wave absorbing device. Ideally, such a device should be small in its 
length ensuring at the same time effective dissipation of energy for a 
large number of frequency components. The performance of the various 
absorbers is generally evaluated by measuring the reflected wave 
energy. For instance, if Ai2 is the energy of the incident wave, the 
following expression can be written, through energy balance: 

Ai
2 
= Ar

2 
4' ELOSS 

where Ar2 is the reflected energy, and 

ELOSS is the energy dissipated by the structure. 

(1) 

It therefore follows that the lower the reflected energy is, the better 
is the performance of the absorber. Many techniques exist for the 
measurement of reflected energy and this energy is often expressed in 
terms of the reflection coefficient. The reflection coefficient, Cr, 
is defined as the ratio of wave height reflected by the absorber over 
the incident wave height generated by the paddle. 

At present, most Of these reflection analysis techniques are 
based on linear theory, which corresponds to "small" amplitude waves. 
Although this linear theory is satisfactory for a wide range of wave 
heights a higher order theory, which can deal with various non-lineari-
ties in the waves, is urgently needed. This report presents a new tech-
nique, based on 2nd-order theory, which can deal with one of many 
aspects of non-linearities (i.e. interaction of 2nd-order free and bound 
harmonics). The theoretical background and the implementation of this 
technique for the case of regular waves are described here and an exten-
sion of this method for an irregular sea state is underway. 

2.0 REFLECTION ANALYSIS - A BRIEF REVIEW 

The conventional reflection analysis is based on measurements 

of nodes and antinodes of the standing wave system set-up by a given 

structure. If H1 and H2 are the wave heights measured at an antinode 
and a node respectively, the reflection coefficient Cr is equal to: 

Cr = 
HI -H2 

H1+H2

The values of H1 and H2 can be obtained either: 

(2) 

(1) by measuring the envelope of the standing wave system, say by 
a moving carriage, and use the maxima and the minima of the 

envelope as H1 and H2, recpectively, or, 
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(2) by detecting the positions of maxima and minima in the flume 

and measure their respective heights. 

However, this method, which is based on monochromatic waves, cannot be 

used for an irregular sea state due to the large number of frequency 

components involved. Since many hydraulic laboratories now have the 

capability of testing structures with irregular waves, the measurement 

of reflections in an irregular sea state has become more of a neces-

sity. The commonly used technique for this purpose, is the 2-probe 

method proposed by Thornton and Calhoun [Ref. 12], Goda and Suzuki 

[Ref. 5] and Morden et al. [Ref. 8]. The Hydraulics Laboratory of NRCC 

uses a 3-probe method for estimating the reflections in a least squares 

sense (Mansard and Funke [Ref. 6]). 

The 2-probe and 3-probe methods are basically the same: they 

both consist of simultaneous measurements of the co-existing waves (sum 

of incident and reflected waves) at two or three known positions (depen-

ding on the method) in a line parallel to the direction of propagation. 

Fourier analysis of these measurements then provides the amplitudes and 

phases of the frequency components constituting the irregular sea state, 

on the basis of which the incident and reflected components could be re-

solved. An alternative to this approach is to use spectral analysis 

(auto and cross-spectral analyses) instead of the Fourier analysis and 

determine the reflection of frequency bands rather than of each indivi-

dual frequency component. This approach has been evaluated by numerical 

simulations and found to give reliable estimations of the reflections. 

At the same time, this latter approach does also eliminate erratic 

variations of reflection coefficients which are caused by frequency com-

ponents with little or no energy (Mansard and Funke [Ref. 7]). 

The methods described above for irregular waves are also 

applicable for regular waves, although their inability to define the 

frequency of the monochromatic wave precisely is a source of error. 

2.1 Rem' - Reflection Analysis of Monochromatic Waves 

The Hydraulics Laboratory of NRCC has recently developed a 

program REFLM for estimating the reflection of monochromatic waves. 

This program, which is based on the 3-probe method, has the unique cap-

ability of fitting a sinusoid in a least squares sense to each of the 

three regular wave time series. This technique is superior to a Fourier 

transform method as it computes precisely the fundamental frequency, 

amplitude and phase, whereas the Fourier method is extremely sensitive 

to the truncation length of the wave record in relation to the period of 

the wave being analysed. In fact, previous application of cross-spec-

tral density techniques to monochromatic waves resulted in a number of 

unexplained inconsistencies, which were probably a function of the reso-

lution, filter limits and location of probe array relative to the wave 

paddle. However, this newly developed technique certainly checks out 

well with simulated data and, as shown in the next section, it appears 

to be relatively independent of probe location. 
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Although this program is based on a least squares fitting of 

sinusoids, it still uses the least square method for separating the 
incident and the reflected components as deployed for irregular waves 
(Mansard and Funke [Ref. 6]). 

2.2 Testing of Rzrum by MUmerical Simulations 

In order to validate the program REFLM, extensive series of 
tests were carried out using numerical simulations. Time series of 
monochromatic waves with known incident and reflected characteristics 
were simulated for three hypothetical probe positions. The equations 
used in the simulations are basically similar to those presented in 
Mansard and Funke [Ref. 7] for irregular waves. As in the case of 
irregular waves, the simulation program had the flexibility of incorpor-
ating a certain noise level in the time series, in order to represent 
the noise and measurement errors which generally prevail in an experi-
mental set-up. The noise signal was generated by a Gaussian, "white" 
random number generator and its magnitude was expressed in terms of per-
centage of the RMS value of the incident wave. 

