

NRC Publications Archive Archives des publications du CNRC

Airborne and impact sound insulation data for cold-formed steelframed walls and floors

Hoeller, Christoph; Zeitler, Berndt; Sabourin, Ivan

For the publisher's version, please access the DOI link below./ Pour consulter la version de l'éditeur, utilisez le lien DOI ci-dessous.

https://doi.org/10.4224/23002823

NRC Publications Record / Notice d'Archives des publications de CNRC: https://nrc-publications.canada.ca/eng/view/object/?id=972f2840-2341-46c9-afa5-d0b9f6225420 https://publications-cnrc.canada.ca/fra/voir/objet/?id=972f2840-2341-46c9-afa5-d0b9f6225420

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at <u>https://nrc-publications.canada.ca/eng/copyright</u> READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

L'accès à ce site Web et l'utilisation de son contenu sont assujettis aux conditions présentées dans le site https://publications-cnrc.canada.ca/fra/droits LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D'UTILISER CE SITE WEB.

Questions? Contact the NRC Publications Archive team at PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n'arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Airborne and Impact Sound Insulation Data for Cold-Formed Steel-Framed Walls and Floors

Christoph Hoeller, Berndt Zeitler, Ivan Sabourin A1-005007.1 15 February 2018

Conseil national de recherches Canada

Airborne and Impact Sound Insulation Data for Cold-Formed Steel-Framed Walls and Floors

Author

Christoph Hoeller, Ph.D. Research Officer

Approved

Philip Rizcallah, P.Eng. Program Leader Building Regulations and Market Access NRC Construction

Report No: Report Date: Contract No: Agreement date: Program: A1-005007.1 15 February 2018 A1-005007 28 April 2014 Building Regulations and Market Access

230 pages

Copy no. 5 of 5

This report may not be reproduced in whole or in part without the written consent of the National Research Council Canada and the Client.

Contents

1. Sound Insulation of CFS-Framed Walls	1
1.1 Overview of Tested Wall Assemblies	2
1.2 Detailed Test Reports	6
1.3 Analysis of Results for CFS-Framed Walls	127
1.3.1 Transmission Loss of Reference Assembly	127
1.3.2 Influence of Sheathing	128
1.3.3 Influence of Cavity Insulation	133
1.3.4 Influence of Resilient Channels	134
1.3.5 Influence of Stud Spacing	135
1.3.6 Influence of Stud Depth	136
1.3.7 Influence of Steel Thickness	137
1.3.8 Influence of Flat Straps and Bridging Channels	138
2. Sound Insulation of CFS-Framed Floors	139
2.1 Overview of Tested Floor Assemblies	140
2.2 Detailed Test Reports	145
2.3 Analysis of Results for CFS-Framed Floors – Airborne Sound Transmission	215
2.3.1 Transmission Loss of Reference Assembly	215
2.3.2 Influence of Joist Depth	216
2.3.3 Influence of Gypsum Board Ceiling	218
2.3.4 Influence of Floor Coverings	220
2.4 Analysis of Results for CFS-Framed Floors – Impact Sound Transmission	223
2.4.1 Normalized Impact Sound Pressure Level of Reference Assembly	223
2.4.2 Influence of Joist Depth	224
2.4.3 Influence of Gypsum Board Ceiling	226
2.4.4 Influence of Floor Coverings	228

List of Figures

Figure 1: Transmission loss of reference wall assembly	127
Figure 2: Influence of the layers of gypsum board on the transmission loss	128
Figure 3: Influence of the type of gypsum board on the coincidence frequency	129
Figure 4: Influence of the layers of gypsum board for walls without cavity insulation	130
Figure 5: Influence of the layers of gypsum board for walls without resilient channels	131
Figure 6: Influence of the layers of gypsum board for 92 mm deep walls	132
Figure 7: Influence of cavity insulation	133
Figure 8: Influence of resilient channels	134
Figure 9: Influence of stud spacing	135
Figure 10: Influence of stud depth	136
Figure 11: Influence of the steel thickness of the wall studs	137
Figure 12: Influence of flat straps and bridging channels	138
Figure 13: Cross-section of the reference floor assembly, with detailed cut-out of the c	orrugated
steel deck with gypsum concrete subfloor	141
Figure 14: Transmission loss of reference floor assembly	215
Figure 15: Influence of joist depth	217
Figure 16: Influence of joist depth – Change in transmission loss	217
Figure 17: Influence of gypsum board ceiling	219
Figure 18: Influence of gypsum board ceiling – Change in transmission loss	219
Figure 19: Influence of floor coverings	221
Figure 20: Influence of bonding method for vinyl covering	221
Figure 21: Influence of floor coverings – Change in transmission loss	222
Figure 22: Normalized impact sound pressure level of reference floor assembly	223
Figure 23: Influence of joist depth	225
Figure 24: Influence of joist depth - Change in normalized impact sound pressure level	225
Figure 25: Influence of gypsum board ceiling	227
Figure 26: Influence of gypsum board ceiling - Change in normalized impact sound	pressure
level	227
Figure 27: Influence of floor coverings	228
Figure 28: Influence of bonding method for vinyl covering	229
Figure 29: Influence of floor coverings – Change in normalized impact sound pressure	level .229

List of Tables

Table 1: Examples of the codes used to identify materials and describe constructions	2
Table 2: List of Wall Assemblies	3
Table 3: Examples of the codes used to identify materials and describe constructions	140
Table 4: List of Floor Assemblies	142

Summary

This report presents the results of an extensive series of direct sound insulation tests of coldformed steel-framed walls and floors.

The direct airborne sound insulation of 30 walls with cold-formed steel framing was measured in accordance with ASTM E90-09. The walls had steel studs with a depth of 92 mm (3-5/8") or 152 mm (6"), and with a steel thickness of 1.09 mm (0.043") or 1.37 mm (0.054"). Other parameters that were investigated included the number of layers and thickness of gypsum board, the cavity insulation, the stud spacing, and the use of resilient channels. The test results for some non-standard wall configurations that were tested for research purposes (e.g. for walls with gypsum board on one side only) are also included in this report.

The direct airborne and impact sound insulation of 17 floors with cold-formed steel framing was measured in accordance with ASTM E90-09 and ASTM E492-09, respectively. The floors had steel joists with a depth of 254 mm (10") or 317 mm (12.5"), and with a steel thickness of 1.37 mm (0.054"). The top surface of the floor/ceiling assemblies was composed of a corrugated steel deck with poured gypsum concrete, while the bottom surface was composed of a gypsum board ceiling on resilient channels. The influence of the joist depth and the number of layers and thickness of the ceiling gypsum board was investigated, as well as the influence of several floor coverings (e.g. laminate or carpet).

The report presents the detailed specimen descriptions and specimen properties and the results from the standardized tests according to ASTM E90-09 and ASTM E492-09. Brief analyses of the parameters affecting the sound insulation of the steel-framed assemblies are provided.

The tests presented in this report were part of a large research study that also included an investigation into the flanking sound transmission in cold-formed steel-framed buildings. The results of that study are described in the NRC Research Report RR-337, "Apparent Sound Insulation in Cold-Formed Steel-Framed Buildings" [1]. The NRC Research Report RR-337 also includes some of the airborne sound insulation results presented here, albeit without listing the detailed specimen descriptions and specimen properties that are provided in this report.

1. Sound Insulation of CFS-Framed Walls

The sound insulation properties of 30 cold-formed steel-framed wall assemblies for mid-rise construction were measured in the NRC Construction Wall Sound Transmission Facility, in accordance with the requirements of ASTM E90-09 [2]. The facility and the test method are described in Appendix A.

The first wall that was tested was chosen as reference assembly. It was constructed from 152 mm (6") deep cold-formed steel studs spaced 406 mm (16") on centres, with resilient channels on one side spaced 406 mm (16") on centres and 152 mm (6") thick glass fibre batts in the wall cavity. The sheathing consisted of one layer of 15.9 mm (5/8") gypsum board type X on each side. The reference assembly achieved a Sound Transmission Class (STC) rating of 49.

Based on the reference assembly described above, a parametric study was conducted to investigate the importance of various wall members. The following parameters were examined: the number of layers and thickness of gypsum board, the cavity insulation, the stud spacing and stud depth, the steel thickness of the studs, and the use of resilient channels. Some further tests were conducted to investigate the influence of flat strap bracing and bridging channels. The test results for some non-standard wall configurations that were tested for research purposes (e.g. for walls with gypsum board on one side only) are also included in this report.

This section is divided into three parts:

Section 1.1 provides a tabulated overview of the wall assemblies that were tested as part of this study. Table 2 contains short descriptions and drawings of all wall assemblies together with their measured STC rating and a reference to the page where the detailed test report can be found.

Section 1.2 provides the detailed test reports which list the construction details, material properties, test conditions, and test results for each specimen.

Section 1.3 provides brief analyses of parameters affecting the sound insulation of cold-formed steel-framed wall assemblies.

1.1 Overview of Tested Wall Assemblies

Table 2 provides an overview of all wall assemblies that were tested as part of this study. Each row contains the specimen identifier, a sketch and a short code describing the specimen, the measured Sound Transmission Class (STC) rating of the specimen, and the page number where the detailed test report can be found.

A coding system is used in the table to avoid long descriptions of the wall constructions. Each surface layer in a wall is coded as follows:

- An integer representing the number of layers of material; if the number of layers is one, the leading 1 is omitted
- A sequence of letters to indicate the material in the layer (see Table 1 below)
- A number representing the thickness in mm of each sheet or element in the layer
- Underscores separating the codes for each layer

The coding system is also applied to elements that do not constitute surface layers such as joists, studs, and resilient metal channels. For such elements, the number following the letters is the depth of each element (the dimension along the axis perpendicular to the surface of the assembly) and the number in parentheses following the depth code is the separation between adjacent elements.

Code	Material
Gxx	Gypsum board "xx" mm thick
GFBxx	Glass fibre batts "xx" mm thick
SSxx(ss)	Cold-formed steel (CFS) studs with nominal depth of "xx" mm, spaced "ss" mm on centres
RCxx(ss)	Resilient metal channels with nominal depth of "xx" mm, spaced "ss" mm on centres

Table 1: Examples of the codes used to identify materials and describe constructions

Note that the coding system is a convenience and actual dimensions may not be exactly as coded. For example, the nominal 16 mm thick gypsum board would be labelled by the manufacturer as 5/8" or 15.9 mm thick.

For brevity, not all pertinent parameters are included in the short codes. For example, the thickness of the steel in the CFS studs is not indicated. This information is given separately in the specimen descriptions in Section 1.2.

Specimen	Sketch and Short Code	STC	Page
A1-005007-01W	G16_SS152(406)_GFB152_RC13(406)_G16	49	7
A1-005007-02W	2G16_SS152(406)_GFB152_RC13(406)_2G16	58	11
A1-005007-03W	2G13_SS152(406)_GFB152_RC13(406)_2G13	57	15
A1-005007-04W	G16_SS152(406)_GFB92_RC13(406)_G16	49	19
A1-005007-05W	2G16_SS152(406)_GFB92_RC13(406)_G16	53	23
A1-005007-06W	2G16_SS152(406)_GFB92_RC13(406)_2G16	57	27
A1-005007-07W	G16_SS152(406)_RC13(406)_G16	42	31
A1-005007-08W	2G16_SS152(406)_RC13(406)_G16	47	35
A1-005007-09W	2G16_SS152(406)_RC13(406)_2G16	53	39
A1-005007-10W	G16_SS152(406)_RC13(406)_2G16	48	43

Table 2: List of Wall Assemblies

Specimen	Sketch and Short Code	STC	Page
A1-005007-11W	G16_SS152(406)_GFB152_G16	42	47
A1-005007-12W	G16_SS152(406)_GFB152_2G16	45	51
A1-005007-13W	2G16_SS152(406)_GFB152_2G16	48	55
A1-005007-14W	G16_SS152(406)_GFB152_RC13(406)_G16	48	59
A1-005007-15W	2G16_SS152(406)_GFB152_RC13(406)_G16	54	63
A1-005007-16W	2G16_SS152(406)_GFB152_RC13(406)_2G16	57	67
A1-005007-17W	SS152(406)_GFB152_RC13(406)_2G16	43	71
A1-005007-18W	SS152(406)_GFB152_RC13(406)_G16	38	75
A1-005007-19W	SS152(406)_GFB152_G16	37	79
A1-005007-20W	G16_SS152(610)_GFB92_RC13(406)_G16	50	83

Specimen	Sketch and Short Code	STC	Page
A1-005007-21W	2G16_SS152(610)_GFB92_RC13(406)_G16	55	87
A1-005007-22W	2G16_SS152(610)_GFB92_RC13(406)_2G16	59	91
A1-005007-23W	2G16_SS152(610)_GFB152_RC13(406)_2G16	60	95
A1-005007-24W	G16_SS92(406)_GFB92_RC13(406)_G16	45	99
A1-005007-25W	2G16_SS92(406)_GFB92_RC13(406)_G16	52	103
A1-005007-26W	2G16_SS92(406)_GFB92_RC13(406)_2G16	57	107
A1-005007-27W	G16_SS92(406)_GFB92_G16	38	111
A1-005007-28W	G16_SS152(406)_GFB152_RC13(406)_G16	50	115
A1-005007-29W	2G16_SS152(406)_GFB152_RC13(406)_G16	54	119
A1-005007-30W	2G16_SS152(406)_GFB152_RC13(406)_2G16	58	123

1.2 Detailed Test Reports

The following pages contain the detailed test reports for the 30 wall assemblies that were tested as part of this study. Each report presents the detailed specimen descriptions, material properties, test conditions, and test results.

Wall assembly 01W: G16_SS152(406)_GFB152_RC13(406)_G16

Description	One layer of 15.9 mm (5/8") gypsum board Type X, attached on each side of 152 mm (6") deep steel studs spaced 406 mm (16") o.c., with resilient channels on one side spaced 406 mm (16") o.c. and 152 mm (6") deep glass fibre insulation (R-20) in the cavity.
Side 1	 (1) One layer of 15.9 mm (5/8") gypsum board Type X, installed vertically, directly attached to the studs using 32 mm (1-1/4") screws (#6 scavenger head) spaced 305 mm (12") o.c. at the perimeter and in the field Joints of Side 1 gypsum boards staggered by at least one stud spacing from joints of Side 2 gypsum boards Gaps along the joints and the perimeter of gypsum boards caulked and taped with aluminum tape
Framing &	• Base track and top track (steel thickness: 1.37 mm/0.054") attached to test frame using four 10 mm (3/4") screws (#10 wafer head)
Insulation	 (2) 152 mm (6") deep steel C-studs (steel thickness: 1.37 mm/0.054") spaced 406 mm (16") o.c., attached to base track and top track using 19 mm (3/4") screws (#10 pan head) One through-the-knockout bridging channel, attached to each stud using 140 mm (5-1/2") bridging clips Flat-strap steel cross-bracing, attached on Side 1 to each stud using 19 mm (3/4") screws (#10 pan head) (3) Cavities between studs filled with 406 mm (16") wide by 152 mm (6") thick glass fibre insulation (R-20), cut in half to accommodate bridging channel
Side 2	 (4) 13 mm resilient channels installed horizontally using 19 mm (3/4") screws (#10 wafer head), spaced 406 mm (16") o.c. and installed according to ASTM C754-11 (5) One layer of 15.9 mm (5/8") gypsum board Type X, installed vertically, attached to resilient channels using 32 mm (1-1/4") screws (#6 scavenger head) spaced 305 mm (12") o.c. at the perimeter and in the field Joints of Side 1 gypsum boards staggered by at least one stud spacing from joints of Side 2 gypsum boards Gaps along the joints and the perimeter of gypsum boards caulked and taped with aluminum tape

Specimen Properties

Element	Actual thickness (mm)	Mass (kg)	Mass/length, area or volume	
Gypsum Board	15.9	97.8	11.0 kg/m²	
Flat Strap	1	3.0	0.3 kg/m	
Steel Studs	152	65.0	2.7 kg/m	
Steel Tracks	152 *	16.6	2.3 kg/m	
C Channel Bridging	1 *	1.9	0.5 kg/m	
Angle Bracket	1 *	10.8	1.1 kg/piece	
Glass Fibre Insulation	152 *	12.4	9.2 kg/m ³	
Resilient Channels	13	5.6	0.2 kg/m	
Gypsum Board	15.9	97.8	11.0 kg/m²	
Total	197.8	310.9		

* Element thickness does not contribute to total thickness (i.e. in cavity)

ASTM E90 Test Results – Airborne Sound Transmission Loss

Client:

CSSBI

Specimen ID: A1-005007-01W

Test ID: Date of Test: TLA-14-041 15 August 2014

Room	Volume (m ³)	Air Temperature (°C)	Humidity (%)]		
Large	255.8	19.4 to 19.5	56.4 to 56.5		Area of test specimen:	8.92 m ²
Small	140.7	19.6 to 19.7	55.5 to 56.0		Mass of test specimen:	310.9 kg

For a description of the test specimen and mounting conditions see text pages before. The results in this report apply only to the specific sample submitted for measurement. No responsibility is assumed for performance of any other specimen. Airborne sound transmission loss measurements were conducted in accordance with the requirements of ASTM E90-09, "Standard Test Method for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions and Elements."

In the graph:

The solid line is the measured sound transmission loss for this specimen. The dashed line is the STC contour fitted to the measured values according to ASTM E413-10. The dotted line (may be above the displayed range) is 10 dB below the flanking limit established for this facility. For any frequency band where the measured transmission loss is above the dotted line, the reported value is potentially limited by flanking transmission via laboratory surfaces, and the true value may be higher than that measured. Bars at the bottom of the graph show deficiencies where the measured data are less than the reference contour as described in the fitting procedure for the STC, defined in ASTM E413-10. The shaded cells in the table and areas in the graph are outside the STC contour range.

In the table:

Values marked "c" indicate that the measured background level was between 5 dB and 10 dB below the combined receiving room level and background level. The reported values have been corrected according to the procedure outlined in ASTM E90-09. Values marked ** " indicate that the measured background level was less than 5 dB below the combined receiving room level and background level, in which case, the corrected values provide an estimate of the lower limit of airborne sound transmission loss.

This page was intentionally left blank.

Wall assembly 02W: 2G16_SS152(406)_GFB152_RC13(406)_2G16

Description	Two layers of 15.9 mm (5/8") gypsum board Type X, attached on each side of 152 mm (6") deep steel studs spaced 406 mm (16") o.c., with resilient channels on one side spaced 406 mm (16") o.c. and 152 mm (6") deep glass
	fibre insulation (R-20) in the cavity.
Side 1	 Two layers of 15.9 mm (5/8") gypsum board Type X, installed vertically (2) Base layer attached to the studs using 32 mm (1-1/4") screws (#6 scavenger head) spaced 305 mm (12") o.c. at the perimeter and in the field (1) Face layer attached to base layer and studs using 41 mm (1-5/8") screws (#6 scavenger head) spaced 305 mm (12") o.c. at the perimeter and in the field Screws from base layer to face layer offset by 152 mm (6") Joints of base layer Side 1 gypsum boards staggered by at least one stud spacing from joints of base layer Side 2 gypsum boards Joints of face layer staggered by at least one stud spacing from joints of base layer Side 2 gypsum boards Gaps along the joints and the perimeter of face layer gypsum boards
Exemple a P	caulked and taped with aluminum tape
Framing & Cavity	 Base track and top track (steel thickness: 1.37 mm/0.054⁻) attached to test frame using four 19 mm (3/4²) screws (#10 wafer head)
Insulation	 (3) 152 mm (6") deep steel C-studs (steel thickness: 1.37 mm/0.054") spaced 406 mm (16") o.c., attached to base track and top track using
	 19 mm (3/4") screws (#10 pan head) One through-the-knockout bridging channel, attached to each stud using 140 mm (5-1/2") bridging clips
	 Flat-strap steel cross-bracing, attached on Side 1 to each stud using 19 mm (3/4") screws (#10 pan head)
	• (4) Cavities between studs filled with 406 mm (16") wide by 152 mm (6") thick glass fibre insulation (R-20), cut in half to accommodate bridging channel
Side 2	 (5) 13 mm resilient channels installed horizontally using 19 mm (3/4") screws (#10 wafer head), spaced 406 mm (16") o.c. and installed according to ASTM C754-11
	 I wo layers of 15.9 mm (5/8") gypsum board Type X, installed vertically

• (6) Base layer attached to resilient channels using 32 mm (1-1/4") screws (#6 scavenger head) spaced 305 mm (12") o.c. at the perimeter and in the field
• (7) Face layer attached to base layer and resilient channels using 41 mm (1-5/8") screws (#6 scavenger head) spaced 305 mm (12") o.c. at the perimeter and in the field
 Screws from base layer to face layer offset by 152 mm (6")
• Joints of base layer Side 1 gypsum boards staggered by at least one stud spacing from joints of base layer Side 2 gypsum boards
 Joints of face layer staggered by at least one stud spacing from joints of base layer
• Gaps along the joints and the perimeter of face layer gypsum boards caulked and taped with aluminum tape

Specimen Properties

Element	Actual thickness (mm)	Mass (kg)	Mass/le	ength, area or volume
Gypsum Board	15.9	97.8	11.0	kg/m²
Gypsum Board	15.9	97.8	11.0	kg/m²
Flat Strap	1	3.0	0.3	kg/m
Steel Studs	152	65.0	2.7	kg/m
Steel Tracks	152 *	16.6	2.3	kg/m
C Channel Bridging	1 *	1.9	0.5	kg/m
Angle Bracket	1 *	10.8	1.1	kg/piece
Glass Fibre Insulation	152 *	12.4	9.2	kg/m³
Resilient Channels	13	5.6	0.2	kg/m
Gypsum Board	15.9	97.8	11.0	kg/m²
Gypsum Board	15.9	97.8	11.0	kg/m²
Total	229.6	506.5		

* Element thickness does not contribute to total thickness (i.e. in cavity)

ASTM E90 Test Results – Airborne Sound Transmission Loss

Client:

Specimen ID:

CSSBI

A1-005007-02W

Test ID: Date of Test: TLA-14-042 15 August 2014

Volume (m³) Air Temperature (°C) Humidity (%) Room 8.92 m² Area of test specimen: 255.6 19.7 to 19.8 54.4 to 55.2 Large Mass of test specimen: 506.5 kg Small 140.6 19.8 to 19.9 55.4 to 56.3

For a description of the test specimen and mounting conditions see text pages before. The results in this report apply only to the specific sample submitted for measurement. No responsibility is assumed for performance of any other specimen. Airborne sound transmission loss measurements were conducted in accordance with the requirements of ASTM E90-09, "Standard Test Method for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions and Elements."

In the graph:

The solid line is the measured sound transmission loss for this specimen. The dashed line is the STC contour fitted to the measured values according to ASTM E413-10. The dotted line (may be above the displayed range) is 10 dB below the flanking limit established for this facility. For any frequency band where the measured transmission loss is above the dotted line, the reported value is potentially limited by flanking transmission via laboratory surfaces, and the true value may be higher than that measured. Bars at the bottom of the graph show deficiencies where the measured data are less than the reference contour as described in the fitting procedure for the STC, defined in ASTM E413-10. The shaded cells in the table and areas in the graph are outside the STC contour range.

In the table:

Values marked "c" indicate that the measured background level was between 5 dB and 10 dB below the combined receiving room level and background level. The reported values have been corrected according to the procedure outlined in ASTM E90-09. Values marked "*" indicate that the measured background level was less than 5 dB below the combined receiving room level and background level, in which case, the corrected values provide an estimate of the lower limit of airborne sound transmission loss.

This page was intentionally left blank.

Wall assembly 03W: 2G13_SS152(406)_GFB152_RC13(406)_2G13

Description	Two layers of 12.7 mm (1/2") gypsum board Firecode C Type X, attached on each side of 152 mm (6") deep steel studs spaced 406 mm (16") o.c., with resilient channels on one side spaced 406 mm (16") o.c. and 152 mm (6") deep glass fibre insulation (R-20) in the cavity.
Side 1	 Two layers of 12.7 mm (1/2") gypsum board Firecode C Type X, installed vertically (2) Base layer attached to the studs using 32 mm (1-1/4") screws (#6 scavenger head) spaced 305 mm (12") o.c. at the perimeter and in the field (1) Face layer attached to base layer and studs using 41 mm (1-5/8") screws (#6 scavenger head) spaced 305 mm (12") o.c. at the perimeter and in the field Screws (#6 scavenger head) spaced 305 mm (12") o.c. at the perimeter and in the field Screws from base layer to face layer offset by 152 mm (6") Joints of base layer Side 1 gypsum boards staggered by at least one stud spacing from joints of base layer Side 2 gypsum boards Joints of face layer staggered by at least one stud spacing from joints of base layer Gaps along the joints and the perimeter of face layer gypsum boards caulked and taped with aluminum tape
Framing &	• Base track and top track (steel thickness: 1.37 mm/0.054") attached to test
Cavity Insulation	 frame using four 19 mm (3/4") screws (#10 wafer head) (3) 152 mm (6") deep steel C-studs (steel thickness: 1.37 mm/0.054") spaced 406 mm (16") o.c., attached to base track and top track using 19 mm (3/4") screws (#10 pan head) One through-the-knockout bridging channel, attached to each stud using 140 mm (5-1/2") bridging clips Flat-strap steel cross-bracing, attached on Side 1 to each stud using 19 mm (3/4") screws (#10 pan head) (4) Cavities between studs filled with 406 mm (16") wide by 152 mm (6") thick glass fibre insulation (R-20), cut in half to accommodate bridging channel
Side 2	• (5) 13 mm resilient channels installed horizontally using 19 mm (3/4") screws (#10 wafer head), spaced 406 mm (16") o.c. and installed according to ASTM C754-11

 Two layers of 12.7 mm (1/2") gypsum board Firecode C Type X, installed vertically
• (6) Base layer attached to resilient channels using 32 mm (1-1/4") screws (#6 scavenger head) spaced 305 mm (12") o.c. at the perimeter and in the field
• (7) Face layer attached to base layer and resilient channels using 41 mm (1-5/8") screws (#6 scavenger head) spaced 305 mm (12") o.c. at the perimeter and in the field
 Screws from base layer to face layer offset by 152 mm (6")
• Joints of base layer Side 1 gypsum boards staggered by at least one stud spacing from joints of base layer Side 2 gypsum boards
Joints of face layer staggered by at least one stud spacing from joints of base layer
• Gaps along the joints and the perimeter of face layer gypsum boards caulked and taped with aluminum tape

Specimen Properties

Element	Actual thickness (mm)	Mass (kg)	Mass/le	ength, area or volume
Gypsum Board	12.7	89.4	10.0	kg/m²
Gypsum Board	12.7	89.4	10.0	kg/m²
Flat Strap	1	3.0	0.3	kg/m
Steel Studs	152	65.0	2.7	kg/m
Steel Tracks	152 *	16.6	2.3	kg/m
C Channel Bridging	1 *	1.9	0.5	kg/m
Angle Bracket	1 *	10.8	1.1	kg/piece
Glass Fibre Insulation	152 *	12.4	9.2	kg/m³
Resilient Channels	13	5.6	0.2	kg/m
Gypsum Board	12.7	89.4	10.0	kg/m²
Gypsum Board	12.7	89.4	10.0	kg/m²
Total	216.8	472.9		

* Element thickness does not contribute to total thickness (i.e. in cavity)

ASTM E90 Test Results – Airborne Sound Transmission Loss

Client:

Specimen ID:

CSSBI

A1-005007-03W

Test ID: Date of Test: TLA-14-043 18 August 2014

 Room
 Volume (m³)
 Air Temperature (°C)
 Humidity (%)

noom	volume (m)	All Temperature (C)	numuity (78)		
Large	255.7	19.9 to 20.0	53.3 to 54.3	Area of test specimen:	8.92 m ²
Small	140.6	20.0 to 20.1	59.0 to 59.3	Mass of test specimen:	472.9 kg
					1

For a description of the test specimen and mounting conditions see text pages before. The results in this report apply only to the specific sample submitted for measurement. No responsibility is assumed for performance of any other specimen. Airborne sound transmission loss measurements were conducted in accordance with the requirements of ASTM E90-09, "Standard Test Method for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions and Elements."

In the graph:

The solid line is the measured sound transmission loss for this specimen. The dashed line is the STC contour fitted to the measured values according to ASTM E413-10. The dotted line (may be above the displayed range) is 10 dB below the flanking limit established for this facility. For any frequency band where the measured transmission loss is above the dotted line, the reported value is potentially limited by flanking transmission via laboratory surfaces, and the true value may be higher than that measured. Bars at the bottom of the graph show deficiencies where the measured data are less than the reference contour as described in the fitting procedure for the STC, defined in ASTM E413-10. The shaded cells in the table and areas in the graph are outside the STC contour range.

In the table:

Values marked "c" indicate that the measured background level was between 5 dB and 10 dB below the combined receiving room level and background level. The reported values have been corrected according to the procedure outlined in ASTM E90-09. Values marked "*" indicate that the measured background level was less than 5 dB below the combined receiving room level and background level, in which case, the corrected values provide an estimate of the lower limit of airborne sound transmission loss.

This page was intentionally left blank.

Wall assembly 04W: G16_SS152(406)_GFB92_RC13(406)_G16

Description	One layer of 15.9 mm (5/8") gypsum board Type X, attached on each side of 152 mm (6") deep steel studs spaced 406 mm (16") o.c., with resilient channels on one side spaced 406 mm (16") o.c. and 92 mm (3-5/8") deep glass fibre insulation (R-12) in the cavity.
Side 1	 (1) One layer of 15.9 mm (5/8") gypsum board Type X, installed vertically and directly attached to the studs using 32 mm (1-1/4") screws (#6 scavenger head) spaced 305 mm (12") o.c. at the perimeter and in the field Joints of Side 1 gypsum boards staggered by at least one stud spacing from joints of Side 2 gypsum boards Gaps along the joints and the perimeter of gypsum boards caulked and taped with aluminum tape
Framing & Cavity Insulation	 Base track and top track (steel thickness: 1.37 mm/0.054") attached to test frame using four 19 mm (3/4") screws (#10 wafer head) (2) 152 mm (6") deep steel C-studs (steel thickness: 1.37 mm/0.054") spaced 406 mm (16") o.c., attached to base track and top track using 19 mm (3/4") screws (#10 pan head) One through-the-knockout bridging channel, attached to each stud using 140 mm (5-1/2") bridging clips Flat-strap steel cross-bracing, attached on Side 1 to each stud using 19 mm (3/4") screws (#10 pan head) (3) Cavities between studs filled with 406 mm (16") wide by 92 mm (3-5/8") thick glass fibre insulation (R-12), cut in half to accommodate bridging channel
Side 2	 (4) 13 mm resilient channels installed horizontally using 19 mm (3/4") screws (#10 wafer head), spaced 406 mm (16") o.c. and installed according to ASTM C754-11 (5) One layer of 15.9 mm (5/8") gypsum board Type X, installed vertically, attached to resilient channels using 32 mm (1-1/4") screws (#6 scavenger head) spaced 305 mm (12") o.c. at the perimeter and in the field Joints of Side 1 gypsum boards staggered by at least one stud spacing from joints of Side 2 gypsum boards Gaps along the joints and the perimeter of gypsum boards caulked and taped with aluminum tape

Specimen Properties

Element	Actual thickness (mm)	Mass (kg)	Mass/length, area or volume	
Gypsum Board	15.9	97.8	11.0 kg/m ²	
Flat Strap	1	3.0	0.3 kg/m	
Steel Studs	152	65.0	2.7 kg/m	
Steel Tracks	152 *	16.6	2.3 kg/m	
C Channel Bridging	1 *	1.9	0.5 kg/m	
Angle Bracket	1 *	10.8	1.1 kg/piece	
Glass Fibre Insulation	92 *	8.5	10.4 kg/m ³	
Resilient Channels	13	5.6	0.2 kg/m	
Gypsum Board	15.9	97.8	11.0 kg/m ²	
Total	197.8	307.0		

* Element thickness does not contribute to total thickness (i.e. in cavity)

ASTM E90 Test Results – Airborne Sound Transmission Loss

Client:

CSSBI

Specimen ID: A1-005007-04W

Test ID: Date of Test: TLA-14-044 19 August 2014

Room	Volume (m ³)	Air Temperature (°C)	Humidity (%)		
Large	255.7	20.1 to 20.1	55.7 to 56.1	Area of test specimen:	8.92 m ²
Small	140.7	20.1 to 20.2	57.7 to 58.4	Mass of test specimen:	307.0 kg

For a description of the test specimen and mounting conditions see text pages before. The results in this report apply only to the specific sample submitted for measurement. No responsibility is assumed for performance of any other specimen. Airborne sound transmission loss measurements were conducted in accordance with the requirements of ASTM E90-09, "Standard Test Method for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions and Elements."

In the graph:

The solid line is the measured sound transmission loss for this specimen. The dashed line is the STC contour fitted to the measured values according to ASTM E413-10. The dotted line (may be above the displayed range) is 10 dB below the flanking limit established for this facility. For any frequency band where the measured transmission loss is above the dotted line, the reported value is potentially limited by flanking transmission via laboratory surfaces, and the true value may be higher than that measured. Bars at the bottom of the graph show deficiencies where the measured data are less than the reference contour as described in the fitting procedure for the STC, defined in ASTM E413-10. The shaded cells in the table and areas in the graph are outside the STC contour range.

In the table:

Values marked "c" indicate that the measured background level was between 5 dB and 10 dB below the combined receiving room level and background level. The reported values have been corrected according to the procedure outlined in ASTM E90-09. Values marked "*" indicate that the measured background level was less than 5 dB below the combined receiving room level and background level, in which case, the corrected values provide an estimate of the lower limit of airborne sound transmission loss.

This page was intentionally left blank.

Wall assembly 05W: 2G16_SS152(406)_GFB92_RC13(406)_G16

Description	Two layers of 15.9 mm (5/8") gypsum board Type X, directly attached to one
Decemption	side of 152 mm (6") deep steel studs spaced 406 mm (16") o.c., and one layer of 15.9 mm (5/8") gypsum board Type X attached to resilient channels spaced 406 mm (16") o.c. on the other side, with 92 mm (3-5/8") deep glass fibre
	insulation (R-12) in the cavity.
Side 1	 Two layers of 15.9 mm (5/8") gypsum board Type X, installed vertically (2) Base layer attached to the studs using 32 mm (1-1/4") screws (#6 scavenger head) spaced 305 mm (12") o.c. at the perimeter and in the field (1) Face layer attached to base layer and studs using 41 mm (1-5/8") screws (#6 scavenger head) spaced 305 mm (12") o.c. at the perimeter and in the field
	 Screws from base layer to face layer offset by 152 mm (6") Joints of base layer Side 1 gypsum boards staggered by at least one stud spacing from joints of base layer Side 2 gypsum boards Joints of face layer staggered by at least one stud spacing from joints of base layer Gaps along the joints and the perimeter of face layer gypsum boards
	caulked and taped with aluminum tape
Framing &	• Base track and top track (steel thickness: 1.37 mm/0.054") attached to test
Cavity	frame using four 19 mm (3/4") screws (#10 wafer head)
Insulation	 (3) 152 mm (6") deep steel C-studs (steel thickness: 1.37 mm/0.054") spaced 406 mm (16") o.c., attached to base track and top track using 19 mm (3/4") screws (#10 pan head) One through the knockout bridging abapted attached to each stud using
	• One through-the-knockout bhoging channel, attached to each stud using 140 mm (5-1/2") bridging clips
	• Flat-strap steel cross-bracing, attached on Side 1 to each stud using 19 mm (3/4") screws (#10 pan head)
	• (4) Cavities between studs filled with 406 mm (16") wide by 92 mm (3-5/8") thick glass fibre insulation (R-12), cut in half to accommodate bridging channel
Side 2	• (5) 13 mm resilient channels installed horizontally using 19 mm (3/4") screws (#10 wafer head), spaced 406 mm (16") o.c. and installed according to ASTM C754-11

•	(6) One layer of 15.9 mm (5/8") gypsum board Type X, installed vertically
	and attached to resilient channels using 32 mm (1-1/4") screws (#6
	scavenger head) spaced 305 mm (12") o.c. at the perimeter and in the
	field
•	Joints of Side 1 gypsum boards staggered by at least one stud spacing
	from joints of Side 2 gypsum boards
•	Gaps along the joints and the perimeter of gypsum boards caulked and
	taped with aluminum tape

Specimen Properties

Element	Actual thickness (mm)	Mass (kg)	Mass/length, area or volume
Gypsum Board	15.9	97.8	11.0 kg/m²
Gypsum Board	15.9	97.8	11.0 kg/m²
Flat Strap	1	3.0	0.3 kg/m
Steel Studs	152	65.0	2.7 kg/m
Steel Tracks	152 *	16.6	2.3 kg/m
C Channel Bridging	1 *	1.9	0.5 kg/m
Angle Bracket	1 *	10.8	1.1 kg/piece
Glass Fibre Insulation	92 *	8.5	10.4 kg/m ³
Resilient Channels	13	5.6	0.2 kg/m
Gypsum Board	15.9	97.8	11.0 kg/m ²
Total	213.7	404.8	

* Element thickness does not contribute to total thickness (i.e. in cavity)

ASTM E90 Test Results – Airborne Sound Transmission Loss

Client:

Specimen ID:

CSSBI

A1-005007-05W

Test ID: Date of Test: TLA-14-045 27 August 2014

Volume (m³) Air Temperature (°C) Humidity (%) Room 8.92 m² Area of test specimen: 255.7 20.3 to 20.3 64.7 to 65.0 Large Mass of test specimen: 404.8 kg Small 140.6 19.8 to 19.9 64.4 to 64.9

For a description of the test specimen and mounting conditions see text pages before. The results in this report apply only to the specific sample submitted for measurement. No responsibility is assumed for performance of any other specimen. Airborne sound transmission loss measurements were conducted in accordance with the requirements of ASTM E90-09, "Standard Test Method for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions and Elements."

In the graph:

The solid line is the measured sound transmission loss for this specimen. The dashed line is the STC contour fitted to the measured values according to ASTM E413-10. The dotted line (may be above the displayed range) is 10 dB below the flanking limit established for this facility. For any frequency band where the measured transmission loss is above the dotted line, the reported value is potentially limited by flanking transmission via laboratory surfaces, and the true value may be higher than that measured. Bars at the bottom of the graph show deficiencies where the measured data are less than the reference contour as described in the fitting procedure for the STC, defined in ASTM E413-10. The shaded cells in the table and areas in the graph are outside the STC contour range.

In the table:

Values marked "c" indicate that the measured background level was between 5 dB and 10 dB below the combined receiving room level and background level. The reported values have been corrected according to the procedure outlined in ASTM E90-09. Values marked "*" indicate that the measured background level was less than 5 dB below the combined receiving room level and background level, in which case, the corrected values provide an estimate of the lower limit of airborne sound transmission loss.

This page was intentionally left blank.

Wall assembly 06W: 2G16_SS152(406)_GFB92_RC13(406)_2G16

Description	Two layers of 15.9 mm (5/8") gypsum board Type X, attached on each side of 152 mm (6") deep steel studs spaced 406 mm (16") o.c., with resilient channels on one side spaced 406 mm (16") o.c. and 92 mm (3-5/8") deep glass fibre insulation (R-12) in the cavity.
Side 1	 Two layers of 15.9 mm (5/8") gypsum board Type X, installed vertically (2) Base layer attached to the studs using 32 mm (1-1/4") screws (#6 scavenger head) spaced 305 mm (12") o.c. at the perimeter and in the field (1) Face layer attached to base layer and studs using 41 mm (1-5/8") screws (#6 scavenger head) spaced 305 mm (12") o.c. at the perimeter and in the field Screws from base layer to face layer offset by 152 mm (6") Joints of base layer Side 1 gypsum boards staggered by at least one stud spacing from joints of base layer Side 2 gypsum boards Joints of face layer staggered by at least one stud spacing from joints of base layer Gaps along the joints and the perimeter of face layer gypsum boards caulked and taped with aluminum tape
Framing &	• Base track and top track (steel thickness: 1.37 mm/0.054") attached to test
Cavity	frame using four 19 mm (3/4") screws (#10 wafer head)
Insulation	 (3) 152 mm (6") deep steel C-studs (steel thickness: 1.37 mm/0.054") spaced 406 mm (16") o.c., attached to base track and top track using 19 mm (3/4") screws (#10 pan head) One through-the-knockout bridging channel, attached to each stud using 140 mm (5-1/2") bridging clips Flat-strap steel cross-bracing, attached on Side 1 to each stud using 19 mm (3/4") screws (#10 pan head) (4) Cavities between studs filled with 406 mm (16") wide by 92 mm (3-5/8")
	thick glass fibre insulation (R-12), cut in half to accommodate bridging channel
Side 2	 (5) 13 mm resilient channels installed horizontally using 19 mm (3/4") screws (#10 wafer head), spaced 406 mm (16") o.c. and installed according to ASTM C754-11 Two layers of 15.9 mm (5/8") gypsum board Type X installed vertically

_	
	• (6) Base layer attached to resilient channels using 32 mm (1-1/4") screws (#6 scavenger head) spaced 305 mm (12") o.c. at the perimeter and in the field
	• (7) Face layer attached to base layer and resilient channels using 41 mm (1-5/8") screws (#6 scavenger head) spaced 305 mm (12") o.c. at the perimeter and in the field
	 Screws from base layer to face layer offset by 152 mm (6")
	• Joints of base layer Side 1 gypsum boards staggered by at least one stud spacing from joints of base layer Side 2 gypsum boards
	 Joints of face layer staggered by at least one stud spacing from joints of base layer
	• Gaps along the joints and the perimeter of face layer gypsum boards caulked and taped with aluminum tape

Element	Actual thickness (mm)	Mass (kg)	Mass/length, area or volume
Gypsum Board	15.9	97.8	11.0 kg/m²
Gypsum Board	15.9	97.8	11.0 kg/m²
Flat Strap	1	3.0	0.3 kg/m
Steel Studs	152	65.0	2.7 kg/m
Steel Tracks	152 *	16.6	2.3 kg/m
C Channel Bridging	1 *	1.9	0.5 kg/m
Angle Bracket	1 *	10.8	1.1 kg/piece
Glass Fibre Insulation	92 *	8.5	10.4 kg/m ³
Resilient Channels	13	5.6	0.2 kg/m
Gypsum Board	15.9	97.8	11.0 kg/m ²
Gypsum Board	15.9	97.8	11.0 kg/m ²
Total	229.6	502.6	

Client:

CSSBI

Specimen ID: A1-005007-06W

Test ID: Date of Test: TLA-14-046 28 August 2014

Room	Volume (m ³)	Air Temperature (°C)	Humidity (%)		
Large	255.6	20.2 to 20.3	62.7 to 64.1	Area of test specimen:	8.92 m ²
Small	140.6	20.1 to 20.1	64.0 to 64.4	Mass of test specimen:	502.6 kg

For a description of the test specimen and mounting conditions see text pages before. The results in this report apply only to the specific sample submitted for measurement. No responsibility is assumed for performance of any other specimen. Airborne sound transmission loss measurements were conducted in accordance with the requirements of ASTM E90-09, "Standard Test Method for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions and Elements."

In the graph:

The solid line is the measured sound transmission loss for this specimen. The dashed line is the STC contour fitted to the measured values according to ASTM E413-10. The dotted line (may be above the displayed range) is 10 dB below the flanking limit established for this facility. For any frequency band where the measured transmission loss is above the dotted line, the reported value is potentially limited by flanking transmission via laboratory surfaces, and the true value may be higher than that measured. Bars at the bottom of the graph show deficiencies where the measured data are less than the reference contour as described in the fitting procedure for the STC, defined in ASTM E413-10. The shaded cells in the table and areas in the graph are outside the STC contour range.

In the table:

Values marked "c" indicate that the measured background level was between 5 dB and 10 dB below the combined receiving room level and background level. The reported values have been corrected according to the procedure outlined in ASTM E90-09. Values marked "*" indicate that the measured background level was less than 5 dB below the combined receiving room level and background level, in which case, the corrected values provide an estimate of the lower limit of airborne sound transmission loss.

Wall assembly 07W: G16_SS152(406)_RC13(406)_G16

Element	Actual thickness (mm)	Mass (kg)	Mass/length, area or volume
Gypsum Board	15.9	97.8	11.0 kg/m²
Flat Strap	1	3.0	0.3 kg/m
Steel Studs	152	65.0	2.7 kg/m
Steel Tracks	152 *	16.6	2.3 kg/m
C Channel Bridging	1 *	1.9	0.5 kg/m
Angle Bracket	1 *	10.8	1.1 kg/piece
Resilient Channels	13	5.6	0.2 kg/m
Gypsum Board	15.9	97.8	11.0 kg/m²
Total	197.8	298.5	

Client:

Large Small

Specimen ID:

CSSBI

A1-005007-07W

Test ID: Date of Test: TLA-14-047 29 August 2014

 Room
 Volume (m³)
 Air Temperature (°C)
 Humidity (%)

volume (m ^s)	Air Temperature (°C)	Humidity (%)		
255.8	20.1 to 20.2	59.4 to 60.0	Area of test specimen:	8.92 m ²
140.7	19.9 to 20.0	59.5 to 59.8	Mass of test specimen:	298.5 kg

For a description of the test specimen and mounting conditions see text pages before. The results in this report apply only to the specific sample submitted for measurement. No responsibility is assumed for performance of any other specimen. Airborne sound transmission loss measurements were conducted in accordance with the requirements of ASTM E90-09, "Standard Test Method for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions and Elements."

In the graph:

The solid line is the measured sound transmission loss for this specimen. The dashed line is the STC contour fitted to the measured values according to ASTM E413-10. The dotted line (may be above the displayed range) is 10 dB below the flanking limit established for this facility. For any frequency band where the measured transmission loss is above the dotted line, the reported value is potentially limited by flanking transmission via laboratory surfaces, and the true value may be higher than that measured. Bars at the bottom of the graph show deficiencies where the measured data are less than the reference contour as described in the fitting procedure for the STC, defined in ASTM E413-10. The shaded cells in the table and areas in the graph are outside the STC contour range.

In the table:

Values marked "c" indicate that the measured background level was between 5 dB and 10 dB below the combined receiving room level and background level. The reported values have been corrected according to the procedure outlined in ASTM E90-09. Values marked "*" indicate that the measured background level was less than 5 dB below the combined receiving room level and background level, in which case, the corrected values provide an estimate of the lower limit of airborne sound transmission loss.