X T

x13 
PROBE pm 

X1 2 

PROBE p =2 

AV PROBE p=3 

h 

FIGURE 1 DEFINITION SKETCH FOR THE REFLECTION SIMULATION 

Figure 1 illustrates the concept used in the simulations, for 

which the time series n(X,t) can be written as: 

2w(i-1)t 2wX ,2w(i-1)t 2ir(2XT-X) 
n(X,t) = Ai*{cos   , - + Pcos  

L j

+ .707a*RANDG(SEED,1) 1 

where Ai is the amplitude of the incident wave, 

L and T are the wave length and period of the wave, 

respectively, 

a is the reflection coefficient, and 

a is the magnitude of the noise. 
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In particular for X = 0, the equations for probes p = 1, p = 2 and p = 3 

can be written as: 

n1(t) = n(0,t) = Ai * {cos 
r2w.(i-1).t, [2.ff.(i-1)•t 27r(2XT) 
 ] + O*cos    ] 

+ .707a*RANDG(SEED,1)I (3) 

27p,(i-1).t 27r.X 27r.(i-1).t 121j
n2(t) = n(X12,t) = Ai * {cos [   + O*cos [ 

2.1T(2XT-X 12)1 
  + .707a*RANDG(SEED,1)} (4) 

2w•(i-1) •t 270{13 
and n3(t) = n(X13,t) = Ai * {cos L   ] + (Pecos 

[27r.(i-1) it 2w.(2XT-X13) 

T L 
] + .707a*RANDG(SEED,1) } (5) 

The results of the numerical simulations are summarized in 

Tables 1 and 2, wherein the resolved incident and reflected heights are 

presented along with the reflection coefficients. Often, the reflection 

coefficient, which is the ratio of reflected to incident wave height 

tends to show more variability than the wave heights. Table 1, which 

illustrates the effect of a noise signal, shows that satisfactory esti-

mation of reflections can be obtained even with 20% noise. It also 

shows that the smaller the reflected wave height is, the larger is the 

deviation from the true value due to the high noise/signal ratio. 

In order to evaluate the effect of probe location in a flume a 

similar set of simulations were carried out with two other locations of 

the probes in the flume [see X in Fig. 1]. The results are summarized 

in Table 2 and they show, as expected, that the reflection coefficient 

is independent of the probe location, although there are small discre-

pancies due to minor differences in the optimal fitting of the time 

series. By choosing different locations in the flume, the phases and 

amplitudes of the standing wave system are changed with respect to the 

Gaussian distribution of the noise level. A comparable operation would 

have been to modify the distribution of the noise with respect to a 

fixed set of amplitudes and phases. Hence, it is expected that the dif-

ferences found in Table 2 are due to variability of the noise distribu-

tion, which in turn affects the optimal fitting of sinusoids. In gener-

al, different types of noise may result in different variability of the 

reflections. However, since the character of the noise which actually 

prevails in an experimental set-up is unknown, Table 2 is believed to 

give a useful indication of the variability. 
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NOISE 

a*100 
% 

INCIDENT HEIGHT REFLECTED HEIGHT REFLECTION COEFFICIENT 

EXPECTED 

(m) 

COMPUTED 

(m) 

EXPECTED 

(m) 

COMPUTED 

(m) 

EXPECTED 
% 

COMPUTED 
% 

0 .1200 .1200 .0024 .0024 2.00 
_.- 

2.00 

1 .1200 
1 

.0024 2.03 

1 
5 .1202 .0026 2.18 

10 .1203 .0029 2.37 

15 .1205 .0031 2.56 

20 .1206 .0033 2.75 

0 .1200 .1200 .0240 .0240 20.00 20.00 

1 .1200 .0241 20.04 

5 .1202 .0243 20.19 

10 .1203 .0245 20.38 

15 .1205 .0248 20.57 

20 .1207 .0248 20.52 

TABLE 1 RESULTS OF NUMERICAL SERULATIONS FOR X = 0 

2.3 Outputs of REFLM 

An example of the reflection analysis results from REFLM is 
given in Figures 2 and 3 for the case with 10% noise and 20% reflec-

tion. Figure 2 displays the original time series synthesized for the 

three probe positions (x12 = 0.40 m, X13 = 0.66 m; see Fig. 1 for defi-
nition of X12 and X13). For comparison, the optimally fit time series 

for the above cases are also presented in the same figure. As indicated 

above, the program REFLM estimates the best combination of frequency, 

amplitude and phase (three parameter fitting) for the description of the 

synthesized time series (in a least squares sense). However, this 

fitting technique, which is based on the Gauss-Newton method, requires 
initial guesses of these three parameters. These initial guesses are 

internally calculated by a zero crossing analysis. An alternative 
method of determining the initial guesses is by FFT analysis, but this 

may be more suitable for an irregular sea state. As an example, the 
outputs of the fitting technique are given below for this particular 
case. 
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NOISE INCIDENT HEIGHT REFLECTED HEIGHT REFLECTION COEFFICIENT 

c0100 
% X=0 X= 5 X= 20 X =0 X= 5X= 20 X=0 X= 5 X= 20 

0 .1200 .1200 .1200 .0024 .0024 .0024 2.00 2.01 1.99 

1 
1 

.1200 .1200 .1200 .0024 1 .0024 .0024 2.03 1.97 2.00 

5 .1202 .1198 .1199 .0026 .0022 .0024 2.18 1.84 2.03 

10 .1203 .1198 
1 

.1198 .0029 .0020 .0025 2.37 1.70 2.07 

15 .1205 .1196 .1196 .0031 .0019 .0025 2.56 1.57 2.12 

20 
1 

.1206 .1195 .1195 .0033 .0018 .0026 2.75 1.47 2.19 

0 .1200 .1200 .1200 .0240 .0240 .0240 20.00 20.00 20.00 

1 
, 

.1200 .1200 .1200 .0241 .0240 .0240 20.04 19.98 20.01 

5 .1202 .1199 .1199 .0243 .0238 .0241 20.19 19.88 20.07 

10 .1203 .1198 .1197 .0245 .0237 .0241 20.38 19.76 20.13 

15 .1205 .1196 .1196 .0248 .0235 .0241 20.57 19.63 20.17 

20 .1207 .1195 .1194 .0248 .0233 .0242 20.52 19.52 20.23 

TABLE 2 NUMERICAL SIMULATIONS OF TEE EFFECTS OF PROBE LOCATION 

FITTING OF PROBE 1 

FREQUENCY AMPLITUDE PHASE 

Initial guesses .06529 1.67102 .55496 

Fitted values .06333 1.75817 .55501 

FITTING OF PROBE 2 

Initial guesses .05136 0.89800 .55497 

Fitted values .04874 0.95499 .55498 

FITTING OF PROBE 3 

Initial guesses .05297 0.25784 .55501 

Fitted values .05048 0.27256 .55502 

Figure 3 illustrates the main output of the reflection analy-

sis. This output is similar to the one used by NRCC for the analysis of 

irregular waves (Mansard and Funke [Ref. 7]). 
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m 
FIT SINUSOID 

WAVE WITH 10% NOISE 
OPTIMALLY 
SYNTHESIZED 

.10 
xr.0 

.05 

0 

-.05 

-.10 

0 1.0 2.0 3.0 4.0 5.0s 

m 

l x=0.40m 
.10 

.05 

0 

-.05 

-.10 

1.0 2.0 3.0 4.0 

0 1.0 2.0 3.0 4.0 

FIGURE 2 FITTING OF SINUSOIDS 

TO SYNTHESIZED TIME SERIES 

5.0s 

5.0s 
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Figure 3a presents the auto-spectrum of the first probe along 

with incident and reflected spectra resolved by the analysis. A rectan-

gular display of these spectra is given in order to maintain compatibil-

ity with the outputs from irregular waves. The area under the rectangle 

is adjusted to be equivalent to the variance of the monochromatic wave. 

Figure 3b gives the auto-spectra of the three time series 
corresponding to the three probes used in the reflection analysis. 

The reflection coefficient estimated by the analysis is dis-

played in Figure 3c while an indication of the reliability of the analy-

sis results is provided by the error function given in Figure 3e. 

The error function is the square root of the minimum least 

squares error between the measured and the estimated co-existing 

incident and reflected waves, normalized with respect to the incident 

wave. It is therefore a measure of the residual between the measured 

and the estimated quantities and is an indicator of the quality of the 

analysis. 

The coherency function is generally a function of frequency 

and is a measure of the linear interdependence between two time func-

tions. For monochromatic waves the coherency is always 1 unless the 

variances of a pair of signals is averaged over a band of frequencies 

which can account for the eorrupting noise power. However, for mono-

chromatic waves the value of the coherency would be highly dependent on 

the arbitrary .choice of this band width and therefore fails to serve as 

an adequate measure of noise corruption. For this reason the coherency 

value in Figure 3d is always set to 1. 

3.0 NON-LINEAR REFLECTION ANALYSIS 

As demonstrated by Stokes [Ref. 11], a regular wave is never 

purely linear. It always binds a certain amount of higher harmonic 

energy which propagates with the fundamental. Therefore, when computing 

the reflection on the basis of the assumption of a linear dispersion 

relation, errors are inevitably introduced. The linear dispersion is 

valid only for the fundamental wave component, whereas the bound part 

(of double frequency) should be treated differently. As outlined in 

Sand and Mansard [Ref. 10], regular waves measured in a flume are com-

posed of: 

the fundamental wave, 

a bound 2nd harmonic component, 

free 2nd harmonic components, and 

higher harmonics which are treated here as part of the 

residual noise. 
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aE 

10.0 
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100.0 
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0.12 

0.08 

I 
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0.04 

0 

0.12 

0.08 
N 

0.04 

ERROR FUNCTION 

(e) 

COKRE-NCY 1:I--
COHERENCY 1-3 

(d) 

REFLECTION COEFFICIENT FUNCTION 
FRED. 
56 

REF . COEF . VRL . 7. 
20. 6 

( c ) 

X1 SPECTRUM 
x2 SPECTRUM 
X3 SPECTRUM 

m .127 M. 
HCHR, = M. 
Kovia = 

_097 
.101 N. 

TF.1 = 1.80 S. 
IP2 = 1.80 S. 
Tpa 

(b) 

•  XI SPECTRUM, 
-- RE LECTED SPECTRUM, 
 INCIDENT SPEC1 

NCI4R1 = ,12 

TPI = 1.802 S. 

 HCHRR = .025 N.

TPR = 1.802 S. 

(a) 

0 0.50 1.00 1.50 2.00Hz 

FIGURE 3 OUTPUT OF REFLECTION ANALYSIS 
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The calculation of the bound and the free wave parts will be discussed 

in the following sections. 

3.1 Hound 2nd Harmonic Component 

If the fundamental, regular wave is given as: 

n(1)(t) = A cos(wt) (6) 

in which A is the wave amplitude, w is the cyclic frequency, w = 2wf, 

and t the time, then the bound 2nd-order part is: 

(2) 
naB (t) = A

2 G+ cos(2wt) (7) 

where GI" is a 2nd-order transfer function. When this function is made 

dimensionless with the water depth h it becomes: 

+ 1 cosh kh 
G h = kh   (1+2 cosh2 kh) 

4 sinh3 kh 
(8) 

and it is plotted in Figure 4 as a function of h/L0, Lo being the deep 

water wave length. It is seen from the figure that the 2nd harmonic 

component is significant, especially in shallow water areas. 

When the fundamental wave amplitude and frequency are given 

it is now possible, from equation (8) or the graph in Figure 4, to 

determine the bound wave component. It is important to note that no 

matter what type of control signal is used for the wave generation (1st 

or 2nd-order), the bound 2nd harmonic component will always exist in the 

wave flume. 