Wall assembly 08W: 2G16_SS152(406)_RC13(406)_G16

	1_2_3
Description	Two layers of 15.9 mm (5/8") gypsum board Type X, directly attached to one side of 152 mm (6") deep steel studs spaced 406 mm (16") o.c., and one layer of 15.9 mm (5/8") gypsum board Type X attached to resilient channels spaced 406 mm (16") o.c. on the other side.
Side 1	 Two layers of 15.9 mm (5/8") gypsum board Type X, installed vertically (2) Base layer attached to the studs using 32 mm (1-1/4") screws (#6 scavenger head) spaced 305 mm (12") o.c. at the perimeter and in the field (1) Face layer attached to base layer and studs using 41 mm (1-5/8") screws (#6 scavenger head) spaced 305 mm (12") o.c. at the perimeter and in the field Screws from base layer to face layer offset by 152 mm (6") Joints of base layer Side 1 gypsum boards staggered by at least one stud spacing from joints of base layer Side 2 gypsum boards Joints of face layer staggered by at least one stud spacing from joints of base layer Side 2 gypsum boards Joints of face layer staggered by at least one stud spacing from joints of base layer Side 2 gypsum boards
Framing & Cavity Insulation	 Base track and top track (steel thickness: 1.37 mm/0.054") attached to test frame using four 19 mm (3/4") screws (#10 wafer head) (3) 152 mm (6") deep steel C-studs (steel thickness: 1.37 mm/0.054") spaced 406 mm (16") o.c., attached to base track and top track using 19 mm (3/4") screws (#10 pan head) One through-the-knockout bridging channel, attached to each stud using 140 mm (5-1/2") bridging clips Flat-strap steel cross-bracing, attached on Side 1 to each stud using 19 mm (3/4") screws (#10 pan head)
Side 2	 (4) 13 mm resilient channels installed horizontally using 19 mm (3/4") screws (#10 wafer head), spaced 406 mm (16") o.c. and installed according to ASTM C754-11 (5) One layer of 15.9 mm (5/8") gypsum board Type X, installed vertically attached to the resilient channels using 32 mm (1-1/4") screws (#6 scavenger head) spaced 305 mm (12") o.c. at the perimeter and in the field Joints of Side 1 gypsum boards staggered by at least one stud spacing

	from joints of Side 2 gypsum boards
•	Gaps along the joints and the perimeter of gypsum boards caulked and
	taped with aluminum tape

Element	Actual thickness (mm)	Mass (kg)	Mass/length, area or volume
Gypsum Board	15.9	97.8	11.0 kg/m²
Gypsum Board	15.9	97.8	11.0 kg/m²
Flat Strap	1	3.0	0.3 kg/m
Steel Studs	152	65.0	2.7 kg/m
Steel Tracks	152 *	16.6	2.3 kg/m
C Channel Bridging	1 *	1.9	0.5 kg/m
Angle Bracket	1 *	10.8	1.1 kg/piece
Resilient Channels	13	5.6	0.2 kg/m
Gypsum Board	15.9	97.8	11.0 kg/m²
Total	213.7	396.3	

Client:

Specimen ID:

CSSBI

A1-005007-08W

Test ID: Date of Test: TLA-14-048 29 August 2014

Volume (m³) Air Temperature (°C) Humidity (%) Room 8.92 m² Area of test specimen: 256.7 20.1 to 20.2 60.3 to 60.4 Large Mass of test specimen: 396.3 kg Small 140.6 20.0 to 20.2 60.6 to 61.0

For a description of the test specimen and mounting conditions see text pages before. The results in this report apply only to the specific sample submitted for measurement. No responsibility is assumed for performance of any other specimen. Airborne sound transmission loss measurements were conducted in accordance with the requirements of ASTM E90-09, "Standard Test Method for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions and Elements."

In the graph:

The solid line is the measured sound transmission loss for this specimen. The dashed line is the STC contour fitted to the measured values according to ASTM E413-10. The dotted line (may be above the displayed range) is 10 dB below the flanking limit established for this facility. For any frequency band where the measured transmission loss is above the dotted line, the reported value is potentially limited by flanking transmission via laboratory surfaces, and the true value may be higher than that measured. Bars at the bottom of the graph show deficiencies where the measured data are less than the reference contour as described in the fitting procedure for the STC, defined in ASTM E413-10. The shaded cells in the table and areas in the graph are outside the STC contour range.

In the table:

Values marked "c" indicate that the measured background level was between 5 dB and 10 dB below the combined receiving room level and background level. The reported values have been corrected according to the procedure outlined in ASTM E90-09. Values marked "*" indicate that the measured background level was less than 5 dB below the combined receiving room level and background level, in which case, the corrected values provide an estimate of the lower limit of airborne sound transmission loss.

Wall assembly 09W: 2G16_SS152(406)_RC13(406)_2G16

Description	Two layers of 15.9 mm (5/8") gypsum board Type X, attached on each side of 152 mm (6") deep steel studs spaced 406 mm (16") o.c., with resilient channels on one side spaced 406 mm (16") o.c.
Side 1	 Two layers of 15.9 mm (5/8") gypsum board Type X, installed vertically (2) Base layer attached to the studs using 32 mm (1-1/4") screws (#6 scavenger head) spaced 305 mm (12") o.c. at the perimeter and in the field (1) Face layer attached to base layer and studs using 41 mm (1-5/8") screws (#6 scavenger head) spaced 305 mm (12") o.c. at the perimeter and in the field Screws (#6 scavenger head) spaced 305 mm (12") o.c. at the perimeter and in the field Screws from base layer to face layer offset by 152 mm (6") Joints of base layer Side 1 gypsum boards staggered by at least one stud spacing from joints of base layer Side 2 gypsum boards Joints of face layer staggered by at least one stud spacing from joints of base layer Gaps along the joints and the perimeter of face layer gypsum boards caulked and taped with aluminum tape
Framing & Cavity Insulation	 Base track and top track (steel thickness: 1.37 mm/0.054") attached to test frame using four 19 mm (3/4") screws (#10 wafer head) (3) 152 mm (6") deep steel C-studs (steel thickness: 1.37 mm/0.054") spaced 406 mm (16") o.c., attached to base track and top track using 19 mm (3/4") screws (#10 pan head) One through-the-knockout bridging channel, attached to each stud using 140 mm (5-1/2") bridging clips Flat-strap steel cross-bracing, attached on Side 1 to each stud using 19 mm (3/4") screws (#10 pan head)
Side 2	 (4) 13 mm resilient channels installed horizontally using 19 mm (3/4") screws (#10 wafer head), spaced 406 mm (16") o.c. and installed according to ASTM C754-11 Two layers of 15.9 mm (5/8") gypsum board Type X, installed vertically (5) Base layer attached to resilient channels using 32 mm (1-1/4") screws (#6 scavenger head) spaced 305 mm (12") o.c. at the perimeter and in the field (6) Face layer attached to base layer and resilient channels using 41 mm

(1-5/8") screws (#6 scavenger head) spaced 305 mm (12") o.c. at the
perimeter and in the field
 Screws from base layer to face layer offset by 152 mm (6")
• Joints of base layer Side 1 gypsum boards staggered by at least one stud spacing from joints of base layer Side 2 gypsum boards
 Joints of face layer staggered by at least one stud spacing from joints of base layer
• Gaps along the joints and the perimeter of face layer gypsum boards caulked and taped with aluminum tape

Element	Actual thickness (mm)	Mass (kg)	Mass/length, area or volume
Gypsum Board	15.9	97.8	11.0 kg/m²
Gypsum Board	15.9	97.8	11.0 kg/m ²
Flat Strap	1	3.0	0.3 kg/m
Steel Studs	152	65.0	2.7 kg/m
Steel Tracks	152 *	16.6	2.3 kg/m
C Channel Bridging	1 *	1.9	0.5 kg/m
Angle Bracket	1 *	10.8	1.1 kg/piece
Resilient Channels	13	5.6	0.2 kg/m
Gypsum Board	15.9	97.8	11.0 kg/m²
Gypsum Board	15.9	97.8	11.0 kg/m ²
Total	229.6	494.1	

Client:

CSSBI

Test ID:

TLA-14-049 02 September 2014

Specimen ID: A1-005007-09W

Date of Test:

Volume (m³) Air Temperature (°C) Humidity (%) Room 8.92 m² Area of test specimen: 255.6 20.6 to 20.8 75.5 to 77.1 Large Mass of test specimen: 494.1 kg Small 140.6 20.6 to 20.6 66.9 to 69.5

For a description of the test specimen and mounting conditions see text pages before. The results in this report apply only to the specific sample submitted for measurement. No responsibility is assumed for performance of any other specimen. Airborne sound transmission loss measurements were conducted in accordance with the requirements of ASTM E90-09, "Standard Test Method for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions and Elements."

In the graph:

The solid line is the measured sound transmission loss for this specimen. The dashed line is the STC contour fitted to the measured values according to ASTM E413-10. The dotted line (may be above the displayed range) is 10 dB below the flanking limit established for this facility. For any frequency band where the measured transmission loss is above the dotted line, the reported value is potentially limited by flanking transmission via laboratory surfaces, and the true value may be higher than that measured. Bars at the bottom of the graph show deficiencies where the measured data are less than the reference contour as described in the fitting procedure for the STC, defined in ASTM E413-10. The shaded cells in the table and areas in the graph are outside the STC contour range.

In the table:

Values marked "c" indicate that the measured background level was between 5 dB and 10 dB below the combined receiving room level and background level. The reported values have been corrected according to the procedure outlined in ASTM E90-09. Values marked "*" indicate that the measured background level was less than 5 dB below the combined receiving room level and background level, in which case, the corrected values provide an estimate of the lower limit of airborne sound transmission loss.

Wall assembly 10W: G16_SS152(406)_RC13(406)_2G16

	base layer	
٠	Gaps along the joints and the perimeter of face layer gypsum boa	ırds
	caulked and taped with aluminum tape	

Element	Actual thickness (mm)	Mass (kg)	Mass/length, area or volume
Gypsum Board	15.9	97.8	11.0 kg/m²
Flat Strap	1	3.0	0.3 kg/m
Steel Studs	152	65.0	2.7 kg/m
Steel Tracks	152 *	16.6	2.3 kg/m
C Channel Bridging	1 *	1.9	0.5 kg/m
Angle Bracket	1 *	10.8	1.1 kg/piece
Resilient Channels	13	5.6	0.2 kg/m
Gypsum Board	15.9	97.8	11.0 kg/m ²
Gypsum Board	15.9	97.8	11.0 kg/m ²
Total	213.7	396.3	

Client:

CSSBI

Test ID:

TLA-14-050 03 September 2014

Specimen ID: A1-005007-10W

Date of Test:

Volume (m³) Air Temperature (°C) Humidity (%) Room 8.92 m² Area of test specimen: 255.6 20.5 to 20.6 68.9 to 69.6 Large Mass of test specimen: 396.3 kg Small 140.7 20.7 to 20.8 66.3 to 67.0

For a description of the test specimen and mounting conditions see text pages before. The results in this report apply only to the specific sample submitted for measurement. No responsibility is assumed for performance of any other specimen. Airborne sound transmission loss measurements were conducted in accordance with the requirements of ASTM E90-09, "Standard Test Method for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions and Elements."

In the graph:

The solid line is the measured sound transmission loss for this specimen. The dashed line is the STC contour fitted to the measured values according to ASTM E413-10. The dotted line (may be above the displayed range) is 10 dB below the flanking limit established for this facility. For any frequency band where the measured transmission loss is above the dotted line, the reported value is potentially limited by flanking transmission via laboratory surfaces, and the true value may be higher than that measured. Bars at the bottom of the graph show deficiencies where the measured data are less than the reference contour as described in the fitting procedure for the STC, defined in ASTM E413-10. The shaded cells in the table and areas in the graph are outside the STC contour range.

In the table:

Values marked "c" indicate that the measured background level was between 5 dB and 10 dB below the combined receiving room level and background level. The reported values have been corrected according to the procedure outlined in ASTM E90-09. Values marked "*" indicate that the measured background level was less than 5 dB below the combined receiving room level and background level, in which case, the corrected values provide an estimate of the lower limit of airborne sound transmission loss.

Wall assembly 11W: G16_SS152(406)_GFB152_G16

Description	One layer of 15.9 mm (5/8") gypsum board Type X, attached on each side of 152 mm (6") deep steel studs spaced 406 mm (16") o.c., with 152 mm (6") deep glass fibre insulation (R-20) in the cavity.
Side 1	 (1) One layer of 15.9 mm (5/8") gypsum board Type X, installed vertically and directly attached to the studs using 32 mm (1-1/4") screws (#6 scavenger head) spaced 305 mm (12") o.c. at the perimeter and in the field Joints of Side 1 gypsum boards staggered by at least one stud spacing from joints of Side 2 gypsum boards Gaps along the joints and the perimeter of gypsum boards caulked and taped with aluminum tape
Framing &	• Base track and top track (steel thickness: 1.37 mm/0.054") attached to test
Cavity	frame using four 19 mm (3/4") screws (#10 wafer head)
Insulation	• (2) 152 mm (6") deep steel C-studs (steel thickness: 1.37 mm/0.054")
	 spaced 406 mm (16") o.c., attached to base track and top track using 19 mm (3/4") screws (#10 pan head) One through-the-knockout bridging channel, attached to each stud using
	140 mm (5-1/2") bridging clips
	• Flat-strap steel cross-bracing, attached on Side 1 to each stud using 19 mm (3/4") screws (#10 pan head)
	• (3) Cavities between studs filled with 406 mm (16") wide by 152 mm (6") thick glass fibre insulation (R-20), cut in half to accommodate bridging channel
Side 2	• (4) One layer of 15.9 mm (5/8") gypsum board Type X, installed vertically and directly attached to the studs using 32 mm (1-1/4") screws (#6 scavenger head) spaced 305 mm (12") o.c. at the perimeter and in the field
	 Joints of Side 1 gypsum boards staggered by at least one stud spacing from joints of Side 2 gypsum boards
	• Gaps along the joints and the perimeter of gypsum boards caulked and taped with aluminum tape

Element	Actual thickness (mm)	Mass (kg)	Mass/length, area or volume	
Gypsum Board	15.9	97.8	11.0	kg/m²
Flat Strap	1	3.0	0.3	kg/m
Steel Studs	152	65.0	2.7	kg/m
Steel Tracks	152 *	16.6	2.3	kg/m
C Channel Bridging	1 *	1.9	0.5	kg/m
Angle Bracket	1 *	10.8	1.1	kg/piece
Glass Fibre Insulation	152 *	12.4	9.2	kg/m³
Gypsum Board	15.9	97.8	11.0	kg/m²
Total	184.8	305.3		

Client:

CSSBI Specimen ID: A1-005007-11W Test ID: Date of Test:

TLA-14-051 03 September 2014

Volume (m³) Air Temperature (°C) Humidity (%) Room 8.92 m² Area of test specimen: 255.9 20.6 to 20.8 64.1 to 65.1 Large Mass of test specimen: Small 140.7 20.7 to 20.8 65.1 to 65.6

For a description of the test specimen and mounting conditions see text pages before. The results in this report apply only to the specific sample submitted for measurement. No responsibility is assumed for performance of any other specimen. Airborne sound transmission loss measurements were conducted in accordance with the requirements of ASTM E90-09, "Standard Test Method for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions and Elements."

In the graph:

The solid line is the measured sound transmission loss for this specimen. The dashed line is the STC contour fitted to the measured values according to ASTM E413-10. The dotted line (may be above the displayed range) is 10 dB below the flanking limit established for this facility. For any frequency band where the measured transmission loss is above the dotted line, the reported value is potentially limited by flanking transmission via laboratory surfaces, and the true value may be higher than that measured. Bars at the bottom of the graph show deficiencies where the measured data are less than the reference contour as described in the fitting procedure for the STC, defined in ASTM E413-10. The shaded cells in the table and areas in the graph are outside the STC contour range.

In the table:

Values marked "c" indicate that the measured background level was between 5 dB and 10 dB below the combined receiving room level and background level. The reported values have been corrected according to the procedure outlined in ASTM E90-09. Values marked "*" indicate that the measured background level was less than 5 dB below the combined receiving room level and background level, in which case, the corrected values provide an estimate of the lower limit of airborne sound transmission loss.

Wall assembly 12W: G16_SS152(406)_GFB152_2G16

Description	One layer of 15.9 mm (5/8") gypsum board Type X, directly attached on one side of 152 mm (6") deep steel studs spaced 406 mm (16") o.c., and two layers of 15.9 mm (5/8") gypsum board Type X, directly attached on the other side, with 152 mm (6") deep glass fibre insulation (R-20) in the cavity.
Side 1	 (1) One layer of 15.9 mm (5/8") gypsum board Type X, installed vertically and directly attached to the studs using 32 mm (1-1/4") screws (#6 scavenger head) spaced 305 mm (12") o.c. at the perimeter and in the field Joints of Side 1 gypsum boards staggered by at least one stud spacing from joints of Side 2 gypsum boards Gaps along the joints and the perimeter of gypsum boards caulked and taped with aluminum tape
Framing &	• Base track and top track (steel thickness: 1.37 mm/0.054") attached to test
Cavity	frame using four 19 mm (3/4") screws (#10 wafer head)
Insulation	 (2) 152 mm (6") deep steel C-studs (steel thickness: 1.37 mm/0.054") spaced 406 mm (16") o.c., attached to base track and top track using 19 mm (3/4") screws (#10 pan head) One through-the-knockout bridging channel, attached to each stud using 140 mm (5-1/2") bridging clips Flat-strap steel cross-bracing, attached on Side 1 to each stud using 19 mm (3/4") screws (#10 pan head) (3) Cavities between studs filled with 406 mm (16") wide by 152 mm (6") thick glass fibre insulation (R-20), cut in half to accommodate bridging channel
Side 2	 Two layers of 15.9 mm (5/8") gypsum board Type X, installed vertically
	 (4) Base layer directly attached to the studs using 32 mm (1-1/4") screws (#6 scavenger head) spaced 305 mm (12") o.c. at the perimeter and in the field (5) Face layer attached to base layer and studs using 41 mm (1-5/8") screws (#6 scavenger head) spaced 305 mm (12") o.c. at the perimeter and in the field Screws from base layer to face layer offset by 152 mm (6") Joints of base layer Side 1 gypsum boards staggered by at least one stud spacing from joints of base layer Side 2 gypsum boards
	 Joints of face layer staggered by at least one stud spacing from joints of
	- control of race rayer staggered by at reast one studi spacing itom joints of

	base layer
٠	Gaps along the joints and the perimeter of face layer gypsum boards
	caulked and taped with aluminum tape

Element	Actual thickness Mass (kg) (mm)		Mass/length, area or volume		
Gypsum Board	15.9	97.8	11.0 kg/m²		
Flat Strap	1	3.0	0.3 kg/m		
Steel Studs	152	65.0	2.7 kg/m		
Steel Tracks	152 *	16.6	2.3 kg/m		
C Channel Bridging	1 *	1.9	0.5 kg/m		
Angle Bracket	1 *	10.8	1.1 kg/piece		
Glass Fibre Insulation	152 *	12.4	9.2 kg/m ³		
Gypsum Board	15.9	97.8	11.0 kg/m ²		
Gypsum Board	15.9	97.8	11.0 kg/m²		
Total	200.7	403.1			

Client:

CSSBI Specimen ID: A1-005007-12W

Test ID: Date of Test: TLA-14-052 05 September 2014

				-		
Room	Volume (m ³)	Air Temperature (°C)	Humidity (%)			
Large	255.7	20.7 to 20.8	70.6 to 71.0		Area of test specimen:	8.92 m ²
					Manage of the state of the state	400 d los

For a description of the test specimen and mounting conditions see text pages before. The results in this report apply only to the specific sample submitted for measurement. No responsibility is assumed for performance of any other specimen. Airborne sound transmission loss measurements were conducted in accordance with the requirements of ASTM E90-09, "Standard Test Method for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions and Elements."

In the graph:

The solid line is the measured sound transmission loss for this specimen. The dashed line is the STC contour fitted to the measured values according to ASTM E413-10. The dotted line (may be above the displayed range) is 10 dB below the flanking limit established for this facility. For any frequency band where the measured transmission loss is above the dotted line, the reported value is potentially limited by flanking transmission via laboratory surfaces, and the true value may be higher than that measured. Bars at the bottom of the graph show deficiencies where the measured data are less than the reference contour as described in the fitting procedure for the STC, defined in ASTM E413-10. The shaded cells in the table and areas in the graph are outside the STC contour range.

In the table:

Values marked "c" indicate that the measured background level was between 5 dB and 10 dB below the combined receiving room level and background level. The reported values have been corrected according to the procedure outlined in ASTM E90-09. Values marked "*" indicate that the measured background level was less than 5 dB below the combined receiving room level and background level, in which case, the corrected values provide an estimate of the lower limit of airborne sound transmission loss.

Wall assembly 13W: 2G16_SS152(406)_GFB152_2G16

Description	Two layers of 15.9 mm (5/8") gypsum board Type X, attached on each side of 152 mm (6") deep steel studs spaced 406 mm (16") o.c., with 152 mm (6") deep glass fibre insulation (R-20) in the cavity.
Side 1	 Two layers of 15.9 mm (5/8") gypsum board Type X, installed vertically (2) Base layer attached to the studs using 32 mm (1-1/4") screws (#6 scavenger head) spaced 305 mm (12") o.c. at the perimeter and in the field
	• (1) Face layer attached to base layer and studs using 41 mm (1-5/8") screws (#6 scavenger head) spaced 305 mm (12") o.c. at the perimeter and in the field
	 Screws from base layer to face layer offset by 152 mm (6")
	• Joints of base layer Side 1 gypsum boards staggered by at least one stud spacing from joints of base layer Side 2 gypsum boards
	• Joints of face layer staggered by at least one stud spacing from joints of base layer
	• Gaps along the joints and the perimeter of face layer gypsum boards caulked and taped with aluminum tape
Framing &	• Base track and top track (steel thickness: 1.37 mm/0.054") attached to test
Cavity	frame using four 19 mm (3/4") screws (#10 wafer head)
Insulation	• (3) 152 mm (6") deep steel C-studs (steel thickness: 1.37 mm/0.054") spaced 406 mm (16") o.c., attached to base track and top track using 19 mm (3/4") screws (#10 pan head)
	• One through-the-knockout bridging channel, attached to each stud using 140 mm (5-1/2") bridging clips
	• Flat-strap steel cross-bracing, attached on Side 1 to each stud using 19 mm (3/4") screws (#10 pan head)
	• (4) Cavities between studs filled with 406 mm (16") wide by 152 mm (6") thick glass fibre insulation (R-20), cut in half to accommodate bridging channel
Side 2	 Two layers of 15.9 mm (5/8") gypsum board Type X, installed vertically
	• (5) Base layer directly attached to the studs using 32 mm (1-1/4") screws (#6 scavenger head) spaced 305 mm (12") o.c. at the perimeter and in the field
	• (6) Face layer attached to base layer and studs using 41 mm (1-5/8")

and in the field
 Screws from base layer to face layer offset by 152 mm (6")
 Joints of base layer Side 1 gypsum boards staggered by at least one stud spacing from joints of base layer Side 2 gypsum boards
 Joints of face layer staggered by at least one stud spacing from joints of base layer
• Gaps along the joints and the perimeter of face layer gypsum boards caulked and taped with aluminum tape

Element	Actual thickness (mm)	Mass (kg)	Mass/length, area or volume
Gypsum Board	15.9	97.8	11.0 kg/m ²
Gypsum Board	15.9	97.8	11.0 kg/m²
Flat Strap	1	3.0	0.3 kg/m
Steel Studs	152	65.0	2.7 kg/m
Steel Tracks	152 *	16.6	2.3 kg/m
C Channel Bridging	1 *	1.9	0.5 kg/m
Angle Bracket	1 *	10.8	1.1 kg/piece
Glass Fibre Insulation	152 *	12.4	9.2 kg/m ³
Gypsum Board	15.9	97.8	11.0 kg/m ²
Gypsum Board	15.9	97.8	11.0 kg/m²
Total	216.6	500.9	

Client:

CSSBI

Specimen ID: A1-005007-13W

Test ID: Date of Test: TLA-14-053 05 September 2014

	Humidity (%)	Air Temperature (°C)	Volume (m ³)	Room
Area of test specimen: 8.92 m	71.6 to 72.6	20.8 to 20.8	255.7	Large
Mass of test specimen: 500.9 kg	70.7 to 73.4	21.0 to 21.1	140.6	Small

For a description of the test specimen and mounting conditions see text pages before. The results in this report apply only to the specific sample submitted for measurement. No responsibility is assumed for performance of any other specimen. Airborne sound transmission loss measurements were conducted in accordance with the requirements of ASTM E90-09, "Standard Test Method for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions and Elements."

In the graph:

The solid line is the measured sound transmission loss for this specimen. The dashed line is the STC contour fitted to the measured values according to ASTM E413-10. The dotted line (may be above the displayed range) is 10 dB below the flanking limit established for this facility. For any frequency band where the measured transmission loss is above the dotted line, the reported value is potentially limited by flanking transmission via laboratory surfaces, and the true value may be higher than that measured. Bars at the bottom of the graph show deficiencies where the measured data are less than the reference contour as described in the fitting procedure for the STC, defined in ASTM E413-10. The shaded cells in the table and areas in the graph are outside the STC contour range.

In the table:

Values marked "c" indicate that the measured background level was between 5 dB and 10 dB below the combined receiving room level and background level. The reported values have been corrected according to the procedure outlined in ASTM E90-09. Values marked "*" indicate that the measured background level was less than 5 dB below the combined receiving room level and background level, in which case, the corrected values provide an estimate of the lower limit of airborne sound transmission loss.

Wall assembly 14W: G16_SS152(406)_GFB152_RC13(406)_G16

Description	One layer of 15.9 mm (5/8") gypsum board Type X, attached on each side of 152 mm (6") deep steel studs spaced 406 mm (16") o.c., with resilient channels on one side spaced 406 mm (16") o.c. and 152 mm (6") deep glass fibre insulation (R-20) in the cavity.
Side 1	 (1) One layer of 15.9 mm (5/8") gypsum board Type X, installed vertically, directly attached to the studs using 32 mm (1-1/4") screws (#6 scavenger head) spaced 305 mm (12") o.c. at the perimeter and in the field Joints of Side 1 gypsum boards staggered by at least one stud spacing from joints of Side 2 gypsum boards Gaps along the joints and the perimeter of gypsum boards caulked and taped with aluminum tape
Framing &	• Base track and top track (steel thickness: 1.37 mm/0.054") attached to test
Cavity	frame using four 19 mm (3/4") screws (#10 wafer head)
Insulation	 (2) 152 mm (6") deep steel C-studs (steel thickness: 1.37 mm/0.054") spaced 406 mm (16") o.c., attached to base track and top track using 19 mm (3/4") screws (#10 pan head) One through-the-knockout bridging channel, attached to each stud using 140 mm (5-1/2") bridging clips Flat-strap steel cross-bracing, attached on Side 1 to each stud using 19 mm (3/4") screws (#10 pan head) (3) Cavities between studs filled with 406 mm (16") wide by 152 mm (6") thick glass fibre insulation (R-20), cut in half to accommodate bridging channel
Side 2	 (4) 13 mm resilient channels installed horizontally using 19 mm (3/4") screws (#10 wafer head), spaced 406 mm (16") o.c. and installed according to ASTM C754-11 (5) One layer of 15.9 mm (5/8") gypsum board Type X, installed vertically, attached to resilient channels using 32 mm (1-1/4") screws (#6 scavenger head) spaced 305 mm (12") o.c. at the perimeter and in the field Joints of Side 1 gypsum boards staggered by at least one stud spacing from joints of Side 2 gypsum boards Gaps along the joints and the perimeter of gypsum boards caulked and taped with aluminum tape

Element	Actual thickness (mm)	Mass (kg)	Mass/length, area or volume
Gypsum Board	15.9	97.8	11.0 kg/m²
Flat Strap	1	3.0	0.3 kg/m
Steel Studs	152	65.0	2.7 kg/m
Steel Tracks	152 *	16.6	2.3 kg/m
C Channel Bridging	1 *	1.9	0.5 kg/m
Angle Bracket	1 *	10.8	1.1 kg/piece
Glass Fibre Insulation	152 *	12.4	9.2 kg/m ³
Resilient Channels	13	5.6	0.2 kg/m
Gypsum Board	15.9	97.8	11.0 kg/m ²
Total	197.8	310.9	

Client:

CSSBI Specimen ID:

A1-005007-14W

Test ID: Date of Test: TLA-14-055 10 September 2014

Volume (m³) Air Temperature (°C) Humidity (%) Room Area of test specimen: 8.92 m² 256.1 20.5 to 20.6 67.2 to 67.3 Large Mass of test specimen: 310.9 kg Small 140.5 20.8 to 20.9 63.8 to 64.3

For a description of the test specimen and mounting conditions see text pages before. The results in this report apply only to the specific sample submitted for measurement. No responsibility is assumed for performance of any other specimen. Airborne sound transmission loss measurements were conducted in accordance with the requirements of ASTM E90-09, "Standard Test Method for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions and Elements."

In the graph:

The solid line is the measured sound transmission loss for this specimen. The dashed line is the STC contour fitted to the measured values according to ASTM E413-10. The dotted line (may be above the displayed range) is 10 dB below the flanking limit established for this facility. For any frequency band where the measured transmission loss is above the dotted line, the reported value is potentially limited by flanking transmission via laboratory surfaces, and the true value may be higher than that measured. Bars at the bottom of the graph show deficiencies where the measured data are less than the reference contour as described in the fitting procedure for the STC, defined in ASTM E413-10. The shaded cells in the table and areas in the graph are outside the STC contour range.

In the table:

Values marked "c" indicate that the measured background level was between 5 dB and 10 dB below the combined receiving room level and background level. The reported values have been corrected according to the procedure outlined in ASTM E90-09. Values marked "*" indicate that the measured background level was less than 5 dB below the combined receiving room level and background level, in which case, the corrected values provide an estimate of the lower limit of airborne sound transmission loss.

Wall assembly 15W: 2G16_SS152(406)_GFB152_RC13(406)_G16

Description	Two layers of 15.9 mm (5/8") gypsum board Type X, directly attached to one side of 152 mm (6") deep steel studs spaced 406 mm (16") o.c., and one layer of 15.9 mm (5/8") gypsum board Type X attached to resilient channels spaced 406 mm (16") o.c. on the other side, with 92 mm (3-5/8") deep glass fibre insulation (R-12) in the cavity.
Side 1	 Two layers of 15.9 mm (5/8") gypsum board Type X, installed vertically (2) Base layer attached to the studs using 32 mm (1-1/4") screws (#6 scavenger head) spaced 305 mm (12") o.c. at the perimeter and in the field (1) Face layer attached to base layer and studs using 41 mm (1-5/8") screws (#6 scavenger head) spaced 305 mm (12") o.c. at the perimeter and in the field Screws from base layer to face layer offset by 152 mm (6") Joints of base layer Side 1 gypsum boards staggered by at least one stud spacing from joints of base layer Side 2 gypsum boards Joints of face layer staggered by at least one stud spacing from joints of base layer Gaps along the joints and the perimeter of face layer gypsum boards caulked and taped with aluminum tape.
Framing & Cavity Insulation	 Base track and top track (steel thickness: 1.37 mm/0.054") attached to test frame using four 19 mm (3/4") screws (#10 wafer head) (3) 152 mm (6") deep steel C-studs (steel thickness: 1.37 mm/0.054") spaced 406 mm (16") o.c., attached to base track and top track using 19 mm (3/4") screws (#10 pan head) One through-the-knockout bridging channel, attached to each stud using 140 mm (5-1/2") bridging clips Flat-strap steel cross-bracing, attached on Side 1 to each stud using 19 mm (3/4") screws (#10 pan head) (4) Cavities between studs filled with 406 mm (16") wide by 152 mm (6") thick glass fibre insulation (R-20), cut in half to accommodate bridging channel
Side 2	• (5) 13 mm resilient channels installed horizontally using 19 mm (3/4") screws (#10 wafer head), spaced 406 mm (16") o.c. and installed according to ASTM C754-11
•	(6) One layer of 15.9 mm (5/8") gypsum board Type X, installed vertically and attached to resilient channels using 32 mm (1-1/4") screws (#6 scavenger head) spaced 305 mm (12") o.c. at the perimeter and in the field
---	---
•	Joints of Side 1 gypsum boards staggered by at least one stud spacing from joints of Side 2 gypsum boards Gaps along the joints and the perimeter of gypsum boards caulked and taped with aluminum tape

Element	Actual thickness (mm)	Mass (kg)	Mass/length, area or volume	
Gypsum Board	15.9	97.8	11.0 kg/m ²	
Gypsum Board	15.9	97.8	11.0 kg/m²	
Flat Strap	1	3.0	0.3 kg/m	
Steel Studs	152	65.0	2.7 kg/m	
Steel Tracks	152 *	16.6	2.3 kg/m	
C Channel Bridging	1 *	1.9	0.5 kg/m	
Angle Bracket	1 *	10.8	1.1 kg/piece	
Glass Fibre Insulation	152 *	12.4	9.2 kg/m³	
Resilient Channels	13	5.6	0.2 kg/m	
Gypsum Board	15.9	97.8	11.0 kg/m²	
Total	213.7	408.7		

Client:

CSSBI

Test ID:

TLA-14-056 11 September 2014

Specimen ID: A1-005007-15W

Date of Test:

Volume (m³) Air Temperature (°C) Humidity (%) Room 8.92 m² Area of test specimen: 256.1 20.4 to 20.6 69.9 to 72.5 Large Mass of test specimen: 408.7 kg Small 140.3 21.0 to 21.0 73.4 to 75.5

For a description of the test specimen and mounting conditions see text pages before. The results in this report apply only to the specific sample submitted for measurement. No responsibility is assumed for performance of any other specimen. Airborne sound transmission loss measurements were conducted in accordance with the requirements of ASTM E90-09, "Standard Test Method for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions and Elements."

In the graph:

The solid line is the measured sound transmission loss for this specimen. The dashed line is the STC contour fitted to the measured values according to ASTM E413-10. The dotted line (may be above the displayed range) is 10 dB below the flanking limit established for this facility. For any frequency band where the measured transmission loss is above the dotted line, the reported value is potentially limited by flanking transmission via laboratory surfaces, and the true value may be higher than that measured. Bars at the bottom of the graph show deficiencies where the measured data are less than the reference contour as described in the fitting procedure for the STC, defined in ASTM E413-10. The shaded cells in the table and areas in the graph are outside the STC contour range.

In the table:

Values marked "c" indicate that the measured background level was between 5 dB and 10 dB below the combined receiving room level and background level. The reported values have been corrected according to the procedure outlined in ASTM E90-09. Values marked "*" indicate that the measured background level was less than 5 dB below the combined receiving room level and background level, in which case, the corrected values provide an estimate of the lower limit of airborne sound transmission loss.

Wall assembly 16W: 2G16_SS152(406)_GFB152_RC13(406)_2G16

Description	Two layers of 15.9 mm (5/8") gypsum board Type X, attached on each side of 152 mm (6") deep steel studs spaced 406 mm (16") o.c., with resilient channels on one side spaced 406 mm (16") o.c. and 152 mm (6") deep glass fibre insulation (R-20) in the cavity.
Side 1	 Two layers of 15.9 mm (5/8") gypsum board Type X, installed vertically (2) Base layer attached to the studs using 32 mm (1-1/4") screws (#6 scavenger head) spaced 305 mm (12") o.c. at the perimeter and in the field (1) Face layer attached to base layer and studs using 41 mm (1-5/8") screws (#6 scavenger head) spaced 305 mm (12") o.c. at the perimeter and in the field Screws from base layer to face layer offset by 152 mm (6") Joints of base layer Side 1 gypsum boards staggered by at least one stud spacing from joints of base layer Side 2 gypsum boards Joints of face layer staggered by at least one stud spacing from joints and the perimeter of face layer gypsum boards caulked and taped with aluminum tape
Framing & Cavity Insulation	 Base track and top track (steel thickness: 1.37 mm/0.054") attached to test frame using four 19 mm (3/4") screws (#10 wafer head) (3) 152 mm (6") deep steel C-studs (steel thickness: 1.37 mm/0.054") spaced 406 mm (16") o.c., attached to base track and top track using 19 mm (3/4") screws (#10 pan head) One through-the-knockout bridging channel, attached to each stud using 140 mm (5-1/2") bridging clips Flat-strap steel cross-bracing, attached on Side 1 to each stud using 19 mm (3/4") screws (#10 pan head) (4) Cavities between studs filled with 406 mm (16") wide by 152 mm (6") thick glass fibre insulation (R-20), cut in half to accommodate bridging channel
Side 2	 (5) 13 mm resilient channels installed horizontally using 19 mm (3/4") screws (#10 wafer head), spaced 406 mm (16") o.c. and installed according to ASTM C754-11 Two layers of 15.9 mm (5/8") gypsum board Type X, installed vertically

• (6) Base layer attached to resilient channels using 32 mm (1-1/4") screws (#6 scavenger head) spaced 305 mm (12") o.c. at the perimeter and in the field
• (7) Face layer attached to base layer and resilient channels using 41 mm (1-5/8") screws (#6 scavenger head) spaced 305 mm (12") o.c. at the perimeter and in the field
 Screws from base layer to face layer offset by 152 mm (6")
• Joints of base layer Side 1 gypsum boards staggered by at least one stud spacing from joints of base layer Side 2 gypsum boards
Joints of face layer staggered by at least one stud spacing from joints of base layer
• Gaps along the joints and the perimeter of face layer gypsum boards caulked and taped with aluminum tape

Element	Actual thickness (mm)	Mass (kg)	Mass/length, area or volume	
Gypsum Board	15.9	97.8	11.0	kg/m²
Gypsum Board	15.9	97.8	11.0	kg/m²
Flat Strap	1	3.0	0.3	kg/m
Steel Studs	152	65.0	2.7	kg/m
Steel Tracks	152 *	16.6	2.3	kg/m
C Channel Bridging	1 *	1.9	0.5	kg/m
Angle Bracket	1 *	10.8	1.1	kg/piece
Glass Fibre Insulation	152 *	12.4	9.2	kg/m³
Resilient Channels	13	5.6	0.2	kg/m
Gypsum Board	15.9	97.8	11.0	kg/m²
Gypsum Board	15.9	97.8	11.0	kg/m²
Total	229.6	506.5		

Client:

CSSBI Specimen ID: A1-005007-16W

Test ID: Date of Test: TLA-14-059 12 September 2014

Volume (m³) Air Temperature (°C) Humidity (%) Room Area of test specimen: 8.92 m² 255.9 19.9 to 19.9 43.6 to 44.2 Large Mass of test specimen: 506.5 kg Small 140.3 20.7 to 20.8 65.9 to 66.9

For a description of the test specimen and mounting conditions see text pages before. The results in this report apply only to the specific sample submitted for measurement. No responsibility is assumed for performance of any other specimen. Airborne sound transmission loss measurements were conducted in accordance with the requirements of ASTM E90-09, "Standard Test Method for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions and Elements."

In the graph:

The solid line is the measured sound transmission loss for this specimen. The dashed line is the STC contour fitted to the measured values according to ASTM E413-10. The dotted line (may be above the displayed range) is 10 dB below the flanking limit established for this facility. For any frequency band where the measured transmission loss is above the dotted line, the reported value is potentially limited by flanking transmission via laboratory surfaces, and the true value may be higher than that measured. Bars at the bottom of the graph show deficiencies where the measured data are less than the reference contour as described in the fitting procedure for the STC, defined in ASTM E413-10. The shaded cells in the table and areas in the graph are outside the STC contour range.

In the table:

Values marked "c" indicate that the measured background level was between 5 dB and 10 dB below the combined receiving room level and background level. The reported values have been corrected according to the procedure outlined in ASTM E90-09. Values marked "*" indicate that the measured background level was less than 5 dB below the combined receiving room level and background level, in which case, the corrected values provide an estimate of the lower limit of airborne sound transmission loss.

Wall assembly 17W: SS152(406)_GFB152_RC13(406)_2G16

Description	Two layers of 15.9 mm (5/8") gypsum board Type X, attached on one side of 152 mm (6") deep steel studs spaced 406 mm (16") o.c., with resilient channels spaced 406 mm (16") o.c. and 152 mm (6") deep glass fibre insulation (R-20) in the cavity. No gypsum board attached on the other side.
Side 1	No sheathing on Side 1.
Framing & Cavity	 Base track and top track (steel thickness: 1.37 mm/0.054") attached to test frame using four 19 mm (3/4") screws (#10 wafer head)
Insulation	 (1) 152 mm (6") deep steel C-studs (steel thickness: 1.37 mm/0.054") spaced 406 mm (16") o.c., attached to base track and top track using 19 mm (3/4") screws (#10 pan head) One through-the-knockout bridging channel, attached to each stud using 140 mm (5-1/2") bridging clips Flat-strap steel cross-bracing, attached on Side 1 to each stud using 19 mm (3/4") screws (#10 pan head) (2) Cavities between studs filled with 406 mm (16") wide by 152 mm (6")
	thick glass fibre insulation (R-20), cut in half to accommodate bridging channel
Side 2	 (3) 13 mm resilient channels installed horizontally using 19 mm (3/4") screws (#10 wafer head), spaced 406 mm (16") o.c. and installed according to ASTM C754-11 Two layers of 15.9 mm (5/8") gypsum board Type X, installed vertically (4) Base layer attached to resilient channels using 32 mm (1-1/4") screws (#6 scavenger head) spaced 305 mm (12") o.c. at the perimeter and in the field
	 (5) Face layer attached to base layer and resilient channels using 41 mm (1-5/8") screws (#6 scavenger head) spaced 305 mm (12") o.c. at the perimeter and in the field Screws from base layer to face layer offset by 152 mm (6")
	 Joints of face layer staggered by at least one stud spacing from joints of base layer Gaps along the joints and the perimeter of face layer gypsum boards caulked and taped with aluminum tape.

Element	Actual thickness (mm)	Mass (kg)	Mass/length, area or volume	
Flat Strap	1	3.0	0.3 kg/m	
Steel Studs	152	65.0	2.7 kg/m	
Steel Tracks	152 *	16.6	2.3 kg/m	
C Channel Bridging	1 *	1.9	0.5 kg/m	
Angle Bracket	1 *	10.8	1.1 kg/piece	
Glass Fibre Insulation	152 *	12.4	9.2 kg/m ³	
Resilient Channels	13	5.6	0.2 kg/m	
Gypsum Board	15.9	97.8	11.0 kg/m ²	
Gypsum Board	15.9	97.8	11.0 kg/m²	
Total	197.8	310.9		

Client:

CSSBI Specimen ID:

A1-005007-17W

Test ID: Date of Test: TLA-14-060 12 September 2014

Volume (m³) Air Temperature (°C) Humidity (%) Room Area of test specimen: 8.92 m² 255.9 19.9 to 20.0 42.3 to 42.7 Large Mass of test specimen: 310.9 kg Small 140.3 20.1 to 20.2 42.7 to 49.7

For a description of the test specimen and mounting conditions see text pages before. The results in this report apply only to the specific sample submitted for measurement. No responsibility is assumed for performance of any other specimen. Airborne sound transmission loss measurements were conducted in accordance with the requirements of ASTM E90-09, "Standard Test Method for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions and Elements."

In the graph:

The solid line is the measured sound transmission loss for this specimen. The dashed line is the STC contour fitted to the measured values according to ASTM E413-10. The dotted line (may be above the displayed range) is 10 dB below the flanking limit established for this facility. For any frequency band where the measured transmission loss is above the dotted line, the reported value is potentially limited by flanking transmission via laboratory surfaces, and the true value may be higher than that measured. Bars at the bottom of the graph show deficiencies where the measured data are less than the reference contour as described in the fitting procedure for the STC, defined in ASTM E413-10. The shaded cells in the table and areas in the graph are outside the STC contour range.

In the table:

Values marked "c" indicate that the measured background level was between 5 dB and 10 dB below the combined receiving room level and background level. The reported values have been corrected according to the procedure outlined in ASTM E90-09. Values marked "*" indicate that the measured background level was less than 5 dB below the combined receiving room level and background level, in which case, the corrected values provide an estimate of the lower limit of airborne sound transmission loss.

Wall assembly 18W: SS152(406)_GFB152_RC13(406)_G16

Description	One layer of 15.9 mm (5/8") gypsum board Type X, attached on one side of 152 mm (6") deep steel studs spaced 406 mm (16") o.c., with resilient channels spaced 406 mm (16") o.c. and 152 mm (6") deep glass fibre insulation (R-20) in the cavity. No gypsum board attached on the other side.
Side 1	No sheathing on Side 1.
Framing & Cavity Insulation	 Base track and top track (steel thickness: 1.37 mm/0.054") attached to test frame using four 19 mm (3/4") screws (#10 wafer head) (1) 152 mm (6") deep steel C-studs (steel thickness: 1.37 mm/0.054") spaced 406 mm (16") o.c., attached to base track and top track using
	 19 mm (3/4") screws (#10 pan head) One through-the-knockout bridging channel, attached to each stud using 140 mm (5-1/2") bridging clips Flat-strap steel cross-bracing, attached on Side 1 to each stud using 19 mm (3/4") screws (#10 pan head) (2) Cavities between studs filled with 406 mm (16") wide by 152 mm (6") thick glass fibre insulation (R-20), cut in half to accommodate bridging channel
Side 2	 (3) 13 mm resilient channels installed horizontally using 19 mm (3/4") screws (#10 wafer head), spaced 406 mm (16") o.c. and installed according to ASTM C754-11 (4) One layer of 15.9 mm (5/8") gypsum board Type X, installed vertically and attached to resilient channels using 32 mm (1-1/4") screws (#6 scavenger head) spaced 305 mm (12") o.c. at the perimeter and in the field Gaps along the joints and the perimeter of gypsum boards caulked and taped with eluminum tape.

Element	Actual thickness (mm)	Mass (kg)	Mass/length, area or volume	
Flat Strap	1	3.0	0.3 kg/m	
Steel Studs	152	65.0	2.7 kg/m	
Steel Tracks	152 *	16.6	2.3 kg/m	
C Channel Bridging	1 *	1.9	0.5 kg/m	
Angle Bracket	1 *	10.8	1.1 kg/piece	
Glass Fibre Insulation	152 *	12.4	9.2 kg/m³	
Resilient Channels	13	5.6	0.2 kg/m	
Gypsum Board	15.9	97.8	11.0 kg/m²	
Total	181.9	213.1		

Client:

CSSBI

Specimen ID: A1-005007-18W

Test ID: Date of Test: TLA-14-061 17 September 2014

Room	Volume (m ³)	Air Temperature (°C)	Humidity (%)		
Large	255.9	19.5 to 19.6	47.7 to 48.7	Area of test specimen:	8.92 m ²
Small	140.3	19.4 to 19.5	48.5 to 49.0	Mass of test specimen:	213.1 kg

For a description of the test specimen and mounting conditions see text pages before. The results in this report apply only to the specific sample submitted for measurement. No responsibility is assumed for performance of any other specimen. Airborne sound transmission loss measurements were conducted in accordance with the requirements of ASTM E90-09, "Standard Test Method for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions and Elements."

In the graph:

The solid line is the measured sound transmission loss for this specimen. The dashed line is the STC contour fitted to the measured values according to ASTM E413-10. The dotted line (may be above the displayed range) is 10 dB below the flanking limit established for this facility. For any frequency band where the measured transmission loss is above the dotted line, the reported value is potentially limited by flanking transmission via laboratory surfaces, and the true value may be higher than that measured. Bars at the bottom of the graph show deficiencies where the measured data are less than the reference contour as described in the fitting procedure for the STC, defined in ASTM E413-10. The shaded cells in the table and areas in the graph are outside the STC contour range.

In the table:

Values marked "c" indicate that the measured background level was between 5 dB and 10 dB below the combined receiving room level and background level. The reported values have been corrected according to the procedure outlined in ASTM E90-09. Values marked "*" indicate that the measured background level was less than 5 dB below the combined receiving room level and background level, in which case, the corrected values provide an estimate of the lower limit of airborne sound transmission loss.

Wall assembly 19W: SS152(406)_GFB152_G16

Description	One layer of 15.9 mm (5/8") gypsum board Type X, attached on one side of 152 mm (6") deep steel studs spaced 406 mm (16") o.c., and 152 mm (6") deep glass fibre insulation (R-20) in the cavity. No gypsum board attached on the other side.
Side 1	No sheathing on Side 1.
Framing & Cavity Insulation	 Base track and top track (steel thickness: 1.37 mm/0.054") attached to test frame using four 19 mm (3/4") screws (#10 wafer head) (1) 152 mm (6") deep steel C-studs (steel thickness: 1.37 mm/0.054") spaced 406 mm (16") o.c., attached to base track and top track using 19 mm (3/4") screws (#10 pan head) One through-the-knockout bridging channel, attached to each stud using 140 mm (5-1/2") bridging clips Flat-strap steel cross-bracing, attached on Side 1 to each stud using 19 mm (3/4") screws (#10 pan head) (2) Cavities between studs filled with 406 mm (16") wide by 152 mm (6") thick glass fibre insulation (R-20), cut in half to accommodate bridging channel
Side 2	 (3) One layer of 15.9 mm (5/8") gypsum board Type X, installed vertically and directly attached to the studs using 32 mm (1-1/4") screws (#6 scavenger head) spaced 305 mm (12") o.c. at the perimeter and in the field Gaps along the joints and the perimeter of gypsum boards caulked and taped with aluminum tape

Element	Actual thickness (mm)	Mass (kg)	Mass/length, area or volume	
Flat Strap	1	3.0	0.3 kg/m	
Steel Studs	152	65.0	2.7 kg/m	
Steel Tracks	152 *	16.6	2.3 kg/m	
C Channel Bridging	1 *	1.9	0.5 kg/m	
Angle Bracket	1 *	10.8	1.1 kg/piece	
Glass Fibre Insulation	152 *	12.4	9.2 kg/m ³	
Gypsum Board	15.9	97.8	11.0 kg/m²	
Total	168.9	207.5		

Client:

CSSBI

Test ID:

TLA-14-062 18 September 2014

Specimen ID: A1-005007-19W

Date of Test:

Volume (m³) Air Temperature (°C) Humidity (%) Room Area of test specimen: 8.92 m² 255.9 19.4 to 19.5 35.4 to 35.5 Large Mass of test specimen: 207.5 kg Small 140.3 19.2 to 19.3 37.2 to 39.6

For a description of the test specimen and mounting conditions see text pages before. The results in this report apply only to the specific sample submitted for measurement. No responsibility is assumed for performance of any other specimen. Airborne sound transmission loss measurements were conducted in accordance with the requirements of ASTM E90-09, "Standard Test Method for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions and Elements."