3.2 Free Second Harmonic Haves 

When generating regular waves in a wave basin or a flume, it 

is common to encounter a significant amount of free, second harmonic 

wave activity. This originates from two sources. One is that the 

traditional wave generation technique which uses only a 1st order trans-

fer function does not satisfy the necessary 2nd-order boundary condi-

tions for the 2nd harmonic. This inevitably produces undesired free 

waves (for details see Sand and Mansard [Ref. 10]). The amount of free, 

second order wave energy which is so generated depends on the depth of 

water, on the height and the length of the fundamental wave and the mode 

of the wave generator. This is described in Figure 5 in terms of a 

ratio between the free and the bound, second harmonic wave height. 

Another reason may be found in the reflection process itself. 

If a portion of the fundamental wave is reflected, then the amount of 

second harmonic energy which this reflected wave must bind to itself 

will be reduced in proportion to the square of its amplitude as indica-

ted by equation (7). Any excess in the 2nd harmonic energy which cannot 

be bound to the reflected fundamental must therefore be presumed to be 

released as free 2nd harmonic energy. 
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Whereas the free, second harmonic wave produced inadvertently 

by linear wave generation can be eliminated by use of 2nd-order wave 

generation, the free wave energy released by the fundamental during re-

flection can evidently not be avoided. 

The free and the bound waves have the same frequency but 

travel with different phase velocities; the bound wave propagating 

faster. However, while the free wave propagates at its own celerity, 

the bound second harmonic wave is locked to the celerity of its funda-

mental. As a result, the two waves interact differently at different 

locations in the flume; sometimes causing cancellation, sometimes rein-

forcement. In other words, the spacial envelope of the second harmonic 

wave, and consequently of the total non-linear wave oscillates, and it 

can be shown that the wave length of this variation is: 

C•Cf 

Lx = T/2 
c-cf 

(9) 

where cf is the phase velocity of the free wave with period T/2 and c 

is the phase velocity of the fundamental wave with period T. In deep 

water the free wave phase velocity is half that of the fundamental, 

which means that the length of the envelope oscillations becomes Lx = 

L/2. If, 4-3r example, cf is only 90% of c, then the length of the 

envelope oscillation becomes Lx = 4.5 L. 

3.3 Niamerical Simulation of Wave Reflections 

In order to visualize the effect of interaction between the 

free and bound second harmonics in a wave flume in the presence of 

reflections, a numerical simulation procedure was developed. This pro-

cedure is also applicable to the validation of the non-linear reflection
 

analysis which will be described in Section 3.4. 

The simulation procedure permits the specification of the 

desired fundamental wave height and wave period, the reflection coeffi-

cient for the fundamental and the second harmonic component, the length
 

of the flume and the depth of water. With this information the proce-

dure will calculate the water surface variation at any specified loca-

tion in front of the wave board by superimposing the fundamental in
ci-

dent and reflected waves and their theoretical bound second harmo
nics as 

defined by Equations 7 and 8. The second harmonic energy which is bound 

to the incident fundamental is assumed to be reflected in proportion
 to 

the square of the ratio of the incident and reflected fundamental wave. 

The re-reflection of the reflected wave from the wave board and the 

natural attenuation of the higher frequency waves during propagation are 

not included. 

As an option, the procedure also permits the simulation of 

second harmonic, spurious wave energy which results from conventional 

lst-order wave generation theory. For simplicity, the piston generator 

characteristics of Figure 5 are being approximated by: 
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[1 - 0.7 kh 

Hf/HHEI = 

[0.45 - 1/[2(kh) 3] 

for kh < 1.2 

for kh > 1.2 

Consequently the free second harmonic is approximated by: 

( 2) nf (t) = A2.G .(Hf/Hia).cos (2wt-0) 

where is approximated as: 

for kh < 0.94 

0 = •0.52 + 2.78 kh for 0.94 < kh < 1.88 

5.75 for kh > 1.88 

(1 0) 

The above two approximations are considered adequate for the 
simulation process. As the analysis program must be able to separate 
the incident and reflected waves of the bound and free components, it is 
only necessary to know the magnitude of the free wave in the simulation 
and then assess the analysis program's ability to recover this informa-
tion. 

The results of a simulated exmple case are given in Figure 6. 
The wave height of the fundamental is H' '= 0.12 m, the period is 

T = 2.0 s and the water depth is h = 0.5 m. From trm it has been 

calculated that the induced 2nd harmonic bound wave is Ha' = 0.026 m 
2 and the associated free wave is H(f) = 0.012 m. The simulated reflec-

tion coefficients are assumed to be: for the fundamental Cr = 20%, 
for the free 2nd harmonic Cr,f = 30%. Figure 6 shows the total wave 
train at four different positions in the wave flume, i.e. at antinodal 
points b) and d), and nodal points a) and c). A purely linear wave is 

also plotted for comparison. The simulation for the wave conditions 
given above was extended for several locations along the flume from 0 to 

12.2 m from the hypothetical first probe. In order to describe how the 

wave height varies along the length of the flume, one may measure the 

wave activity either in terms of the height of the wetted surface on the 

flume wall, (i.e. the wave crest height as observed at a specific loca-

tion along the flume) or one may measure peak to trough wave heights at 

the same locations. As described in Section 2.0, either of these 

methods are used in conventional reflection analysis. Figure 7 shows 

the result of the former for incident wave height of 0.12 m and 0.06 m. 

The four cases given in Figure 6 are indicated as solid circles on this 

graph. Figure 8, on the other hand, gives the same simulation results 

in terms of the crest to trough wave height measure. 

By applying conventional reflection analysis to these two en-

velope representations one may notice how the second harmonic wave can 

degrade the accuracy of the reflection measurement. By applying equa-

tion (2) with adjacent maximum and minimum envelope values supplied by 

Figure 7, one may obtain reflection coefficient values ranging between 

13% and 23%. This is different from the imposed reflection value of 20% 

which was successfully recovered by applying equation (2) to the linear 
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wave simulation. More dramatic discrepancies can be demonstrated by 

combining the smallest peak and the largest trough or the largest peak 

and smallest trough as observed over the total length of the flume as 

shown in Figure 7. 