In the graph:

The solid line is the measured sound transmission loss for this specimen. The dashed line is the STC contour fitted to the measured values according to ASTM E413-10. The dotted line (may be above the displayed range) is 10 dB below the flanking limit established for this facility. For any frequency band where the measured transmission loss is above the dotted line, the reported value is potentially limited by flanking transmission via laboratory surfaces, and the true value may be higher than that measured. Bars at the bottom of the graph show deficiencies where the measured data are less than the reference contour as described in the fitting procedure for the STC, defined in ASTM E413-10. The shaded cells in the table and areas in the graph are outside the STC contour range.

In the table:

Values marked "c" indicate that the measured background level was between 5 dB and 10 dB below the combined receiving room level and background level. The reported values have been corrected according to the procedure outlined in ASTM E90-09. Values marked "*" indicate that the measured background level was less than 5 dB below the combined receiving room level and background level, in which case, the corrected values provide an estimate of the lower limit of airborne sound transmission loss.

Wall assembly 20W: G16_SS152(610)_GFB92_RC13(406)_G16

1 3 2) ----5 4

Description	One layer of 15.9 mm (5/8") gypsum board Type X, attached on each side of 152 mm (6") deep steel studs spaced 610 mm (24") o.c., with resilient channels on one side spaced 406 mm (16") o.c. and 92 mm (3-5/8") deep glass fibre insulation (R-12) in the cavity.
Side 1	 (1) One layer of 15.9 mm (5/8") gypsum board Type X, installed vertically and directly attached to the studs using 32 mm (1-1/4") screws (#6 scavenger head) spaced 305 mm (12") o.c. at the perimeter and in the field Joints of Side 1 gypsum boards staggered by at least one stud spacing from joints of Side 2 gypsum boards Gaps along the joints and the perimeter of gypsum boards caulked and taped with aluminum tape
Framing & Cavity	• Base track and top track (steel thickness: 1.37 mm/0.054") attached to test frame using four 19 mm (3/4") screws (#10 wafer head)
Insulation	 (2) 152 mm (6") deep steel C-studs (steel thickness: 1.37 mm/0.054") spaced 610 mm (24") o.c., attached to base track and top track using 19 mm (3/4") screws (#10 pan head) One through-the-knockout bridging channel, attached to each stud using 140 mm (5-1/2") bridging clips Flat-strap steel cross-bracing, attached on Side 1 to each stud using 19 mm (3/4") screws (#10 pan head) (3) Cavities between studs filled with 610 mm (24") wide by 92 mm (3-5/8") thick glass fibre insulation (R-12), cut in half to accommodate bridging channel
Side 2	• (4) 13 mm resilient channels installed horizontally using 19 mm (3/4") screws (#10 wafer head), spaced 406 mm (16") o.c. and installed according to ASTM C754-11
	 (5) One layer of 15.9 mm (5/8") gypsum board Type X, installed vertically and attached to resilient channels using 32 mm (1-1/4") screws (#6 scavenger head) spaced 305 mm (12") o.c. at the perimeter and in the field Joints of Side 1 gypsum boards staggered by at least one stud spacing
	 from joints of Side 2 gypsum boards Gaps along the joints and the perimeter of gypsum boards caulked and taped with aluminum tape

Element	Actual thickness (mm)	Mass (kg)	Mass/length, area or volume		
Gypsum Board	15.9	97.8	11.0 kg/m²		
Flat Strap	1	3.0	0.3 kg/m		
Steel Studs	152	65.0	2.7 kg/m		
Steel Tracks	152 *	16.6	2.3 kg/m		
C Channel Bridging	1 *	1.9	0.5 kg/m		
Angle Bracket	1 *	7.6	1.1 kg/piece		
Glass Fibre Insulation	92 *	7.2	8.8 kg/m ³		
Resilient Channels	13	5.6	0.2 kg/m		
Gypsum Board	15.9	97.8	11.0 kg/m²		
Total	197.8	302.5			

Client:

Specimen ID:

CSSBI

A1-005007-20W

Test ID: Date of Test: TLA-14-063 22 September 2014

Volume (m³) Air Temperature (°C) Humidity (%) Room

Area of test specimen: 8.92 m² 256.0 19.5 to 19.6 42.5 to 42.9 Large Mass of test specimen: 302.5 kg Small 140.6 18.9 to 19.1 45.9 to 46.5

For a description of the test specimen and mounting conditions see text pages before. The results in this report apply only to the specific sample submitted for measurement. No responsibility is assumed for performance of any other specimen. Airborne sound transmission loss measurements were conducted in accordance with the requirements of ASTM E90-09, "Standard Test Method for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions and Elements."

In the graph:

The solid line is the measured sound transmission loss for this specimen. The dashed line is the STC contour fitted to the measured values according to ASTM E413-10. The dotted line (may be above the displayed range) is 10 dB below the flanking limit established for this facility. For any frequency band where the measured transmission loss is above the dotted line, the reported value is potentially limited by flanking transmission via laboratory surfaces, and the true value may be higher than that measured. Bars at the bottom of the graph show deficiencies where the measured data are less than the reference contour as described in the fitting procedure for the STC, defined in ASTM E413-10. The shaded cells in the table and areas in the graph are outside the STC contour range.

In the table:

Values marked "c" indicate that the measured background level was between 5 dB and 10 dB below the combined receiving room level and background level. The reported values have been corrected according to the procedure outlined in ASTM E90-09. Values marked "*" indicate that the measured background level was less than 5 dB below the combined receiving room level and background level, in which case, the corrected values provide an estimate of the lower limit of airborne sound transmission loss.

Wall assembly 21W: 2G16_SS152(610)_GFB92_RC13(406)_G16

Description	Two layers of 15.9 mm (5/8") gypsum board Type X, directly attached to one side of 152 mm (6") deep steel studs spaced 610 mm (24") o.c., and one layer of 15.9 mm (5/8") gypsum board Type X attached to resilient channels spaced 406 mm (16") o.c. on the other side, with 92 mm (3-5/8") deep glass fibre insulation (R-12) in the cavity.
Side 1	 Two layers of 15.9 mm (5/8") gypsum board Type X, installed vertically (2) Base layer attached to the studs using 32 mm (1-1/4") screws (#6 scavenger head) spaced 305 mm (12") o.c. at the perimeter and in the field (1) Face layer attached to base layer and studs using 41 mm (1-5/8") screws (#6 scavenger head) spaced 305 mm (12") o.c. at the perimeter and in the field Screws from base layer to face layer offset by 152 mm (6") Joints of base layer Side 1 gypsum boards staggered by at least one stud spacing from joints of base layer Side 2 gypsum boards Joints of face layer staggered by at least one stud spacing from joints of base layer Gaps along the joints and the perimeter of face layer gypsum boards caulked and taped with aluminum tape
Framing & Cavity Insulation	 Base track and top track (steel thickness: 1.37 mm/0.054") attached to test frame using four 19 mm (3/4") screws (#10 wafer head) (3) 152 mm (6") deep steel C-studs (steel thickness: 1.37 mm/0.054") spaced 610 mm (24") o.c., attached to base track and top track using 19 mm (3/4") screws (#10 pan head) One through-the-knockout bridging channel, attached to each stud using 140 mm (5-1/2") bridging clips Flat-strap steel cross-bracing, attached on Side 1 to each stud using 19 mm (3/4") screws (#10 pan head) (4) Cavities between studs filled with 610 mm (24") wide by 92 mm (3-5/8") thick glass fibre insulation (R-12), cut in half to accommodate bridging channel
Side 2	 (5) 13 mm resilient channels installed horizontally using 19 mm (3/4") screws (#10 wafer head), spaced 406 mm (16") o.c. and installed according to ASTM C754-11 (6) One layer of 15.9 mm (5/8") gypsum board Type X, installed vertically

and attached to resilient channels using 32 mm (1-1/4") screws (#6
scavenger head) spaced 305 mm (12") o.c. at the perimeter and in the
field
 Joints of Side 1 gypsum boards staggered by at least one stud spacing from joints of Side 2 gypsum boards
• Gaps along the joints and the perimeter of gypsum boards caulked and taped with aluminum tape

Element	Actual thickness (mm)	Mass (kg)	Mass/length, area or volume	
Gypsum Board	15.9	97.8	11.0 kg/m²	
Gypsum Board	15.9	97.8	11.0 kg/m²	
Flat Strap	1	3.0	0.3 kg/m	
Steel Studs	152	65.0	2.7 kg/m	
Steel Tracks	152 *	16.6	2.3 kg/m	
C Channel Bridging	1 *	1.9	0.5 kg/m	
Angle Bracket	1 *	7.6	1.1 kg/piece	
Glass Fibre Insulation	92 *	7.2	8.8 kg/m ³	
Resilient Channels	13	5.6	0.2 kg/m	
Gypsum Board	15.9	97.8	11.0 kg/m²	
Total	213.7	400.3		

Client:

CSSBI Specimen ID: A1-005007-21W Test ID: Date of Test: TLA-14-064 25 September 2014

Volume (m³) Air Temperature (°C) Humidity (%) Room 8.92 m² Area of test specimen: 256.0 19.8 to 19.9 57.5 to 58.3 Large

For a description of the test specimen and mounting conditions see text pages before. The results in this report apply only to the specific sample submitted for measurement. No responsibility is assumed for performance of any other specimen. Airborne sound transmission loss measurements were conducted in accordance with the requirements of ASTM E90-09, "Standard Test Method for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions and Elements."

In the graph:

The solid line is the measured sound transmission loss for this specimen. The dashed line is the STC contour fitted to the measured values according to ASTM E413-10. The dotted line (may be above the displayed range) is 10 dB below the flanking limit established for this facility. For any frequency band where the measured transmission loss is above the dotted line, the reported value is potentially limited by flanking transmission via laboratory surfaces, and the true value may be higher than that measured. Bars at the bottom of the graph show deficiencies where the measured data are less than the reference contour as described in the fitting procedure for the STC, defined in ASTM E413-10. The shaded cells in the table and areas in the graph are outside the STC contour range.

In the table:

Values marked "c" indicate that the measured background level was between 5 dB and 10 dB below the combined receiving room level and background level. The reported values have been corrected according to the procedure outlined in ASTM E90-09. Values marked "*" indicate that the measured background level was less than 5 dB below the combined receiving room level and background level, in which case, the corrected values provide an estimate of the lower limit of airborne sound transmission loss.

Wall assembly 22W: 2G16_SS152(610)_GFB92_RC13(406)_2G16

Description	Two layers of 15.9 mm (5/8") gypsum board Type X, attached on each side of 152 mm (6") deep steel studs spaced 406 mm (16") o.c., with resilient channels on one side spaced 406 mm (16") o.c. and 92 mm (3-5/8") deep glass fibre insulation (R-12) in the cavity.
Side 1	 Two layers of 15.9 mm (5/8") gypsum board Type X, installed vertically (2) Base layer attached to the studs using 32 mm (1-1/4") screws (#6 scavenger head) spaced 305 mm (12") o.c. at the perimeter and in the field (1) Face layer attached to base layer and studs using 41 mm (1-5/8") screws (#6 scavenger head) spaced 305 mm (12") o.c. at the perimeter and in the field Screws from base layer to face layer offset by 152 mm (6") Joints of base layer Side 1 gypsum boards staggered by at least one stud spacing from joints of base layer Side 2 gypsum boards Joints of face layer staggered by at least one stud spacing from joints of base layer Side 2 gypsum boards Gaps along the joints and the perimeter of face layer gypsum boards
Framing &	Base track and top track (steel thickness: 1.37 mm/0.054") attached to
Cavity	test frame using four 19 mm (3/4") screws (#10 wafer head)
Insulation	 (3) 152 mm (6") deep steel C-studs (steel thickness: 1.37 mm/0.054") spaced 610 mm (24") o.c., attached to base track and top track using 19 mm (3/4") screws (#10 pan head) One through-the-knockout bridging channel, attached to each stud using 140 mm (5-1/2") bridging clips Flat-strap steel cross-bracing, attached on Side 1 to each stud using
	 19 mm (3/4") screws (#10 pan head) (4) Cavities between studs filled with 610 mm (24") wide by 92 mm (3-5/8") thick glass fibre insulation (R-12), cut in half to accommodate bridging channel
Side 2	• (5) 13 mm resilient channels installed horizontally using 19 mm (3/4") screws (#10 wafer head), spaced 406 mm (16") o.c. and installed according to ASTM C754-11
	 Two layers of 15.9 mm (5/8") gypsum board Type X, installed vertically (6) Base layer attached to regilient charges a value of 4 (4/4") service
	• (6) Base layer attached to resilient channels using 32 mm (1-1/4") screws

	(#6 scavenger head) spaced 305 mm (12") o.c. at the perimeter and in the field
•	(7) Face layer attached to base layer and resilient channels using 41 mm (1-5/8") screws (#6 scavenger head) spaced 305 mm (12") o.c. at the perimeter and in the field
•	Screws from base layer to face layer offset by 152 mm (6")
•	Joints of base layer Side 1 gypsum boards staggered by at least one stud spacing from joints of base layer Side 2 gypsum boards
•	Joints of face layer staggered by at least one stud spacing from joints of base layer
•	Gaps along the joints and the perimeter of face layer gypsum boards caulked and taped with aluminum tape

Element	Actual thickness (mm)	Mass (kg)	Mass/length, area or volume	
Gypsum Board	15.9	97.8	11.0 kg/m ²	
Gypsum Board	15.9	97.8	11.0 kg/m²	
Flat Strap	1	3.0	0.3 kg/m	
Steel Studs	152	65.0	2.7 kg/m	
Steel Tracks	152 *	16.6	2.3 kg/m	
C Channel Bridging	1 *	1.9	0.5 kg/m	
Angle Bracket	1 *	7.6	1.1 kg/piece	
Glass Fibre Insulation	92 *	7.2	8.8 kg/m ³	
Resilient Channels	13	5.6	0.2 kg/m	
Gypsum Board	15.9	97.8	11.0 kg/m²	
Gypsum Board	15.9	97.8	11.0 kg/m ²	
Total	229.6	498.1		

Client:

CSSBI

Specimen ID: A1-005007-22W

Test ID: Date of Test: TLA-14-065 26 September 2014

Room	Volume (m ³)	Air Temperature (°C)	Humidity (%)		
Large	254.0	20.1 to 20.2	62.7 to 63.1	Area of test specimen:	8.92 m ²
Small	140.4	19.2 to 19.3	65.0 to 66.9	Mass of test specimen:	498.1 kg

For a description of the test specimen and mounting conditions see text pages before. The results in this report apply only to the specific sample submitted for measurement. No responsibility is assumed for performance of any other specimen. Airborne sound transmission loss measurements were conducted in accordance with the requirements of ASTM E90-09, "Standard Test Method for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions and Elements."

In the graph:

The solid line is the measured sound transmission loss for this specimen. The dashed line is the STC contour fitted to the measured values according to ASTM E413-10. The dotted line (may be above the displayed range) is 10 dB below the flanking limit established for this facility. For any frequency band where the measured transmission loss is above the dotted line, the reported value is potentially limited by flanking transmission via laboratory surfaces, and the true value may be higher than that measured. Bars at the bottom of the graph show deficiencies where the measured data are less than the reference contour as described in the fitting procedure for the STC, defined in ASTM E413-10. The shaded cells in the table and areas in the graph are outside the STC contour range.

In the table:

Values marked "c" indicate that the measured background level was between 5 dB and 10 dB below the combined receiving room level and background level. The reported values have been corrected according to the procedure outlined in ASTM E90-09. Values marked "*" indicate that the measured background level was less than 5 dB below the combined receiving room level and background level, in which case, the corrected values provide an estimate of the lower limit of airborne sound transmission loss.

Wall assembly 23W: 2G16_SS152(610)_GFB152_RC13(406)_2G16

Description	Two layers of 15.9 mm (5/8") gypsum board Type X, attached on each side of 152 mm (6") deep steel studs spaced 406 mm (16") o.c., with resilient channels on one side spaced 406 mm (16") o.c. and 152 mm (6") deep glass
	fibre insulation (R-20) in the cavity.
Side 1	 Two layers of 15.9 mm (5/8") gypsum board Type X, installed vertically (2) Base layer attached to the studs using 32 mm (1-1/4") screws (#6 scavenger head) spaced 305 mm (12") o.c. at the perimeter and in the field (1) Face layer attached to base layer and studs using 41 mm (1-5/8") screws (#6 scavenger head) spaced 305 mm (12") o.c. at the perimeter and in the field Screws from base layer to face layer offset by 152 mm (6") Joints of base layer Side 1 gypsum boards staggered by at least one stud spacing from joints of base layer Side 2 gypsum boards Joints of face layer staggered by at least one stud spacing from joints of base layer Gaps along the joints and the perimeter of face layer gypsum boards
	caulked and taped with aluminum tape
Framing & Cavity	• Base track and top track (steel thickness: 1.37 mm/0.054") attached to test frame using four 19 mm (3/4") screws (#10 wafer head)
Insulation	 (3) 152 mm (6") deep steel C-studs (steel thickness: 1.37 mm/0.054") spaced 610 mm (24") o.c., attached to base track and top track using 19 mm (3/4") screws (#10 pan head) One through-the-knockout bridging channel, attached to each stud using
	 140 mm (5-1/2") bridging clips Flat-strap steel cross-bracing, attached on Side 1 to each stud using 19 mm (3/4") screws (#10 pan head)
	• (4) Cavities between studs filled with 610 mm (24") wide by 152 mm (6") thick glass fibre insulation (R-20), cut in half to accommodate bridging channel
Side 2	• (5) 13 mm resilient channels installed horizontally using 19 mm (3/4") screws (#10 wafer head), spaced 406 mm (16") o.c. and installed according to ASTM C754-11
	 Two layers of 15.9 mm (5/8") gypsum board Type X, installed vertically (6) Base layer attached to resilient channels using 32 mm (1-1/4") screws

	(#6 scavenger head) spaced 305 mm (12") o.c. at the perimeter and in the field
•	(7) Face layer attached to base layer and resilient channels using 41 mm (1-5/8") screws (#6 scavenger head) spaced 305 mm (12") o.c. at the perimeter and in the field
•	Screws from base layer to face layer offset by 152 mm (6")
•	Joints of base layer Side 1 gypsum boards staggered by at least one stud spacing from joints of base layer Side 2 gypsum boards
•	Joints of face layer staggered by at least one stud spacing from joints of base layer
•	Gaps along the joints and the perimeter of face layer gypsum boards caulked and taped with aluminum tape

Element	Actual thickness (mm)	Mass (kg)	Mass/length, area or volume	
Gypsum Board	15.9	97.8	11.0 kg/m ²	
Gypsum Board	15.9	97.8	11.0 kg/m ²	
Flat Strap	1	3.0	0.3 kg/m	
Steel Studs	152	65.0	2.7 kg/m	
Steel Tracks	152 *	16.6	2.3 kg/m	
C Channel Bridging	1 *	1.9	0.5 kg/m	
Angle Bracket	1 *	7.6	1.1 kg/piece	
Glass Fibre Insulation	152 *	12.4	9.2 kg/m ³	
Resilient Channels	13	5.6	0.2 kg/m	
Gypsum Board	15.9	97.8	11.0 kg/m²	
Gypsum Board	15.9	97.8	11.0 kg/m ²	
Total	229.6	503.3		

Client:

CSSBI Specimen ID: A1-005007-23W

Test ID: Date of Test: TLA-14-066 08 October 2014

Volume (m³) Air Temperature (°C) Humidity (%) Room 8.92 m² Area of test specimen: 254.0 19.4 to 19.4 48.3 to 49.6 Large Mass of test specimen: 503.3 kg Small 140.4 19.4 to 19.4 53.7 to 53.9

For a description of the test specimen and mounting conditions see text pages before. The results in this report apply only to the specific sample submitted for measurement. No responsibility is assumed for performance of any other specimen. Airborne sound transmission loss measurements were conducted in accordance with the requirements of ASTM E90-09, "Standard Test Method for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions and Elements."

In the graph:

The solid line is the measured sound transmission loss for this specimen. The dashed line is the STC contour fitted to the measured values according to ASTM E413-10. The dotted line (may be above the displayed range) is 10 dB below the flanking limit established for this facility. For any frequency band where the measured transmission loss is above the dotted line, the reported value is potentially limited by flanking transmission via laboratory surfaces, and the true value may be higher than that measured. Bars at the bottom of the graph show deficiencies where the measured data are less than the reference contour as described in the fitting procedure for the STC, defined in ASTM E413-10. The shaded cells in the table and areas in the graph are outside the STC contour range.

In the table:

Values marked "c" indicate that the measured background level was between 5 dB and 10 dB below the combined receiving room level and background level. The reported values have been corrected according to the procedure outlined in ASTM E90-09. Values marked "*" indicate that the measured background level was less than 5 dB below the combined receiving room level and background level, in which case, the corrected values provide an estimate of the lower limit of airborne sound transmission loss.

Wall assembly 24W: G16_SS92(406)_GFB92_RC13(406)_G16

Description	One layer of 15.9 mm (5/8") gypsum board Type X, attached on each side of 92 mm (3-5/8") deep steel studs spaced 406 mm (16") o.c., with resilient channels on one side spaced 406 mm (16") o.c. and 92 mm (3-5/8") deep glass fibre insulation (R-12) in the cavity.
Side 1	 (1) One layer of 15.9 mm (5/8") gypsum board Type X, installed vertically, directly attached to the studs using 32 mm (1-1/4") screws (#6 scavenger head) spaced 305 mm (12") o.c. at the perimeter and in the field Joints of Side 1 gypsum boards staggered by at least one stud spacing from joints of Side 2 gypsum boards Gaps along the joints and the perimeter of gypsum boards caulked and taped with aluminum tape
Framing &	• Base track and top track (steel thickness: 1.37 mm/0.054") attached to
Cavity	test frame using four 19 mm (3/4") screws (#10 wafer head)
Insulation	 (2) 92 mm (3-5/8") deep steel C-studs (steel thickness: 1.37 mm/0.054") spaced 406 mm (16") o.c., attached to base track and top track using 19 mm (3/4") screws (#10 pan head) One through-the-knockout bridging channel, attached to each stud Flat-strap steel cross-bracing, attached on Side 1 to each stud using 19 mm (3/4") screws (#10 pan head) (3) Cavities between studs filled with 406 mm (16") wide by 92 mm (3-5/8") thick glass fibre insulation (R-12), cut in half to accommodate bridging channel
Side 2	 (4) 13 mm resilient channels installed horizontally using 19 mm (3/4") screws (#10 wafer head), spaced 406 mm (16") o.c. and installed according to ASTM C754-11
	• (5) One layer of 15.9 mm (5/8") gypsum board Type X, installed vertically,
	attached to resilient channels using 32 mm (1-1/4") screws (#6 scavenger head) spaced 305 mm (12") o.c. at the perimeter and in the field
	 Joints of Side 1 gypsum boards staggered by at least one stud spacing
	from joints of Side 2 gypsum boards
	Gaps along the joints and the perimeter of gypsum boards caulked and taped with aluminum tape
Specimen Properties

Element	Actual thickness (mm)	Mass (kg)	Mass/le	ength, area or volume
Gypsum Board	15.9	97.8	11.0	kg/m²
Flat Strap	1	3.0	0.3	kg/m
Steel Studs	92	50.2	2.1	kg/m
Steel Tracks	92 *	12.6	1.7	kg/m
C Channel Bridging	1 *	1.9	0.5	kg/m
Angle Bracket	1 *	5.0	0.5	kg/piece
Glass Fibre Insulation	92 *	8.5	10.4	kg/m³
Resilient Channels	13	5.6	0.2	kg/m
Gypsum Board	15.9	97.8	11.0	kg/m²
Total	137.8	282.4		

* Element thickness does not contribute to total thickness (i.e. in cavity)

ASTM E90 Test Results – Airborne Sound Transmission Loss

Client:

CSSBI

Specimen ID: A1-005007-24W

Test ID: Date of Test: TLA-14-067 09 October 2014

Room	Volume (m ³)	Air Temperature (°C)	Humidity (%)		
Large	256.1	19.2 to 19.3	40.2 to 40.5	Area of test specimen:	8.92 m ²
Small	141.1	19.3 to 19.4	44.0 to 44.6	Mass of test specimen:	282.4 kg

For a description of the test specimen and mounting conditions see text pages before. The results in this report apply only to the specific sample submitted for measurement. No responsibility is assumed for performance of any other specimen. Airborne sound transmission loss measurements were conducted in accordance with the requirements of ASTM E90-09, "Standard Test Method for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions and Elements."

In the graph:

The solid line is the measured sound transmission loss for this specimen. The dashed line is the STC contour fitted to the measured values according to ASTM E413-10. The dotted line (may be above the displayed range) is 10 dB below the flanking limit established for this facility. For any frequency band where the measured transmission loss is above the dotted line, the reported value is potentially limited by flanking transmission via laboratory surfaces, and the true value may be higher than that measured. Bars at the bottom of the graph show deficiencies where the measured data are less than the reference contour as described in the fitting procedure for the STC, defined in ASTM E413-10. The shaded cells in the table and areas in the graph are outside the STC contour range.

In the table:

Values marked "c" indicate that the measured background level was between 5 dB and 10 dB below the combined receiving room level and background level. The reported values have been corrected according to the procedure outlined in ASTM E90-09. Values marked "*" indicate that the measured background level was less than 5 dB below the combined receiving room level and background level, in which case, the corrected values provide an estimate of the lower limit of airborne sound transmission loss.

This page was intentionally left blank.

Wall assembly 25W: 2G16_SS92(406)_GFB92_RC13(406)_G16

2) 3) 4) 1 D 5 6

Description	Two layers of 15.9 mm (5/8") gypsum board Type X, directly attached to one side of 92 mm (3-5/8") deep steel studs spaced 406 mm (16") o.c., and one layer of 15.9 mm (5/8") gypsum board Type X attached to resilient channels spaced 406 mm (16") o.c. on the other side, with 92 mm (3-5/8") deep glass fibre insulation (R-12) in the cavity.
Side 1	 Two layers of 15.9 mm (5/8") gypsum board Type X, installed vertically (1) Base layer attached to the studs using 32 mm (1-1/4") screws (#6 scavenger head) spaced 305 mm (12") o.c. at the perimeter and in the field (2) Face layer attached to base layer and studs using 41 mm (1-5/8") screws (#6 scavenger head) spaced 305 mm (12") o.c. at the perimeter and in the field Screws from base layer to face layer offset by 152 mm (6") Joints of base layer Side 1 gypsum boards staggered by at least one stud spacing from joints of base layer Side 2 gypsum boards Joints of face layer staggered by at least one stud spacing from joints of base layer Gaps along the joints and the perimeter of face layer gypsum boards caulked and taped with aluminum tape
Framing & Cavity Insulation	 Base track and top track (steel thickness: 1.37 mm/0.054") attached to test frame using four 19 mm (3/4") screws (#10 wafer head) (3) 92 mm (3-5/8") deep steel C-studs (steel thickness: 1.37 mm/0.054") spaced 406 mm (16") o.c., attached to base track and top track using 19 mm (3/4") screws (#10 pan head) One through-the-knockout bridging channel, attached to each stud Flat-strap steel cross-bracing, attached on Side 1 to each stud using 19 mm (3/4") screws (#10 pan head) (4) Cavities between studs filled with 406 mm (16") wide by 92 mm (3-5/8") thick glass fibre insulation (R-12), cut in half to accommodate bridging channel
Side 2	 (5) 13 mm resilient channels installed horizontally using 19 mm (3/4") screws (#10 wafer head), spaced 406 mm (16") o.c. and installed according to ASTM C754-11 (6) One layer of 15.9 mm (5/8") gypsum board Type X, installed vertically and attached to resilient channels using 32 mm (1-1/4") screws (#6

	scavenger head) spaced 305 mm (12") o.c. at the perimeter and in the field
•	Joints of Side 1 gypsum boards staggered by at least one stud spacing from joints of Side 2 gypsum boards
•	Gaps along the joints and the perimeter of gypsum boards caulked and taped with aluminum tape

Specimen Properties

Element	Actua thickne: (mm)	l ss	Mass (kg)	Mass/le	ength, area or volume
Gypsum Board	15.9		97.8	11.0	kg/m²
Gypsum Board	15.9		97.8	11.0	kg/m²
Flat Strap	1		3.0	0.3	kg/m
Steel Studs	92		50.2	2.1	kg/m
Steel Tracks	92	*	12.6	1.7	kg/m
C Channel Bridging	1	*	1.9	0.5	kg/m
Angle Bracket	1	*	5.0	0.5	kg/piece
Glass Fibre Insulation	92	*	8.5	10.4	kg/m³
Resilient Channels	13		5.6	0.2	kg/m
Gypsum Board	15.9		97.8	11.0	kg/m²
Total	153.7		380.2		

* Element thickness does not contribute to total thickness (i.e. in cavity)

ASTM E90 Test Results – Airborne Sound Transmission Loss

Client:

CSSBI Specimen ID:

A1-005007-25W

Test ID: Date of Test: TLA-14-068 14 October 2014

Volume (m³) Air Temperature (°C) Humidity (%) Room 8.92 m² Area of test specimen: 256.1 22.0 to 22.1 56.4 to 56.7 Large Mass of test specimen: 380.2 kg Small 141.1 19.2 to 19.4 64.5 to 65.9

For a description of the test specimen and mounting conditions see text pages before. The results in this report apply only to the specific sample submitted for measurement. No responsibility is assumed for performance of any other specimen. Airborne sound transmission loss measurements were conducted in accordance with the requirements of ASTM E90-09, "Standard Test Method for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions and Elements."

In the graph:

The solid line is the measured sound transmission loss for this specimen. The dashed line is the STC contour fitted to the measured values according to ASTM E413-10. The dotted line (may be above the displayed range) is 10 dB below the flanking limit established for this facility. For any frequency band where the measured transmission loss is above the dotted line, the reported value is potentially limited by flanking transmission via laboratory surfaces, and the true value may be higher than that measured. Bars at the bottom of the graph show deficiencies where the measured data are less than the reference contour as described in the fitting procedure for the STC, defined in ASTM E413-10. The shaded cells in the table and areas in the graph are outside the STC contour range.

In the table:

Values marked "c" indicate that the measured background level was between 5 dB and 10 dB below the combined receiving room level and background level. The reported values have been corrected according to the procedure outlined in ASTM E90-09. Values marked "*" indicate that the measured background level was less than 5 dB below the combined receiving room level and background level, in which case, the corrected values provide an estimate of the lower limit of airborne sound transmission loss.

This page was intentionally left blank.

Wall assembly 26W: 2G16_SS92(406)_GFB92_RC13(406)_2G16

2) 3) 4) 1 1 5 6 7

Description	Two layers of 15.9 mm (5/8") gypsum board Type X, attached on each side of 92 mm (3-5/8") deep steel studs spaced 406 mm (16") o.c., with resilient channels on one side spaced 406 mm (16") o.c. and 92 mm (3-5/8") deep glass fibre insulation (R-12) in the cavity.
Side 1	 Two layers of 15.9 mm (5/8") gypsum board Type X, installed vertically (2) Base layer attached to the studs using 32 mm (1-1/4") screws (#6 scavenger head) spaced 305 mm (12") o.c. at the perimeter and in the field (1) Face layer attached to base layer and studs using 41 mm (1-5/8") screws (#6 scavenger head) spaced 305 mm (12") o.c. at the perimeter and in the field Screws from base layer to face layer offset by 152 mm (6") Joints of base layer Side 1 gypsum boards staggered by at least one stud spacing from joints of base layer Side 2 gypsum boards Joints of face layer staggered by at least one stud spacing from joints of base layer Gaps along the joints and the perimeter of face layer gypsum boards caulked and taped with aluminum tape
Framing &	 Base track and top track (steel thickness: 1.37 mm/0.054") attached to
Cavity	test frame using four 19 mm (3/4") screws (#10 wafer head)
Insulation	 (3) 92 mm (3-5/8") deep steel C-studs (steel thickness: 1.37 mm/0.054") spaced 406 mm (16") o.c., attached to base track and top track using 19 mm (3/4") screws (#10 pan head) One through-the-knockout bridging channel, attached to each stud
	• Flat-strap steel cross-bracing, attached on Side 1 to each stud using
	 (4) Cavities between studs filled with 406 mm (16") wide by 92 mm (3- 5/8") thick glass fibre insulation (R-12), cut in half to accommodate bridging channel
Side 2	 (5) 13 mm resilient channels installed horizontally using 19 mm (3/4") screws (#10 wafer head), spaced 406 mm (16") o.c. and installed according to ASTM C754-11 Two lowers of 15.0 mm (5/8") gupsum based Tupo X installed variables
	 I wo layers of 15.9 min (5/6) gypsuin board Type A, installed Vertically (6) Base layer attached to resilient channels using 32 mm (1-1/4") scrows
	(#6 scavenger head) spaced 305 mm (12") o.c. at the perimeter and in

the field
• (7) Face layer attached to base layer and resilient channels using 41 mm
(1-5/8") screws (#6 scavenger head) spaced 305 mm (12") o.c. at the perimeter and in the field
 Screws from base layer to face layer offset by 152 mm (6")
• Joints of base layer Side 1 gypsum boards staggered by at least one stud spacing from joints of base layer Side 2 gypsum boards
 Joints of face layer staggered by at least one stud spacing from joints of base layer
• Gaps along the joints and the perimeter of face layer gypsum boards caulked and taped with aluminum tape

Specimen Properties

Element	Actual thickness (mm)	Mass (kg)	Mass/length, area or volume
Gypsum Board	15.9	97.8	11.0 kg/m ²
Gypsum Board	15.9	97.8	11.0 kg/m ²
Flat Strap	1	3.0	0.3 kg/m
Steel Studs	92	50.2	2.1 kg/m
Steel Tracks	92 *	12.6	1.7 kg/m
C Channel Bridging	1 *	1.9	0.5 kg/m
Angle Bracket	1 *	5.0	0.5 kg/piece
Glass Fibre Insulation	92 *	8.5	10.4 kg/m ³
Resilient Channels	13	5.6	0.2 kg/m
Gypsum Board	15.9	97.8	11.0 kg/m ²
Gypsum Board	15.9	97.8	11.0 kg/m ²
Total	169.6	478.0	

* Element thickness does not contribute to total thickness (i.e. in cavity)

ASTM E90 Test Results – Airborne Sound Transmission Loss

Client:

Specimen ID:

CSSBI

A1-005007-26W

Test ID: Date of Test: TLA-14-069 17 October 2014

Volume (m³) Air Temperature (°C) Humidity (%) Room 8.92 m² Area of test specimen: 256.1 20.4 to 20.4 58.8 to 59.4 Large Mass of test specimen: 478.0 kg Small 141.1 19.9 to 19.9 57.7 to 57.9

For a description of the test specimen and mounting conditions see text pages before. The results in this report apply only to the specific sample submitted for measurement. No responsibility is assumed for performance of any other specimen. Airborne sound transmission loss measurements were conducted in accordance with the requirements of ASTM E90-09, "Standard Test Method for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions and Elements."

In the graph:

The solid line is the measured sound transmission loss for this specimen. The dashed line is the STC contour fitted to the measured values according to ASTM E413-10. The dotted line (may be above the displayed range) is 10 dB below the flanking limit established for this facility. For any frequency band where the measured transmission loss is above the dotted line, the reported value is potentially limited by flanking transmission via laboratory surfaces, and the true value may be higher than that measured. Bars at the bottom of the graph show deficiencies where the measured data are less than the reference contour as described in the fitting procedure for the STC, defined in ASTM E413-10. The shaded cells in the table and areas in the graph are outside the STC contour range.

In the table:

Values marked "c" indicate that the measured background level was between 5 dB and 10 dB below the combined receiving room level and background level. The reported values have been corrected according to the procedure outlined in ASTM E90-09. Values marked "*" indicate that the measured background level was less than 5 dB below the combined receiving room level and background level, in which case, the corrected values provide an estimate of the lower limit of airborne sound transmission loss.

This page was intentionally left blank.

Wall assembly 27W: G16_SS92(406)_GFB92_G16

Description	One layer of 15.9 mm (5/8") gypsum board Type X, attached on each side of 92 mm (3-5/8") deep steel studs spaced 406 mm (16") o.c., with 92 mm (3-5/8") deep glass fibre insulation (R-12) in the cavity.
Side 1	 (1) One layer of 15.9 mm (5/8") gypsum board Type X, installed vertically and directly attached to the studs using 32 mm (1-1/4") screws (#6 scavenger head) spaced 305 mm (12") o.c. at the perimeter and in the field Joints of Side 1 gypsum boards staggered by at least one stud spacing from joints of Side 2 gypsum boards Gaps along the joints and the perimeter of gypsum boards caulked and taped with aluminum tape
Framing & Cavity Insulation	 Base track and top track (steel thickness: 1.37 mm/0.054") attached to test frame using four 19 mm (3/4") screws (#10 wafer head) (2) 92 mm (3-5/8") deep steel C-studs (steel thickness: 1.37 mm/0.054") spaced 406 mm (16") o.c., attached to base track and top track using 19 mm (3/4") screws (#10 pan head) One through-the-knockout bridging channel, attached to each stud Flat-strap steel cross-bracing, attached on Side 1 to each stud using 19 mm (3/4") screws (#10 pan head) (3) Cavities between studs filled with 406 mm (16") wide by 92 mm (3-5/8") thick glass fibre insulation (R-12), cut in half to accommodate bridging channel
Side 2	 (4) One layer of 15.9 mm (5/8") gypsum board Type X, installed vertically and directly attached to the studs using 32 mm (1-1/4") screws (#6 scavenger head) spaced 305 mm (12") o.c. at the perimeter and in the field Joints of Side 1 gypsum boards staggered by at least one stud spacing from joints of Side 2 gypsum boards Gaps along the joints and the perimeter of gypsum boards caulked and taped with aluminum tape

Specimen Properties

Element	Actual thickness (mm)	Mass (kg)	Mass/length, area or volume
Gypsum Board	15.9	97.8	11.0 kg/m²
Flat Strap	1	3.0	0.3 kg/m
Steel Studs	92	50.2	2.1 kg/m
Steel Tracks	92 *	12.6	1.7 kg/m
C Channel Bridging	1 *	1.9	0.5 kg/m
Angle Bracket	1 *	5.0	0.5 kg/piece
Glass Fibre Insulation	92 *	8.5	10.4 kg/m³
Gypsum Board	15.9	97.8	11.0 kg/m²
Total	124.8	276.8	

* Element thickness does not contribute to total thickness (i.e. in cavity)

ASTM E90 Test Results – Airborne Sound Transmission Loss

Client:

CSSBI Specimen ID:

A1-005007-27W

Test ID: Date of Test: TLA-14-073 23 October 2014

Volume (m³) Air Temperature (°C) Humidity (%) Room 8.92 m² Area of test specimen: 256.1 19.3 to 19.4 38.6 to 38.8 Large Mass of test specimen: 276.8 kg Small 141.1 19.4 to 19.5 49.7 to 49.9

For a description of the test specimen and mounting conditions see text pages before. The results in this report apply only to the specific sample submitted for measurement. No responsibility is assumed for performance of any other specimen. Airborne sound transmission loss measurements were conducted in accordance with the requirements of ASTM E90-09, "Standard Test Method for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions and Elements."

In the graph:

The solid line is the measured sound transmission loss for this specimen. The dashed line is the STC contour fitted to the measured values according to ASTM E413-10. The dotted line (may be above the displayed range) is 10 dB below the flanking limit established for this facility. For any frequency band where the measured transmission loss is above the dotted line, the reported value is potentially limited by flanking transmission via laboratory surfaces, and the true value may be higher than that measured. Bars at the bottom of the graph show deficiencies where the measured data are less than the reference contour as described in the fitting procedure for the STC, defined in ASTM E413-10. The shaded cells in the table and areas in the graph are outside the STC contour range.

In the table:

Values marked "c" indicate that the measured background level was between 5 dB and 10 dB below the combined receiving room level and background level. The reported values have been corrected according to the procedure outlined in ASTM E90-09. Values marked "*" indicate that the measured background level was less than 5 dB below the combined receiving room level and background level, in which case, the corrected values provide an estimate of the lower limit of airborne sound transmission loss.

This page was intentionally left blank.

Wall assembly 28W: G16_SS152(406)_GFB152_RC13(406)_G16

Description	One layer of 15.9 mm (5/8") gypsum board Type X, attached on each side of 152 mm (6") deep steel studs spaced 406 mm (16") o.c., with resilient channels on one side spaced 406 mm (16") o.c. and 152 mm (6") deep glass fibre insulation (R-20) in the cavity.
Side 1	 (1) One layer of 15.9 mm (5/8") gypsum board Type X, installed vertically, directly attached to the studs using 32 mm (1-1/4") screws (#6 scavenger head) spaced 305 mm (12") o.c. at the perimeter and in the field Joints of Side 1 gypsum boards staggered by at least one stud spacing from joints of Side 2 gypsum boards Gaps along the joints and the perimeter of gypsum boards caulked and taped with aluminum tape
Framing &	• Base track and top track (steel thickness: 1.09 mm/0.043") attached to
Cavity	test frame using four 19 mm (3/4") screws (#10 wafer head)
Insulation	 (2) 152 mm (6") deep steel C-studs (steel thickness: 1.09 mm/0.043") spaced 406 mm (16") o.c., attached to base track and top track using 19 mm (3/4") screws (#10 pan head) One through-the-knockout bridging channel, attached to each stud using 140 mm (5-1/2") bridging clips Flat-strap steel cross-bracing, attached on Side 1 to each stud using 19 mm (3/4") screws (#10 pan head) (3) Cavities between studs filled with 406 mm (16") wide by 152 mm (6") thick glass fibre insulation (R-20), cut in half to accommodate bridging channel
Side 2	 (4) 13 mm resilient channels installed horizontally using 19 mm (3/4") screws (#10 wafer head), spaced 406 mm (16") o.c. and installed according to ASTM C754-11 (5) One layer of 15.9 mm (5/8") gypsum board Type X, installed vertically, attached to resilient channels using 32 mm (1-1/4") screws (#6 scavenger head) spaced 305 mm (12") o.c. at the perimeter and in the field Joints of Side 1 gypsum boards staggered by at least one stud spacing from joints of Side 2 gypsum boards Gaps along the joints and the perimeter of gypsum boards caulked and taped with aluminum tape

Specimen Properties

Element	Actual thickness (mm)	Mass (kg)	Mass/length, area or volume
Gypsum Board	15.9	97.8	11.0 kg/m²
Flat Strap	1	3.0	0.3 kg/m
Steel Studs	152	50.3	2.1 kg/m
Steel Tracks	152 *	16.8	2.4 kg/m
C Channel Bridging	1 *	1.9	0.5 kg/m
Angle Bracket	1 *	10.8	1.1 kg/piece
Glass Fibre Insulation	152 *	12.4	9.2 kg/m ³
Resilient Channels	13	5.6	0.2 kg/m
Gypsum Board	15.9	97.8	11.0 kg/m ²
Total	197.8	296.4	

* Element thickness does not contribute to total thickness (i.e. in cavity)

ASTM E90 Test Results – Airborne Sound Transmission Loss

Client:

CSSBI

Specimen ID: A1-005007-28W

Test ID: Date of Test: TLA-14-074 28 October 2014

Room	Volume (m ³)	Air Temperature (°C)	Humidity (%)		
Large	255.9	19.1 to 19.1	44.0 to 44.5	Area of test specimen:	8.92 m ²
Small	140.6	19.3 to 19.4	42.1 to 42.5	Mass of test specimen:	296.4 kg

For a description of the test specimen and mounting conditions see text pages before. The results in this report apply only to the specific sample submitted for measurement. No responsibility is assumed for performance of any other specimen. Airborne sound transmission loss measurements were conducted in accordance with the requirements of ASTM E90-09, "Standard Test Method for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions and Elements."

In the graph:

The solid line is the measured sound transmission loss for this specimen. The dashed line is the STC contour fitted to the measured values according to ASTM E413-10. The dotted line (may be above the displayed range) is 10 dB below the flanking limit established for this facility. For any frequency band where the measured transmission loss is above the dotted line, the reported value is potentially limited by flanking transmission via laboratory surfaces, and the true value may be higher than that measured. Bars at the bottom of the graph show deficiencies where the measured data are less than the reference contour as described in the fitting procedure for the STC, defined in ASTM E413-10. The shaded cells in the table and areas in the graph are outside the STC contour range.

In the table:

Values marked "c" indicate that the measured background level was between 5 dB and 10 dB below the combined receiving room level and background level. The reported values have been corrected according to the procedure outlined in ASTM E90-09. Values marked "*" indicate that the measured background level was less than 5 dB below the combined receiving room level and background level, in which case, the corrected values provide an estimate of the lower limit of airborne sound transmission loss.

This page was intentionally left blank.

Wall assembly 29W: 2G16_SS152(406)_GFB152_RC13(406)_G16

Description	Two layers of 15.9 mm (5/8") gypsum board Type X, directly attached to one side of 152 mm (6") deep steel studs spaced 406 mm (16") o.c., and one layer of 15.9 mm (5/8") gypsum board Type X attached to resilient channels spaced 406 mm (16") o.c. on the other side and 152 mm (6") deep glass fibre insulation (R-20) in the cavity.
Side 1	 Two layers of 15.9 mm (5/8") gypsum board Type X, installed vertically (2) Base layer attached to the studs using 32 mm (1-1/4") screws (#6 scavenger head) spaced 305 mm (12") o.c. at the perimeter and in the field (1) Face layer attached to base layer and studs using 41 mm (1-5/8") screws (#6 scavenger head) spaced 305 mm (12") o.c. at the perimeter and in the field Screws from base layer to face layer offset by 152 mm (6") Joints of base layer Side 1 gypsum boards staggered by at least one stud spacing from joints of base layer Side 2 gypsum boards Joints of face layer staggered by at least one stud spacing from joints of base layer Side 2 gypsum boards Gaps along the joints and the perimeter of face layer gypsum boards caulked and taped with aluminum tape
Framing & Cavity Insulation	 Base track and top track (steel thickness: 1.09 mm/0.043") attached to test frame using four 19 mm (3/4") screws (#10 wafer head) (3) 152 mm (6") deep steel C-studs (steel thickness: 1.09 mm/0.043") spaced 406 mm (16") o.c., attached to base track and top track using 19 mm (3/4") screws (#10 pan head) One through-the-knockout bridging channel, attached to each stud using 140 mm (5-1/2") bridging clips Flat-strap steel cross-bracing, attached on Side 1 to each stud using 19 mm (3/4") screws (#10 pan head) (4) Cavities between studs filled with 406 mm (16") wide by 152 mm (6") thick glass fibre insulation (R-20), cut in half to accommodate bridging channel
Side 2	 (5) 13 mm resilient channels installed horizontally using 19 mm (3/4") screws (#10 wafer head), spaced 406 mm (16") o.c. and installed according to ASTM C754-11 (6) One layer of 15.9 mm (5/8") gypsum board Type X, installed vertically

and attached to resilient channels using 32 mm (1-1/4") screws (#6				
scavenger head) spaced 305 mm (12") o.c. at the perimeter and in the field				
 Joints of Side 1 gypsum boards staggered by at least one stud spacing from joints of Side 2 gypsum boards 				
• Gaps along the joints and the perimeter of gypsum boards caulked and taped with aluminum tape				

Specimen	Properties
----------	-------------------

Element	Actual thickness (mm)	Mass (kg)	Mass/length, area or volume	
Gypsum Board	15.9	97.8	11.0 kg/m ²	
Gypsum Board	15.9	97.8	11.0 kg/m²	
Flat Strap	1	3.0	0.3 kg/m	
Steel Studs	152	50.3	2.1 kg/m	
Steel Tracks	152 *	16.8	2.4 kg/m	
C Channel Bridging	1 *	1.9	0.5 kg/m	
Angle Bracket	1 *	10.8	1.1 kg/piece	
Glass Fibre Insulation	152 *	12.4	9.2 kg/m ³	
Resilient Channels	13	5.6	0.2 kg/m	
Gypsum Board	15.9	97.8	11.0 kg/m ²	
Total	213.7	394.2		

* Element thickness does not contribute to total thickness (i.e. in cavity)

ASTM E90 Test Results – Airborne Sound Transmission Loss

Client:

Specimen ID:

CSSBI

A1-005007-29W

Test ID: Date of Test: TLA-14-075 31 October 2014

Volume (m³) Air Temperature (°C) Humidity (%) Room 8.92 m² Area of test specimen: 253.4 18.9 to 19.0 32.4 to 32.8 Large Mass of test specimen: 394.2 kg Small 139.0 19.2 to 19.2 38.6 to 40.4

For a description of the test specimen and mounting conditions see text pages before. The results in this report apply only to the specific sample submitted for measurement. No responsibility is assumed for performance of any other specimen. Airborne sound transmission loss measurements were conducted in accordance with the requirements of ASTM E90-09, "Standard Test Method for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions and Elements."