On the other hand, when the peak to trough wave height is used 

as provided by Figure 8, rather than the total envelope as shown in 

Figure 7, then the range of reflection coefficients resulting from 

equation (2) is only from 17% to 20%. 

This second method is evidently more accurate. It will also 

be noticed from Figures 7 and 8 that the accuracy improves for smaller 

wave height. Nevertheless, these results cannot be considered in line 

with modern measurement requirements. The second order reflection 

analysis described below was designed to improve the accuracy of reflec-

tion analysis particularly in situations where a significant amount of 

second harmonic wave activity exists. 

3.4 Non-linear Reflection Analysis Program, REFL2 

The program REFL2 is a non-linear approach to the analysis of 

reflections of regular wave data. As shown in Figure 9, the program re-

quires as inputs the three time series of co-existing waves, namely 

n1(t), n2(t) and n3(t), as measured by probes p = 1, 2 and 3. The water 

depth h and the spacings between probes 1 and 2 (X 12) and probes 1 and 3 

(X13) have to be provided. The outputs of the analysis are the incident 

and reflected wave heights of the fundamental, and of the bound and the 

free second harmonic components. 

The program uses the Gauss-Newton method to provide an optimal 

fit in a least squares sense to a sinusoidal function for each of the 

three wave trains. This supplies then the amplitudes, the frequencies 

and the phases of the sinusoids which best describe the fundamental com-

ponent in the three waves. Evidently, the frequency of these three 

waves should be identical. However, because the present method fits the 

three function parameters separately to each of the three wave trains, 

there is a small and in general negligible difference in the optimally 

fitted frequency. 

Given the amplitudes, phases and the common frequency of the 

three fundamental waves, a reflection analysis by the method described 

by Mansard and Funke [Ref. 6] can be carried out. This method separates 

the incident and the reflected fundamental such that for: 

Ai cos(Lot+4)i) + Ar cos(wt+Or) 

Ai cos(wt-kX12+00 + Ar cos(wt+kx12+40 

Ai cos(wt-kX 13+00 + Ar cos(wt+kx 13+4)r) 

▪ cl(t) = nl(t) 

▪ c2(t) = n2(t) 

+ e3(t) = 113(t) 
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the sum of the residue squares is a minimum, i.e. 

3 TR 
f 9 2(t) dt = minimum 

j=1 

The program now subtracts the incident and reflected fundamen-

tal components from the three wave records n1(t), n2(t) and n 3(t) leav-

ing the three residual functions el(t), e2(t) and e3(t). These must now 

contain the second harmonic bound and free components and the noise. 

Knowledge of the incident wave height Ai, reflected wave 

height Ar and their common frequency w permits the applicatim of 

Equation (7) to obtain the bound second harmonic wave amplitudes A121
(2) and Ar . It is therefore possible to rewrite Equations (12) to (14) as 

follows: 

Ai cos(wt+00 + Ai2) cos(2wt+20i) 

( 2) + Ar cos(wt+4)r) + Ar cos(2wt+24,r) 

+ r 1(t) = n 1(t) 

Ai cos(wt-kX12+41i) + Ai2) cos(2wt-2kX 12+20i) 

( 2) 
+ Ar cos(wt+kX 12+0r) + Ar cos(2wt+2kX 12+4 r) 

+ r2(t) = n2(t) 

Ai cos(wt-kX134-(4) + Ai2) cos(2wt-2kX 13+20i) 

+ Ar cos(wt+kX 13+4,r) + AP) cos(2wt+2kX13+24,r) 

+ r3(t) = n3(t) 

(15) 

(16) 

(17) 

where r1(t), r2(t) and r 3(t) are the residue functions which contain now 

the free second harmonic components and the noise. These are obtained 

by subtracting the known bound second harmonic components from the resi-

dual functions el(t) , e2(t) and e3(t). 

At this point it is possible to apply an additional least 

squares fitting operation by the Gauss-Newton method to the three resi-

dual functions r 1(t), r 2(t) and r 3(t). However, as the frequency of the 

second harmonic wave is now known to be twice the fundamental frequency, 

only the amplitude and the phase need to be optimally fitted for each 

function. 

Knowledge of the parameters of the free second harmonic waves 

at the three probes now permits a separate reflection analysis of these 

components using the same method as described above. This yields the 

incident and reflected amplitudes of the free second harmonic wave 

Ai,f and Ar , f. 

The following reflection coefficients can now be computed: 

- For the fundamental component we have: 
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Cr = Ar/Ai 

For the bound, second harmonic component 

( 2) ( 2) 
Cr,b = Ar /Ai 

and since Equation (7) implies that 

A(2
) = (A(1))2•G 

it follows that 

Cr do = 4/Ai = Cr 

For the free, second harmonic component 

Cr,f = Ar,f/Ai,f 

For the combined fundamental and bound second harmonic com-

ponent 

% 2  2 /
22) ) 1/r 2 2, 

q.,13 = L(Ar+Ar ) / (q+Ai 

and finally 

For the combined fundamental and free second harmonic com-

ponent 

C , f = [(4+4 , f) / (4.+Af,f)
]1/2 

After removal of the free components from the residuals r 1(t), 

r 2(t) and r 3(t), the rms values of the remaining noise is also compu-

ted. This residual component represents that portion of the measured 

water surface elevation which cannot be explained by the present 2nd-

order theory. 

3.5 Test of !WU With and Without Noise 

The computer program was tested with known, synthesized time 

series to verify if the incident and reflected waves and the reflection 

coefficients were computed correctly. In addition to this, it was also 

of interest to determine the influence of noise on the computed reflec-

tion characteristics. The noise was generated according to the descrip-

tion in Section 2.2. 

Tb1)
e standing wave system was synthesized for an incident wave 
( 

height of Hi = 0.12 m, a period of T = 2.0 s, a reflection coefficient 

of Cr = 20% and a free wave reflection coefficient of Cr,f = 30%. 