In the graph:

The solid line is the measured sound transmission loss for this specimen. The dashed line is the STC contour fitted to the measured values according to ASTM E413-10. The dotted line (may be above the displayed range) is 10 dB below the flanking limit established for this facility. For any frequency band where the measured transmission loss is above the dotted line, the reported value is potentially limited by flanking transmission via laboratory surfaces, and the true value may be higher than that measured. Bars at the bottom of the graph show deficiencies where the measured data are less than the reference contour as described in the fitting procedure for the STC, defined in ASTM E413-10. The shaded cells in the table and areas in the graph are outside the STC contour range.

In the table:

Values marked "c" indicate that the measured background level was between 5 dB and 10 dB below the combined receiving room level and background level. The reported values have been corrected according to the procedure outlined in ASTM E90-09. Values marked "*" indicate that the measured background level was less than 5 dB below the combined receiving room level and background level, in which case, the corrected values provide an estimate of the lower limit of airborne sound transmission loss.

This page was intentionally left blank.

Wall assembly 30W: 2G16_SS152(406)_GFB152_RC13(406)_2G16

Description	Two layers of 15.9 mm (5/8") gypsum board Type X, attached on each side of 152 mm (6") deep steel studs spaced 406 mm (16") o.c., with resilient channels on one side spaced 406 mm (16") o.c. and 152 mm (6") deep glass fibre insulation (R-20) in the cavity.
Side 1	 Two layers of 15.9 mm (5/8") gypsum board Type X, installed vertically (2) Base layer attached to the studs using 32 mm (1-1/4") screws (#6 scavenger head) spaced 305 mm (12") o.c. at the perimeter and in the field (1) Face layer attached to base layer and studs using 41 mm (1-5/8") screws (#6 scavenger head) spaced 305 mm (12") o.c. at the perimeter and in the field Screws from base layer to face layer offset by 152 mm (6") Joints of base layer Side 1 gypsum boards staggered by at least one stud spacing from joints of base layer Side 2 gypsum boards Joints of face layer staggered by at least one stud spacing from joints of base layer Side 2 gypsum boards Joints of face layer staggered by at least one stud spacing from joints of base layer Side 2 gypsum boards
Framing &	• Base track and top track (steel thickness: 1.09 mm/0.043") attached to
Cavity	test frame using four 19 mm (3/4") screws (#10 wafer head)
Insulation	 (3) 152 mm (6") deep steel C-studs (steel thickness: 1.09 mm/0.043") spaced 406 mm (16") o.c., attached to base track and top track using 19 mm (3/4") screws (#10 pan head) One through-the-knockout bridging channel, attached to each stud using 140 mm (5-1/2") bridging clips Flat-strap steel cross-bracing, attached on Side 1 to each stud using 19 mm (3/4") screws (#10 pan head) (4) Cavities between studs filled with 406 mm (16") wide by 152 mm (6") thick glass fibre insulation (R-20), cut in half to accommodate bridging
Side 2	(5) 12 mm resilient channels installed herizontally using 10 mm (3/4")
Side 2	 (5) TS min resident chamels installed nonzontally using 19 min (3/4) screws (#10 wafer head), spaced 406 mm (16") o.c. and installed according to ASTM C754-11 Two layers of 15.9 mm (5/8") gypsum board Type X installed vertically
	 (6) Base layer attached to resilient channels using 32 mm (1-1/4") screws

	(#6 scavenger head) spaced 305 mm (12") o.c. at the perimeter and in the field
•	(7) Face layer attached to base layer and resilient channels using 41 mm (1-5/8") screws (#6 scavenger head) spaced 305 mm (12") o.c. at the perimeter and in the field
•	Screws from base layer to face layer offset by 152 mm (6")
•	Joints of base layer Side 1 gypsum boards staggered by at least one stud spacing from joints of base layer Side 2 gypsum boards
•	Joints of face layer staggered by at least one stud spacing from joints of base layer
•	Gaps along the joints and the perimeter of face layer gypsum boards caulked and taped with aluminum tape

Specimen Properties

Element	Actual thickness (mm)	Mass (kg)	Mass/length, area or volume
Gypsum Board	15.9	97.8	11.0 kg/m²
Gypsum Board	15.9	97.8	11.0 kg/m²
Flat Strap	1	3.0	0.3 kg/m
Steel Studs	152	50.3	2.1 kg/m
Steel Tracks	152 *	16.8	2.4 kg/m
C Channel Bridging	1 *	1.9	0.5 kg/m
Angle Bracket	1 *	10.8	1.1 kg/piece
Glass Fibre Insulation	152 *	12.4	9.2 kg/m ³
Resilient Channels	13	5.6	0.2 kg/m
Gypsum Board	15.9	97.8	11.0 kg/m ²
Gypsum Board	15.9	97.8	11.0 kg/m ²
Total	229.6	492.0	

* Element thickness does not contribute to total thickness (i.e. in cavity)

ASTM E90 Test Results – Airborne Sound Transmission Loss

Client:

CSSBI Specimen ID:

A1-005007-30W

Test ID: Date of Test: TLA-14-076 31 October 2014

Volume (m³) Air Temperature (°C) Humidity (%) Room 8.92 m² Area of test specimen: 253.4 18.9 to 19.1 32.6 to 32.8 Large Mass of test specimen: 492.0 kg Small 139.0 19.1 to 19.2 42.5 to 43.0

For a description of the test specimen and mounting conditions see text pages before. The results in this report apply only to the specific sample submitted for measurement. No responsibility is assumed for performance of any other specimen. Airborne sound transmission loss measurements were conducted in accordance with the requirements of ASTM E90-09, "Standard Test Method for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions and Elements."

In the graph:

The solid line is the measured sound transmission loss for this specimen. The dashed line is the STC contour fitted to the measured values according to ASTM E413-10. The dotted line (may be above the displayed range) is 10 dB below the flanking limit established for this facility. For any frequency band where the measured transmission loss is above the dotted line, the reported value is potentially limited by flanking transmission via laboratory surfaces, and the true value may be higher than that measured. Bars at the bottom of the graph show deficiencies where the measured data are less than the reference contour as described in the fitting procedure for the STC, defined in ASTM E413-10. The shaded cells in the table and areas in the graph are outside the STC contour range.

In the table:

Values marked "c" indicate that the measured background level was between 5 dB and 10 dB below the combined receiving room level and background level. The reported values have been corrected according to the procedure outlined in ASTM E90-09. Values marked "*" indicate that the measured background level was less than 5 dB below the combined receiving room level and background level, in which case, the corrected values provide an estimate of the lower limit of airborne sound transmission loss.

This page was intentionally left blank.

1.3 Analysis of Results for CFS-Framed Walls

The following sections present a brief analysis of some parameters affecting the sound insulation of wall assemblies with cold-formed steel-framed studs. A more detailed analysis can be found in [3].

1.3.1 Transmission Loss of Reference Assembly

Wall 01W is used as a reference. The assembly consisted of cold-formed steel studs (steel thickness: 1.37 mm/0.054") spaced 406 mm (16") on centres, with resilient channels on one side spaced 406 mm (16") on centres and 152 mm (6") deep glass fibre batts in the wall cavity. The sheathing consisted of one layer of 15.9 mm (5/8") gypsum board type X on each side. The reference assembly achieved a sound transmission class (STC) rating of 49.

Figure 1 shows the measured transmission loss curve of the reference assembly 01W in the frequency range between 50 Hz and 5000 Hz. Only the frequency range between 125 Hz and 4000 Hz is used for the calculation of the STC rating, according to the procedure of ASTM E413 [4].

The transmission loss curve in Figure 1 exhibits the characteristic pattern of double-panel walls. The mass-spring-mass (gypsum board – air/stud – gypsum board) resonance frequency lies in the 80 Hz band. The coincidence dip of the 15.9 mm thick gypsum board occurs in the 2500 Hz band. At the coincidence frequency, the bending wavelength on the gypsum board equals the wavelength in air, leading to very efficient sound radiation. The reference wall assembly falls just short of the minimum requirement for partition walls between dwelling units in the 2010 edition of the National Building Code of Canada, STC 50.

1.3.2 Influence of Sheathing

Adding layers of gypsum board to the reference wall assembly has two effects on the acoustical performance. Most importantly, increasing the mass per area of the gypsum board panels leads to a downward shift of the mass-spring-mass resonance frequency, which in turn leads to higher transmission loss values in the frequency region of interest (125 Hz to 4000 Hz). This is shown in Figure 2, where the transmission loss curves of three wall assemblies with different numbers of gypsum board layers are presented. The mass-spring-mass resonance frequency shifts from the 80 Hz band (Wall 04W with one layer of gypsum board on each side) into the 63 Hz band (Wall 05W with one layer of gypsum board on one side and two layers on the other side) and further into the 50 Hz band (Wall 06W with two layers of gypsum board on each side). Each additional layer of gypsum board increases the STC rating by 4 points. For wall assemblies without cavity insulation, the improvement in STC is slightly higher, with 5 points per additional layer (see Figure 4). For wall assemblies without resilient channels, the improvement in STC is only 3 points per additional layer (Figure 5). For walls with 92 mm studs, the improvement is 6 points per additional layer (Figure 6).

Figure 2: Influence of the layers of gypsum board on the transmission loss

The second effect of changing the sheathing affects the transmission loss curve in the region of the coincidence frequency. The coincidence frequency of a gypsum board wall assembly depends on the density of the gypsum board (i.e. on thickness and mass per area) and on its bending stiffness. This is illustrated in Figure 3, where the transmission loss for two walls with identical framing members (and with resilient channels and cavity insulation) but different types of gypsum board is shown: Wall 02W had 15.9 mm (5/8") thick gypsum board panels with a mass per area of 11.0 kg/m², and Wall 03W had 12.7 mm (1/2") thick gypsum board panels with a mass per area of 10.0 kg/m². The transmission loss of the two walls is very similar, except in the region of the coincidence frequency. Due to the slightly different mass of the boards, the mass-spring-mass resonance shifts down a little. Due to the thinner gypsum board, the coincidence frequency for Wall 03W is higher than the coincidence frequency of Wall 02W. In this case, the effect on the STC rating is small - Wall 02W has an STC rating of 58 and Wall 03W has an STC rating of 57. It should be noted that the coincidence frequency of a gypsum board wall does not depend on the number of layers of gypsum board. Adding a layer of gypsum board does not yield a coincidence frequency equal to that of a single board with double the thickness (31.8mm), as might be expected. This is because the two gypsum boards are only point-connected, and acoustical waves still propagate through them independently. On the other hand, additional layers of gypsum board may have an effect on the damping of the board, and therefore on the depth of the coincidence frequency dip. This can be observed in Figure 2, where the coincidence dip for Wall 04W is much deeper than the coincidence dip for Wall 06W. Since the STC value can sometimes be limited by this dip (especially due to the 8 dB rule in ASTM E413), changing the damping of the sheathing can be of benefit in these cases.

Figure 3: Influence of the type of gypsum board on the coincidence frequency

Figure 4 shows the effect of changing the sheathing for a wall assembly with resilient channels, but without cavity insulation. Once again, the mass-spring-mass resonance frequency shifts down for additional layers of gypsum board, as in Figure 2. However, this time the improvement in transmission loss is about 5 dB across the frequency range for one additional layer (Wall 08W and Wall 10W), and 10 dB on average for two additional layers (Wall 09W). The STC values change from STC 42 to STC 47/48 and STC 53. Adding additional layers of gypsum board is therefore even more beneficial for walls without insulation in the cavity. This is to be expected, as it is generally easier to improve an assembly with lower sound insulation than one that already performs well.

Figure 4 also shows that for the direct sound transmission through a partition wall it is of minor importance on which side of the assembly the additional layer of gypsum board is attached. The transmission loss curves for Wall 08W and Wall 10W are within 1 dB of each other for most of the frequency range of interest.

Figure 4: Influence of the layers of gypsum board for walls without cavity insulation

Figure 5 shows the effect of changing the sheathing for a wall assembly with cavity insulation but without resilient channels. In this case, the three transmission loss curves are merely shifted upwards. The mass-spring-mass frequency is not visibly affected by the change in sheathing. The STC rating improves by 3 points for each additional layer of gypsum board – from STC 42 to STC 45 to STC 48. None of the three wall assemblies meets the requirements of the 2010 edition of the National Building Code, STC 50. This shows that resilient channels are a required element when designing loadbearing steel stud walls between dwelling units in mid-rise constructions.

Figure 5: Influence of the layers of gypsum board for walls without resilient channels

Figure 6 shows the effect of changing the sheathing for a wall assembly with 92 mm deep coldformed steel-framed studs (and with cavity insulation and resilient channels). The observed changes are very similar to the changes for the walls with 152 mm deep studs in Figure 2: The mass-spring-mass frequency shifts down with increasing layers of gypsum board, and the transmission loss curve above the mass-spring-mass frequency shifts up. In this case, the improvement in STC ratings is slightly higher than in Figure 2. The STC rating improves from 45 (for one layer of gypsum board on each side) to 52 (for one layer on one side and two layers on the other side) and 57 (for two layers on each side).

Figure 6: Influence of the layers of gypsum board for 92 mm deep walls

1.3.3 Influence of Cavity Insulation

Figure 7 shows the transmission loss curves for three wall assemblies with resilient channels, one layer of 15.9 mm (5/8") gypsum board Type X on each side, and varying cavity insulation. The improvement from the wall without cavity insulation to the walls with cavity insulation is quite significant. The STC rating changes from STC 42 for Wall 07W to STC 49 for Wall 01W and Wall 04W. The transmission loss curves improve by about 7 dB on average between 125 Hz and 2500 Hz.

The thickness of the cavity insulation appears to be of minor significance. The STC values for Wall 01W (152 mm deep glass fibre batts) and Wall 07W (89 mm deep glass fibre batts) are the same, and the transmission loss values are within 1.5 dB for most of the frequency range of interest.

Figure 7: Influence of cavity insulation

1.3.4 Influence of Resilient Channels

Figure 8 shows the influence of resilient channels for a wall assembly with one layer of 15.9 mm (5/8") gypsum board type X on each side, and 152 mm deep glass fibre insulation in the cavity. The STC value increases from STC 42 for Wall 11W to STC 49 for Wall 01W when adding resilient channels on one side. The resonance frequency is shifted from the 100 Hz one-third octave band into the 80 Hz one-third octave band, resulting in an improvement in transmission loss of about 5 dB on average between 100 Hz and 250 Hz. Above 250 Hz, a further effect is observed: if the resilient channels are removed, the two sides of the assembly are no longer decoupled from each other, and structural transmission via the studs becomes important.

Figure 8: Influence of resilient channels

1.3.5 Influence of Stud Spacing

The stud spacing is often determined by structural and/or fire resistance considerations. The smaller the stud spacing, the stronger the wall will be structurally, and the higher will be the fire resistance. These considerations are particularly important for mid-rise buildings. For sound insulation performance, a larger stud spacing is desirable, to decrease the number of studs and thereby limit the structural transmission, and to decrease the stiffness of the entire wall assembly. Two different stud spacings were investigated in this study: 406 mm (16") on centres and 610 mm (24") on centres. The results are shown in Figure 9, for walls with two layers of gypsum board on each side (and resilient channels and cavity insulation). The change in stud spacing has a notable effect on the transmission loss curves. It increases over the entire frequency of interest. The STC increases by 1 point.

Figure 9: Influence of stud spacing
1.3.6 Influence of Stud Depth

Figure 10 shows the influence of the stud depth. Two stud depths were investigated: 152 mm (6") and 92 mm (3-5/8"). For both types of stud, the stud spacing and the steel thickness was the same (406 mm on centres and 1.37 mm, respectively). As would be expected, decreasing the stud depth decreases the sound insulation performance. The smaller air gap between the two sides leads to an upward shift of the mass-spring-mass resonance frequency. The STC value drops from 49 for 152 mm studs to 45 for 92 mm studs. If more layers of gypsum board are used, the change between walls with different stud depth gets smaller (not shown). The influence of the stud depth was not investigated for wall assemblies without resilient channels.

Figure 10: Influence of stud depth

1.3.7 Influence of Steel Thickness

The walls investigated in this study were steel stud walls, intended to be loadbearing walls in mid-rise constructions. The studs in the reference wall assembly and in all the walls presented so far had a steel thickness of 1.37 mm (0.054"). Several walls with slightly thinner steel thickness were tested as well, namely 1.09 mm (0.043"). Figure 11 shows the transmission loss of the reference assembly and of the same wall with studs with smaller steel thickness. There are some differences between the curves, but they are not very significant. The STC value improves by 1 point for the wall with thinner steel thickness. While the observed effects between walls with different stud steel thickness are not very significant for the cases studied, it is expected that using studs with thinner steel (e.g. typical non-loadbearing steel studs) would show more pronounced effects. Also, the differences between walls with studs of different steel thickness will likely be larger for walls without resilient channels, but this was not investigated as part of this study.

Figure 11: Influence of the steel thickness of the wall studs

1.3.8 Influence of Flat Straps and Bridging Channels

The influence of the flat straps and the bridging channels used for bracing against lateral and shear loads on the direct sound insulation performance was investigated using wall assemblies with 92 mm (3-5/8") deep studs. The transmission loss was measured three times for the same wall: with flat straps and bridging channels, with bridging channels but with flat straps removed, and without flat straps and bridging channels. As shown in Figure 12, the measurements yielded the same results in each case. Since there is no observable effect for the wall with 92 mm deep studs, it is anticipated that there will also be no observable effect for walls with a deeper cavity. It can be concluded that flat strap bracing and bridging channels have no significant effect on the direct sound transmission of the cold-formed steel-framed walls under investigation.

Figure 12: Influence of flat straps and bridging channels

2. Sound Insulation of CFS-Framed Floors

The sound insulation properties of 17 cold-formed steel-framed floor assemblies for mid-rise construction were measured in the NRC Construction Floor Sound Transmission Facility, in accordance with the requirements of ASTM E90-09 [2] and ASTM E492-09 [5]. The facility and the test methods are described in Appendix B and Appendix C.

The first floor that was tested was chosen as reference assembly. It was constructed from 254 mm (10") deep cold-formed steel joists spaced 406 mm (16") on centres, with a corrugated steel deck and 38 mm (1-1/2") thick lightweight gypsum concrete on top. The ceiling consisted of one layer of 15.9 mm (5/8") gypsum board type X attached to resilient channels spaced 305 mm (12") on centres, with 92 mm (3-5/8") thick glass fibre batts resting on the resilient channels in the joist cavities. The floor also included blocking strips, installed at the centre of the joists between the two last joists on each end and between the two joists in the floor centre, and a steel strap connecting the three blocking strips with each other and with the other joists. The reference assembly achieved a Sound Transmission Class (STC) rating of 57 and an Impact Insulation Class (IIC) rating of 21.

Based on the reference assembly described above, a parametric study was conducted to investigate the importance of various floor members. The following parameters were examined: the joist depth, the gypsum board ceiling, and various floor coverings.

This section is divided into three parts:

Section 2.1 provides a tabulated overview of the floor assemblies that were tested as part of this study. Table 4 contains short descriptions and drawings of all floor assemblies together with their measured STC and IIC ratings and a reference to the page where the detailed test reports can be found.

Section 2.2 provides the detailed test reports which list the construction details, material properties, test conditions, and test results for each specimen.

Section 2.4 provides brief analyses of parameters affecting the sound insulation of cold-formed steel-framed floor assemblies.

2.1 Overview of Tested Floor Assemblies

Table 4 provides an overview of all floor assemblies that were tested as part of this study. Each row contains the specimen identifier, a sketch and a short code describing the specimen, the measured Sound Transmission Class (STC) and Impact Insulation Class (IIC) ratings of the specimen, and the page number where the detailed test reports can be found.

A coding system is used in the table to avoid long descriptions of the floor constructions. Each surface layer in a floor is coded as follows:

- An integer representing the number of layers of material; if the number of layers is one, the leading 1 is omitted
- A sequence of letters to indicate the material in the layer (see Table 3 below)
- A number representing the thickness in mm of each sheet or element in the layer
- Underscores separating the codes for each layer

The coding system is also applied to elements that do not constitute surface layers such as joists, studs, and resilient metal channels. For such elements, the number following the letters is the depth of each element (the dimension along the axis perpendicular to the surface of the assembly) and the number in parentheses following the depth code is the separation between adjacent elements.

Code	Material
LAMxx	Laminate flooring "xx" mm thick
CARxx	Carpet "xx" mm thick
VINxx	Vinyl flooring "xx" mm thick
STYxx	Styrofoam bead underlay "xx" mm thick
UDLYxx	Carpet pad "xx" mm thick
GCONxx	Lightweight gypsum concrete with nominal thickness of "xx" mm, measured from the bottom of the corrugated steel deck
CORSTExx	Corrugated steel deck with nominal depth of "xx" mm
SJxx(ss)	Cold-formed steel (CFS) joists with nominal depth of "xx" mm, spaced "ss" mm on centres
GFBxx	Glass fibre batts "xx" mm thick
RCxx(ss)	Resilient metal channels with nominal depth of "xx" mm, spaced "ss" mm on centres
Gxx	Gypsum board "xx" mm thick

Table 3: Examples of the codes used to identify materials and describe constructions

Note that the coding system is a convenience and actual dimensions may not be exactly as coded. For example, the nominal 16 mm thick gypsum board would be labelled by the manufacturer as 5/8" or 15.9 mm thick.

For brevity, not all pertinent parameters are included in the short codes. For example, the thickness of the steel in the CFS joists is not indicated. This information is given separately in the specimen descriptions in Section 2.2.

Figure 13 shows a cross-section of the reference floor assembly, with a detailed cut-out showing the dimensions of the corrugated steel deck with gypsum concrete subfloor.