The noise level was varied from 0 to 10% of the total incident wave. 

Table 3 shows the output of the REFL2 analysis. The rms of the final 
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residual is given relative to the rms of the incident wave, i.e. the 

ratio of the rms is Rrms = residual rms/incident rms. The table shows 

that the output is very stable; even with 10% noise the accuracy of the 

results is not significantly affected. 

Figure 10 illustrates an example of the analysis of a test 

case without hoise. In Figure 10 a) the total wave train is compared to 

the fit of the basic, fundamental wave. The residue is compared to the 

computed bound wave in Figure 10 b). In Figure 10 c) the bound wave 

component has also been subtracted, and the remaining free wave is com-

pared to the fitted one. In Figure 10 d) the final residual is given, 

which, in this case, is negligible. 

Figure 11 shows the output of REFL2 in the case of 10% noise. 

The residual noise now shows up in Figure 11 d) , and it may be seen from 

Table 3 that the computed residual Rrms is 10%, which is exactly the 

noise level used for the synthesis. 

On the basis of this test series it has been demonstrated 

that REFL2 is capable of decomposing precisely a non-linear wave train 

into separate incident and reflected parts of fundamental, bound and 

free waves in spite of the presence of noise. 

3.6 Non-linear Reflection Analysis of Flume Data 

TO further illustrate the use of REFL2 a series of measured 

flume data were analysed. These were acquired as part of an optimiza-

tion experiment for a wave absorber. A certain amount of noise is al-

ways present in measured wave data, but what was more important in the 

present case was the deficiency of the wave generator. The machine suf-

fered from backlash as it was noted that the paddle had a tendency to 

rest a fraction of a second in each extreme position. That is, the 

regular sinusoidal movement was slightly clipped at the top and the 

bottom. It is interesting to apply REFL2 to such corrupted data. 

Figure 12 shows a fundamental wave of 6.0 s. The profile does 

not look quite smooth and regular, but the fits to the fundamental, and 

to the 2nd harmonic bound and the free component seem still reasonable. 

As seen from Table 4 the reflection coefficient of the fundamental is 

46.3%, for the bound it is 21.5%, and for the free wave 22.3%. It has 

earlier been pointed out that the reflected free waves could consist of 

reflections of an incident free wave and a contribution from the bound 

wave energy which may be released as free wave energy in the reflection 

process. 

To demonstrate the possibility that bound, second harmonic 

waves could be reflected as free second harmonic waves, two additional 

tests were analysed which have fundamental periods of three seconds, 

corresponding to the second harmonic period of the first test of Figure 

12. It is assumed the two additional tests with fundamental periods of 

three seconds should reveal the reflective properties of the structure 

at three seconds. If these second reflection coefficients turn out to 

be smaller than was found for the first test, then it must be assumed 

that some of the additional reflected second harmonic energy in the 
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* 0 0.120 0.026 0.012 0.024 0.001 0.004 20.0 4.0 30.1 19.6 20.1 0 

1.0 0.120 0.026 0.012 0.024 0.001 0.004 19.9 4.0 30.1 19.5 20.0 1.0 

5.0 0.120 0.026 0.012 0.024 0.001 0.004 19.8 3.9 30.7 19.3 19.9 5.0 

** 5.0 0.120 0.026 0.012 0.024 0.001 0.004 20.0 4.0 31.5 19.5 20.1 5.0 

10.00 0.120 0.026 0.012 0.023 0.001 0.004 20.0 3.8 31.5 19.1 19.7 10.0 

* Different location of gauges in flume. 

** Based on 2048 data samples. 

TABLE 3 RESULTS OF NON-LINEAR REFLECTION ANALYSIS WITH SYNTHESIZED WAVES 
(Cr = 20%, Ci,f = 30%, 1024 data sapples) 
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first test came from another source, such as the bound, second harmonic 
component or from some other non-linear interactions. 

Figures 13 and 14 give the results of this additional analysis 
and it may be noticed from Table 4 that the wave reflection correspond-
ing to Figure 13 is only 13% and corresponding to Figure 14 only 9.6%. 
As the free second harmonic of Figure 12 has a wave height of approxi-
mately 0.03 m and the fundamental wave in Figure 13 of approximately 
0.108 m, the comparison is not completely valid. Nevertheless, there is 
a strong possibility that the test corresponding to Figure 12 reveals 

some transfer of energy from bound to free second harmonic waves. 

The residuals in the Figures 12-14 are seen to be rather sub-

stantial, and from Table 4 it also appears that Rrms is on the order 

of 20%. This is not believed to be pure noise. The frequency of the 

residual in Figures 13 and 14 is very clearly seen to be 1.0 s, i.e. the 

third harmonic of the fundamental 3.0 s wave. This ties in very well 

with the behaviour of the wave machine in that a sinusoidal movement 

with truncated maximum and minimum generates odd harmonics. Therefore, 

third, fifth, etc. harmonic waves will be present in the flume. How-

ever, in the present non-linear analysis technique frequency components 

above the 2nd harmonic are treated as a noise residual. 

3.7 Simulation of Flume Data 

The measured 6.0 s wave shown in Figure 12 was generated using 

traditional lst-order control of the wave machine. Consequently, free 

second harmonic spurious waves were being produced. The investigation 

in this section attempts to simulate the situation by numerical synthe-

sis. The computer procedure described in Section 3.3 was employed for 

this purpose using the approximations of Equations (10) and (11). 

A reflection analysis followed the numerical synthesis of the 

measured flume data. The results are also shown (bottom line) in Table 

4. It was possible to recover the desired reflection coefficient of 

Cr = 46%. Also the bound and free wave reflection coefficients match 

the anticipated values well. The measured and simulated profiles are 

illustrated in Figure 15. The right skew is obviously reproduced. 

However, the main difference between the wave profiles is that the simu-

lated wave does not include the odd harmonics, which are required to 

realize the symmetry in the measured wave profile. It can also be seen 

from Table 4 that only 2.5% real noise was simulated as it was assumed 

that the rest of the residual energy was contained in third or higher 

harmonics. 

A simulation of the 6.0 s wave using 2nd-order wave generation 

is described in section 5.1. 

4.0 LINEAR ANALYSIS OF NON-LINEAR DATA 

To investigate the importance of separating bound and free 

waves in the reflection analysis a series of non-linear data was analys-

ed with the program REFL3. This program does not distinguish between 
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6.0 0.079 0.024 0.028 0.037 0.005 0.006 46.3 21.5 22.3 21.0 

3.0 0.108 0.012 0.012 0.014 0.000 0.001 13.0 1.7 8.0 15.7 

3.0 0.054 0.003 0.004 0.005 0.000 0.002 9.6 0.9 50.0 28.1 

* 6.0 0.079 0.024 0.018 0.036 0.005 0.004 45.8 20.9 21.8 2.5 

* Numerically simulated. 

TABLE 4 ANALYSIS OF MEASURED FLUME DATA 
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free and bound waves, i.e. the program assumes all waves to be free and 
linear. A comparison of the output of REFL2 and REFL3 is given in Table 
5. 

For the first wave with T = 3.0 s, REFLI seems to output free 
second harmonic wave quantities, which are approximately the sum of the 
bound and free second harmonic waves. This is also the case for the 
second T = 3.0 s wave, but it should be noted that in this case the 
amplitudes are very small, which could make the results suspicious. 
However, for case three and four, i.e. with T = 6.0 s waves, there are 
significant differences between the results of REFL2 and REFL3. The 
latter gives a much smaller free wave amplitude than the sum of the 
second harmonic bound and free waves, and the reflection coefficients 

are also different. The reasons for this may be that at some of the 

wave gauges, the phase of the second harmonic bound and that of the 

second harmonic free wave cancel to a certain extent. REFL3 can only 

interpret that as a reduced wave amplitude. The calculation of the 
reflection coefficients will therefore be affected. The same effect 

seems to apply also to the last two cases in Table 5, i.e. the T = 2.0 s 

waves. 

The conclusion of these tests as outlined in Table 5 seems to 

be that it is rather important to distinguish between bound and free 

second harmonic waves in the reflection analysis of non-linear regular 

waves. 

5.0 SECOND-ORDER WAVE GENERATION 

The non-linear character of a regular wave with its higher 

harmonic component implies that a conventional linear control signal 

based on Biesel's transfer function [Ref. 1], will be insufficient for a 

correct generation. To find the proper wave board control signal the 

Laplace equation and the paddle boundary condition have to be expanded 

to 2nd order, c.f. Sand and Mansard (Ref. 10], and Flick and Guza 

[Ref. 4]. The solution is a non-linear correction to the traditional 

lst-order signal. Thus, generation of the regular wave in equation (6) 

requires first the basic linear signal: 

X(1)(t) - A sinh(kh) cosh(kh)+kh   sin(wt) (20) 

2 sinh2(kh) 

and in order to secure a proper reproduction of the higher harmonic in 

equation (7), the following 2nd-order signal has to be superimposed: 

X(2) (t) = A2 F 1 sin(2wt) + A2 F23 cos(2wt) (21) 

in which F 1 and F23 are rather complicated transfer functions described 

in Sand and Mansard [Ref. 10]. 

As indicated above, the use of the 2nd-order control signal 

implies that only the regular wave and its higher harmonic component 



REFL2 REFL3 
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H(2) 
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H(2) 
r,HB 

H(2) 
r,f 

C
r,b 

c
r,f 

C' 
r,f 

s m m m m % % % m m m m % % % 

a) 3.0 0.012 0.012 0.000 0.001 1.7 8.0 13.0 0 0.024 0 0.003 0 10.7 12.9 

a) 3.0 0.003 0.004 0.000 0.002 0.9 50.0 10.2 0 0.007 0 0.002 0 34.6 10.4 

a) 6.0 0.024 0.028 0.005 0.006 21.5 22.3 44.3 0 0.025 0 0.006 0 24.3 44.8 

b) 6.0 0.024 0.018 0.005 0.004 20.9 21.8 44.9 0 0.008 0 0.007 0 93.6 46.5 

c) 2.0 0.026 0.012 0.001 0.004 4.0 29.9 20.0 0 0.016 0 0.005 0 33.5 20.3 

d) 2.0 0.026 0.012 0.001 0.004 3.8 31.5 19.7 0 0.016 0 0.005 0 34.4 19.9 

a) Measured wave data. b) Simulated case. c) Synthesized, no noise. d) Synthesized, 10% noise. 

TABLE 5 COMPARISON BETWEEN NON-LINEAR AND LINEAR ANALYSIS OF NON-LINEAR WAVE DATA 
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will be generated. If, however, attempts are made to generate the same 

wave with only the lst-order control signal, an additional undesired 

free higher harmonic wave will appear in the flume. This free wave com-

ponent has been briefly discussed in section 3.2. 

5.1 Numerical Simulation with 2nd-order Generation 

In Figure 6 the non-linear waves appearing as a result of 1st-

order wave generation were simulated. For comparison a simulation of 

the correct use of 2nd-order control signals is presented in Figure 16. 

The purely linear waves are compared to the sum of linear and bound (no 

free) waves. The characteristic flat troughs and sharp crests appear. 

The fundamental wave height is H‘li = 0.12 m, and this case can also be 

compared to Figures 7 and . 8. First of all, it is seen that the nodes, 

a) and c), and the antinddes, b) and d), do not vary along the flume 

like they do for the wave of Figure 6. Thus, in the present case both 

the envelope and the crest-trough method would work satisfactorily, 

i.e. they would return the Cr = 0.20. This in itself shows the 

advantage of using a 2nd-order wave generation method. 

A further application of 2nd-order wave generation is present-

ed in Figure 17, which relates to the simulation of flume data described 

in Section 3.7. The measured data shown in Figure 15 are now compared 

to the wave profiles obtained by 2nd-order wave generation. This means 

that the fundamental and bound second harmonic waves were maintained, 

but the free second harmonic was completely suppressed. It is clearly 

evident that the agreement is poorer than in Figure 15. This seems to 

confirm that the measured data were really produced by a lst-order con-

trol signal. Apart from the discrepancies caused by third (and higher) 

harmonics produced inadvertently by the backlash in the machinery it 

appears that both the 1st and the 2nd-order simulation programs produce 

reasonable results. 

6.0 SOURCES OF INACCURACIES 

A certain amount of noise and measurement errors are always 

present in laboratory flumes or basins. In cases where the amplitude of 

the waves is very small, the ratio of noise/signal can become high and 

cause inaccuracies in the estimation of reflection. Hence, when dealing 

with waves which are very small in height, the reflection coefficient 

must be treated with caution (see Table 1 for the effect of noise). 

Another source of inaccuracy could appear when the waves are 

of large amplitude. In the reflection analysis, it is assumed that both 

incident and reflected fundamental components travel according to the 

linear dispersion relation, and the net phases between each probe are 

therefore determined by this. But it is shown by Cokelet [Ref. 2] and 

Rienecker and Fenton [Ref. 3] that waves with large steepness travel 

faster than predicted by linear theory. For waves close to critical 

steepness (0.14 tanh2irh/L), they could propagate up to 18% faster in 

deep water, and in shallow water even higher (30%). However, it must be 

stressed that these critical steepnesses represent extreme conditions 

which are not commonly encountered in laboratory tests. For waves of 

average steepness it may be that the accuracies provided by the linear 
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MEASURED — SIMULATED 2nd-ORDER GENERATION 
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dispersion theory are acceptable. However, to study this particular 
effect of non-linear dispersion, a special numerical simulation was 

carried out. For this purpose, the incident wave was assumed to be 
propagating at 1.1 times the linear celerity, while the reflected 
component, being smaller in height, was assumed to correspond to the 
linear theory. 

An incident wave of height 12 cm and period 2 s was synthesiz-
ed with a reflection coefficient of 20%. The reflection analysis which 
assumes, as indicated above, linear propagation characteristics, estima-
ted the reflection coefficient to be 17.9%. This suggests that appreci-
able errors can result from the assumption of the linear dispersion 
theory. Nevertheless, it must be stressed again that the above example 
represents a rather extreme case. 

The Hydraulics Laboratory of NRCC has recently implemented the 
Rienecker and Fenton [Ref. 3] numerical scheme for calculating mon-lin-
ear dispersion relations over all ranges of water depths and wave 
heights. This simulation is being extended to an irregular sea state. 
It is expected, however, that due to the large number of components pre-

sent in an irregular sea, the mean reflection coefficient may not be 

affected significantly by the introduction of non-linear dispersion 

theory. 

A number of improvements are being implemented in the fitting 

technique. One of them is the capability of fitting simultaneously the 

frequency which best represents the three probes being analysed. This 

will be particularly important for waves of small wave height, which 

have a relatively high noise/signal ratio, and also for waves of cnoidal 

shapes such as the ones presented in Figure 15. The strong contrasts of 

the wave profiles, in this case, could have easily resulted in different 

estimates of the frequency. This feature of optimizing the frequency 

first, would be particularly important for analysis of irregular waves, 

where a large number of components have to be properly correlated be-

tween the probes. 

7.0 PRACTICAL APPLICATIONS 

It is shown that the technique of non-linear reflection analy-

sis is more convenient and more accurate than other methods currently in 

use. It may therefore promote the use of reflection measurement in the 

course of wave dynamic testing. 

With the availability of this analysis tool (which can poten-

tially measure the transfer of energy from bound to free second harmonic 

waves as a result of reflection) it may be possible to extend research 

in the physical wave processes in the vicinity of reflective or wave 

absorbing structures. 

The present method of analysing reflections with non-linear 

regular waves can be seen as the forerunner of a more general principle 

deaiing with irregular wave trains. The basic idea can definitely be 

transferred to the case of a large number of frequencies, which interact 

non-linearly and each of which individually carries a 2nd harmonic com-
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ponent. With the many components of different bound and free harmonics 
comprising an irregular wave train, it is likely that the overall re-
sults of the reflection analysis may show more of a difference between 
linear and non-linear analysis techniques. 

It is also suggested that the technique of separating bound 
and free components could be extended to the group bound long waves 
although this applies only to the irregular wave situation. However, in 
practice it is more difficult to measure long wave reflections because 
the participating wave probes must be spaced much further apart than is 
required for short waves. 

8.0 CONCLUSIONS 

An improved technique for linear and non-linear reflection 
analysis for regular waves has been presented. Both methods are based 
on a non-linear least squares curve fit of sinusoidal functions to mea-
sured wave trains acquired from three wave probes. 

The non-linear reflection analysis is capable of separating 
the bound and free second harmonic components from the total wave train 
permitting the reflection analysis of each of these components. 

Numerical simulations used for the validation of the reflec-
tion analysis programs were applied to the synthesis of the standing 
wave envelope. From this it was determined that the traditional method 
of reflection analysis by the envelope method is subject to errors and 
is certainly dependent on the choice of measurement location within the 
flume. If an envelope must be used, then the method of measuring crest 
to trough wave heights at the node and the antinode is more accurate 
than the measurement of the envelope of the wetted surface. In either 
case significant improvements in measurement accuracy can be obtained if 
the generation of spurious second harmonic free waves is suppressed by 
the application of 2nd-order wave generator theory. 

The new method is found to be quite insensitive to significant 
amounts of co-existing noise and can analyse records of arbitrary length 
without loss of accuracy. 
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