Figure 13: Cross-section of the reference floor assembly, with detailed cut-out of the corrugated steel deck with gypsum concrete subfloor

Specimen	Sketch and Short Code	STC	IIC	Page
A1-005007-01F	GCON38_CORSTE14_SJ254(406)_GFB92_RC13(305)_G16	57	21	146
A1-005007-02F	GCON38_CORSTE14_SJ254(406)_GFB92_RC13(305)_2G16	60	26	150
A1-005007-03F	LAM10_STY3_GCON38_CORSTE14_SJ254(406)_GFB92_RC13(305)_2G16	62	55	154
A1-005007-04F	LAM10_STY3_GCON38_CORSTE14_SJ254(406)_GFB92_RC13(305)_G16	58	50	158
A1-005007-05F	CAR11_UDLY9_GCON38_CORSTE14_SJ254(406)_GFB92_RC13(305)_G16	58	67	162
A1-005007-06F	CAR11_UDLY9_GCON38_CORSTE14_SJ254(406)_GFB92_RC13(305)_2G16	61	70	166
A1-005007-07F	VIN2_GCON38_CORSTE14_SJ254(406)_GFB92_RC13(305)_2G16	59	54	170

Table 4: List of Floor Assemblies

Specimen	Sketch and Short Code	STC	IIC	Page
A1-005007-08F	VIN2_GCON38_CORSTE14_SJ254(406)_GFB92_RC13(305)_G16	55	50	174
A1-005007-09F	GCON38_CORSTE14_SJ254(406)_GFB92_RC13(305)_G13	56	18	178
A1-005007-10F	GCON38_CORSTE14_SJ254(406)_GFB92_RC13(305)_2G13	60	24	182
A1-005007-11F	GCON38_CORSTE14_SJ317(406)_GFB92_RC13(305)_G16	56	20	186
A1-005007-12F	LAM10_STY3_GCON38_CORSTE14_SJ317(406)_GFB92_RC13(305)_G16	58	49	190
A1-005007-13F	LAM10_STY3_GCON38_CORSTE14_SJ317(406)_GFB92_RC13(305)_2G16	62	54	194
A1-005007-14F	GCON38_CORSTE14_SJ317(406)_GFB92_RC13(305)_2G16	60	26	198

Specimen	Sketch and Short Code	STC	IIC	Page
A1-005007-15F	GCON38_CORSTE14_SJ317(406)_GFB92_RC13(305)_G16	57	N/A	202
A1-005007-16F	VIN2_GCON38_CORSTE14_SJ317(406)_GFB92_RC13(305)_G16	55	47	206
A1-005007-17F	VIN2_GCON38_CORSTE14_SJ317(406)_GFB92_RC13(305)_G16	57	48	210

2.2 Detailed Test Reports

The following pages contain the detailed test reports for the 17 floor assemblies that were tested as part of this study. Each report presents the detailed specimen descriptions, material properties, test conditions, and test results.

Floor assembly 01F: GCON38_CORSTE14_SJ254(406)_GFB92_RC13(305)_G16

Description 38 mm poured lightweight gypsum concrete on corrugated steel deck, attached to 254 mm deep steel joists spaced 406 mm o.c., with two layers of 15.9 mm gypsum board Type X, attached to resilient channels spaced 305 mm o.c., and 92 mm deep glass fibre insulation (R-12) in the cavity.

Topping	None
Subfloor	 (1) 38 mm (1-1/2") nominal poured lightweight gypsum concrete, measured from the bottom of the flute, on corrugated steel deck (corrugation: 14 mm (9/16"), steel thickness: 0.76 mm (0.030")) (2) Steel deck attached to joists using 19 mm (3/4") screws (#10 hex washer head) spaced 203 mm (8") o.c.
Framing &	 Framing headers resting on test frame (steel thickness: 1.37 mm (0.054"))
Cavity	• (3) 254 mm (10") deep steel C-joists (steel thickness: 1.37 mm (0.054")) spaced
Insulation	406 mm (16") o.c., attached to headers using bearing stiffeners and 19 mm (3/4")
	screws (#10 wafer head) through top of header into joists
	• 203 mm (8") blocking strips, installed at the centre of the joists between the two last
	joists on each end and between the two joists in the floor centre
	 Flat strap connecting blocking strips, attached to the bottom of each joist
	• (4) Cavities between joists filled with 406 mm (16") wide by 92 mm (3-5/8") thick
	glass fibre insulation (R-12), resting on resilient channels
Ceiling	• (5) 13 mm resilient channels, spaced 305 mm (12") o.c., installed perpendicularly to
	the joists and attached to each joist using 19 mm (3/4") screws (#10 wafer head)
	• (6) One layer of 15.9 mm (5/8") gypsum board Type X, long side installed
	perpendicularly to resilient channels, attached using 32 mm (1-1/4") screws (#6
	scavenger head) spaced 305 mm (12") o.c.
	• Gaps along the joints and the perimeter of gypsum boards caulked and taped with
	aluminum tape

Element	Actual thickness (mm)	Mass (kg)	Mass/length, area or volume
Gypsum Concrete (24.3 MPa)	40	1260.0	1944.0 kg/m ³
Corrugated Steel Deck	14 *	147.4	6.9 kg/m ²
Steel Joists	254	224.6	3.9 kg/m
Web Stiffeners	254 **	12.0	1.9 kg/m
Glass Fibre Insulation	92 **	16.6	0.9 kg/m ²
Flat Strap	1 **	1.4	0.3 kg/m
Resilient Channels	13	14.4	0.2 kg/m
Gypsum Board	16	197.7	11.1 kg/m ²
Total	323	1874	

* Corrugated steel deck thickness already included in gypsum concrete thickness

** Element thickness does not contribute to total thickness (ie. in cavity)

- The exposed area of the floor specimen used for the calculations of the airborne sound transmission loss was 17.85 m^2 (4.71 m x 3.79 m).
- The total area of the floor assembly resting on top of the lip was 19.32 m^2 (4.88 m x 3.96 m).
- The mass per area of the elements above the lip was calculated using the total area (19.32 m²).
- The mass per area of the ceiling elements was calculated using the exposed area (17.85 m²).

ASTM E90 Test Results – Airborne Sound Transmission Loss

Client:

CSSBI Specimen ID: A1-005007-01F

Test ID: Date of Test: TLF-14-050 10 September 2014

Room	Volume (m ³)	Air Temperature (°C)	Humidity (%)		
Upper	174.0	19.3 to 19.3	54.1 to 57.9	Area of test specimen:	17.85 m ²
Lower	176.6	18.5 to 18.6	50.2 to 50.8	Mass of test specimen:	1874 kg

For a description of the test specimen and mounting conditions see text pages before. The results in this report apply only to the specific sample submitted for measurement. No responsibility is assumed for performance of any other specimen. Airborne sound transmission loss measurements were conducted in accordance with the requirements of ASTM E90-09, "Standard Test Method for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions and Elements."

In the graph:

The solid line is the measured sound transmission loss for this specimen. The dashed line is the STC contour fitted to the measured values according to ASTM E413-10. The dotted line (may be above the displayed range) is the flanking limit established for this facility. For any frequency band where the measured transmission loss is above the dotted line, the reported value is potentially limited by flanking transmission via laboratory surfaces, and the true value may be higher than that measured. Bars at the bottom of the graph show deficiencies where the measured data are less than the reference contour as described in the fitting procedure for the STC, defined in ASTM E413-10. The shaded cells in the table and areas in the graph are outside the STC contour range.

In the table:

Values marked "c" indicate that the measured background level was between 5 dB and 10 dB below the combined receiving room level and background level. The reported values have been corrected according to the procedure outlined in ASTM E90-09. Values marked "*" indicate that the measured background level was less than 5 dB below the combined receiving room level and background level, in which case, the corrected values provide an estimate of the lower limit of airborne sound transmission loss.

ASTM E492 Test Results – Normalized Impact Sound Pressure Levels

Client:

CSSBI

Specimen ID: A1-005007-01F

Test ID: Date of Test: IIF-14-022 23 September 2014

Room	Volume (m ³)	Air Temperature (°C)	Humidity (%)		
Upper	174.0	19.4 to 19.6	63.4 to 64.2	Area of test specimen:	17.85 m ²
Lower	176.6	18.5 to 18.5	51.0 to 51.5	Mass of test specimen:	1874 kg

For a description of the test specimen and mounting conditions see text pages before. The results in this report apply only to the specific sample submitted for measurement. No responsibility is assumed for performance of any other specimen. Measurements of normalized impact sound pressure level (NISPL) were conducted in accordance with the requirements of ASTM E492-09, "Standard Laboratory Measurement of Impact Sound Transmission through Floor-Ceiling Assemblies Using the Tapping Machine".

In the graph:

The solid line is the measured normalized impact sound pressure level (NISPL) for this specimen. The dashed line is the IIC contour fitted to the measured values according to ASTM E989-06. The dotted line is the background sound level measured in the receiving room during this test (may be below the displayed range). For any frequency where the measured NISPL is less than 10 dB above the dotted line, the reported values were adjusted as noted below. Bars at the bottom of the graph show positive differences; where the measured data are greater than the reference contour as defined in ASTM E989-06. Shaded cells in the table and areas in the graph are outside the IIC contour range.

In the table:

Values marked "c" indicate that the measured background level was between 5 dB and 10 dB below the combined receiving room level and background level. Values marked "*" indicate that the measured background level was less than 5 dB below the combined receiving room level and background level and the reported values of NISPL provide an estimate of the upper limit of normalized impact sound pressure level, according to the procedure outlined in ASTM E492-09. The reported values of NISPL have been corrected according to the procedure outlined in ASTM E492-09.

Floor assembly 02F: GCON38_CORSTE14_SJ254(406)_GFB92_RC13(305)_2G16

Description	38 mm poured lightweight gypsum concrete on corrugated steel deck, attached to 254 mm deep steel joists spaced 406 mm o.c., with two layers of 15.9 mm gypsum board Type X, attached to resilient channels spaced 305 mm o.c., and 92 mm deep glass fibre insulation (R-12) in the cavity.							
Topping	None							
Subfloor	 (1) 38 mm (1-1/2") nominal poured lightweight gypsum concrete, measured from the bottom of the flute, on corrugated steel deck (corrugation: 14 mm (9/16"), steel thickness: 0.76 mm (0.030")) (2) Steel deck attached to joists using 19 mm (3/4") screws (#10 hex washer 							
Eroming 9	head) spaced 203 mm (8") o.c.							
Cavity Insulation	 Framing headers resting on test frame (steel thickness: 1.37 mm (0.054")) (3) 254 mm (10") deep steel C-joists (steel thickness: 1.37 mm (0.054")) spaced 406 mm (16") o.c., attached to headers using bearing stiffeners and 19 mm (3/4") screws (#10 wafer head) through top of header into joists 							
	 203 mm (8") blocking strips, installed at the centre of the joists between the two last joists on each end and between the two joists in the floor centre Flat strap connecting blocking strips, attached to the bottom of each joist 							
	• (4) Cavities between joists filled with 406 mm (16") wide by 92 mm (3-5/8") thick glass fibre insulation (R-12), resting on resilient channels							
Ceiling	• (5) 13 mm resilient channels, spaced 305 mm (12") o.c., installed perpendicularly to the joists and attached to each joist using 19 mm (3/4") screws (#10 wafer head)							
	• (6) Two layers of 15.9 mm (5/8") gypsum board Type X installed with long side perpendicular to resilient channels							
	• Face layer attached using 41 mm (1-5/8") screws (#6 scavenger head) spaced 305 mm (12") o.c. along the perimeter and in the field							
	 Base layer attached using 32 mm (1-1/4") screws (#6 scavenger head) spaced 305 mm (12") o.c. along the perimeter and in the field 							
	 Screws from base layer to face layer offset by 152 mm (6") 							
	• Gaps along the joints and the perimeter of gypsum boards caulked and taped with aluminum tape							

Element	Actual thick (mm)	kness	Mass (kg)	Mass/length,	area or volume
Gypsum Concrete (24.3 MPa)	40		1260.0	1944.0	kg/m³
Corrugated Steel Deck	14 *		147.4	6.9	kg/m²
Steel Joists	254		224.6	3.9	kg/m
Web Stiffeners	254 *	*	12.0	1.9	kg/m
Glass Fibre Insulation	92 *	*	16.6	0.9	kg/m²
Flat Strap	1 *	*	1.4	0.3	kg/m
Resilient Channels	13		14.4	0.2	kg/m
Gypsum Board	16		197.7	11.1	kg/m²
Gypsum Board	16		197.7	11.1	kg/m²
Total	339		2072		

* Corrugated steel deck thickness already included in gypsum concrete thickness

** Element thickness does not contribute to total thickness (ie. in cavity)

- The exposed area of the floor specimen used for the calculations of the airborne sound • transmission loss was 17.85 m² (4.71 m x 3.79 m).
- The total area of the floor assembly resting on top of the lip was 19.32 m² (4.88 m x 3.96 m).
- The mass per area of the elements above the lip was calculated using the total area (19.32 m²).
- The mass per area of the ceiling elements was calculated using the exposed area (17.85 m²). •

ASTM E90 Test Results – Airborne Sound Transmission Loss

Client:

CSSBI Specimen ID:

A1-005007-02F

Test ID: Date of Test: TLF-14-046 15 September 2014

Room Volume (m³) Air Temperature (°C) Humidity (%) 17.85 m² Area of test specimen: 174.0 20.9 to 20.9 58.7 to 61.4 Upper Mass of test specimen: 2072 kg Lower 176.3 19.5 to 19.5 59.7 to 59.7

For a description of the test specimen and mounting conditions see text pages before. The results in this report apply only to the specific sample submitted for measurement. No responsibility is assumed for performance of any other specimen. Airborne sound transmission loss measurements were conducted in accordance with the requirements of ASTM E90-09, "Standard Test Method for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions and Elements."

In the graph:

The solid line is the measured sound transmission loss for this specimen. The dashed line is the STC contour fitted to the measured values according to ASTM E413-10. The dotted line (may be above the displayed range) is the flanking limit established for this facility. For any frequency band where the measured transmission loss is above the dotted line, the reported value is potentially limited by flanking transmission via laboratory surfaces, and the true value may be higher than that measured. Bars at the bottom of the graph show deficiencies where the measured data are less than the reference contour as described in the fitting procedure for the STC, defined in ASTM E413-10. The shaded cells in the table and areas in the graph are outside the STC contour range.

In the table:

Values marked "c" indicate that the measured background level was between 5 dB and 10 dB below the combined receiving room level and background level. The reported values have been corrected according to the procedure outlined in ASTM E90-09. Values marked "*" indicate that the measured background level was less than 5 dB below the combined receiving room level and background level, in which case, the corrected values provide an estimate of the lower limit of airborne sound transmission loss.

ASTM E492 Test Results – Normalized Impact Sound Pressure Levels

Client:

CSSBI Specimen ID: A1-005007-02F

Test ID: Date of Test: IIF-14-020 15 September 2014

Volume (m³) Air Temperature (°C) Humidity (%) Room 17.85 m² Area of test specimen: 174.0 20.8 to 21.1 53.3 to 55.3 Upper Mass of test specimen: 2072 kg Lower 176.3 19.6 to 19.7 59.3 to 60.1

For a description of the test specimen and mounting conditions see text pages before. The results in this report apply only to the specific sample submitted for measurement. No responsibility is assumed for performance of any other specimen. Measurements of normalized impact sound pressure level (NISPL) were conducted in accordance with the requirements of ASTM E492-09, "Standard Laboratory Measurement of Impact Sound Transmission through Floor-Ceiling Assemblies Using the Tapping Machine".

In the graph:

The solid line is the measured normalized impact sound pressure level (NISPL) for this specimen. The dashed line is the IIC contour fitted to the measured values according to ASTM E989-06. The dotted line is the background sound level measured in the receiving room during this test (may be below the displayed range). For any frequency where the measured NISPL is less than 10 dB above the dotted line, the reported values were adjusted as noted below. Bars at the bottom of the graph show positive differences; where the measured data are greater than the reference contour as defined in ASTM E989-06. Shaded cells in the table and areas in the graph are outside the IIC contour range.

In the table:

Values marked "c" indicate that the measured background level was between 5 dB and 10 dB below the combined receiving room level and background level. Values marked "*" indicate that the measured background level was less than 5 dB below the combined receiving room level and background level and the reported values of NISPL provide an estimate of the upper limit of normalized impact sound pressure level, according to the procedure outlined in ASTM E492-09. The reported values of NISPL have been corrected according to the procedure outlined in ASTM E492-09.

Floor assembly 03F: LAM10_STY3_GCON38_CORSTE14_SJ254(406)_GFB92_RC13(305)_2G16

Description	10 mm laminate flooring on 3 mm styrofoam bead underlay on 38 mm poured lightweight gypsum concrete on corrugated steel deck, attached to 254 mm deep steel joists spaced 406 mm o.c., with two layers of 15.9 mm gypsum board Type X, attached to resilient channels spaced 305 mm o.c., and 92 mm deep glass fibre
	insulation (R-12) in the cavity.
Topping	• (1) 10 mm glueless laminate installed on 3 mm (1/8") styrofoam bead underlay
Subfloor	 (2) 38 mm (1-1/2") nominal poured lightweight gypsum concrete, measured from the bottom of the flute, on corrugated steel deck (corrugation: 14 mm (9/16"), steel thickness: 0.76 mm (0.030")) (3) Steel deck attached to joists using 19 mm (3/4") screws (#10 hex washer
	head) spaced 203 mm (8") o.c.
Framing &	• Framing headers resting on test frame (steel thickness: 1.37 mm (0.054"))
Cavity Insulation	• (4) 254 mm (10") deep steel C-joists (steel thickness: 1.37 mm (0.054")) spaced 406 mm (16") o.c., attached to headers using bearing stiffeners and 19 mm (3/4") screws (#10 wafer head) through top of header into joists
	• 203 mm (8") blocking strips, installed at the centre of the joists between the two last joists on each end and between the two joists in the floor centre
	 Flat strap connecting blocking strips, attached to the bottom of each joist
	• (5) Cavities between joists filled with 406 mm (16") wide by 92 mm (3-5/8") thick glass fibre insulation (R-12), resting on resilient channels
Ceiling	• (6) 13 mm resilient channels, spaced 305 mm (12") o.c., installed perpendicularly to the joists and attached to each joist using 19 mm (3/4") screws (#10 wafer head)
	• (7) Two layers of 15.9 mm (5/8") gypsum board Type X installed with long side perpendicular to resilient channels
	• Face layer attached using 41 mm (1-5/8") screws (#6 scavenger head) spaced 305 mm (12") o.c. along the perimeter and in the field
	• Base layer attached using 32 mm (1-1/4") screws (#6 scavenger head) spaced 305 mm (12") o.c. along the perimeter and in the field
	 Screws from base layer to face layer offset by 152 mm (6")
	• Gaps along the joints and the perimeter of gypsum boards caulked and taped with aluminum tape

Element	Actual thickness (mm)	Mass (kg)	Mass/length, area or volume
Laminate Flooring	10	162.7	8.3 kg/m ²
Styrofoam Bead Underlay	3	2.9	0.2 kg/m ²
Gypsum Concrete (24.3 MPa)	40	1260.0	1944.0 kg/m ³
Corrugated Steel Deck	14 *	147.4	6.9 kg/m ²
Steel Joists	254	224.6	3.9 kg/m
Web Stiffeners	254 **	12.0	1.9 kg/m
Glass Fibre Insulation	92 **	16.6	0.9 kg/m ²
Flat Strap	1 **	1.4	0.3 kg/m
Resilient Channels	13	14.4	0.2 kg/m
Gypsum Board	16	197.7	11.1 kg/m ²
Gypsum Board	16	197.7	11.1 kg/m ²
Total	352	2237	

* Corrugated steel deck thickness already included in gypsum concrete thickness

** Element thickness does not contribute to total thickness (ie. in cavity)

- The exposed area of the floor specimen used for the calculations of the airborne sound transmission loss was 17.85 m^2 (4.71 m x 3.79 m).
- The total area of the floor assembly resting on top of the lip was 19.32 m^2 (4.88 m x 3.96 m).
- The mass per area of the elements above the lip was calculated using the total area (19.32 m²).
- The mass per area of the ceiling elements was calculated using the exposed area (17.85 m²).

ASTM E90 Test Results – Airborne Sound Transmission Loss

Client:

CSSBI

Specimen ID: A1-005007-03F

Test ID: Date of Test: TLF-14-047 16 September 2014

Room	Volume (m ³)	Air Temperature (°C)	Humidity (%)		
Upper	173.7	20.6 to 21.0	53.6 to 54.6	Area of test specimen:	17.85 m ²
Lower	176.3	19.2 to 19.3	59.5 to 59.6	Mass of test specimen:	2237 kg

For a description of the test specimen and mounting conditions see text pages before. The results in this report apply only to the specific sample submitted for measurement. No responsibility is assumed for performance of any other specimen. Airborne sound transmission loss measurements were conducted in accordance with the requirements of ASTM E90-09, "Standard Test Method for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions and Elements."

In the graph:

The solid line is the measured sound transmission loss for this specimen. The dashed line is the STC contour fitted to the measured values according to ASTM E413-10. The dotted line (may be above the displayed range) is the flanking limit established for this facility. For any frequency band where the measured transmission loss is above the dotted line, the reported value is potentially limited by flanking transmission via laboratory surfaces, and the true value may be higher than that measured. Bars at the bottom of the graph show deficiencies where the measured data are less than the reference contour as described in the fitting procedure for the STC, defined in ASTM E413-10. The shaded cells in the table and areas in the graph are outside the STC contour range.

In the table:

Values marked "c" indicate that the measured background level was between 5 dB and 10 dB below the combined receiving room level and background level. The reported values have been corrected according to the procedure outlined in ASTM E90-09. Values marked "*" indicate that the measured background level was less than 5 dB below the combined receiving room level and background level, in which case, the corrected values provide an estimate of the lower limit of airborne sound transmission loss.

ASTM E492 Test Results – Normalized Impact Sound Pressure Levels

Client:

Specimen ID:

CSSBI

A1-005007-03F

Test ID: Date of Test: IIF-14-021 17 September 2014

Volume (m³) Air Temperature (°C) Humidity (%) Room 17.85 m² Area of test specimen: 173.7 20.1 to 20.5 48.6 to 50.3 Upper Mass of test specimen: 2237 kg Lower 176.3 19.1 to 19.3 59.1 to 59.2

For a description of the test specimen and mounting conditions see text pages before. The results in this report apply only to the specific sample submitted for measurement. No responsibility is assumed for performance of any other specimen. Measurements of normalized impact sound pressure level (NISPL) were conducted in accordance with the requirements of ASTM E492-09, "Standard Laboratory Measurement of Impact Sound Transmission through Floor-Ceiling Assemblies Using the Tapping Machine".

In the graph:

The solid line is the measured normalized impact sound pressure level (NISPL) for this specimen. The dashed line is the IIC contour fitted to the measured values according to ASTM E989-06. The dotted line is the background sound level measured in the receiving room during this test (may be below the displayed range). For any frequency where the measured NISPL is less than 10 dB above the dotted line, the reported values were adjusted as noted below. Bars at the bottom of the graph show positive differences; where the measured data are greater than the reference contour as defined in ASTM E989-06. Shaded cells in the table and areas in the graph are outside the IIC contour range.

In the table:

Values marked "c" indicate that the measured background level was between 5 dB and 10 dB below the combined receiving room level and background level. Values marked "*" indicate that the measured background level was less than 5 dB below the combined receiving room level and background level and the reported values of NISPL provide an estimate of the upper limit of normalized impact sound pressure level, according to the procedure outlined in ASTM E492-09. The reported values of NISPL have been corrected according to the procedure outlined in ASTM E492-09.

Floor assembly 04F: LAM10_STY3_GCON38_CORSTE14_SJ254(406)_GFB92_RC13(305)_G16

Description	10 mm laminate flooring on 3 mm styrofoam bead underlay on 38 mm poured lightweight gypsum concrete on corrugated steel deck, attached to 254 mm deep steel joists spaced 406 mm o.c., with one layer of 15.9 mm gypsum board Type X, attached to resilient channels spaced 305 mm o.c., and 92 mm deep glass fibre insulation (R-12) in the cavity.
Topping	• (1) 10 mm glueless laminate floor installed on 3 mm (1/8") styrofoam bead underlay
Subfloor	 (2) 38 mm (1-1/2") nominal poured lightweight gypsum concrete, measured from the bottom of the flute, on corrugated steel deck (corrugation: 14 mm (9/16"), steel thickness: 0.76 mm (0.030")) (3) Steel deck attached to joists using 19 mm (3/4") screws (#10 hex washer
	head) spaced 203 mm (8") o.c.
Framing & Cavity Insulation	 Framing headers resting on test frame (steel thickness: 1.37 mm (0.054")) (4) 254 mm (10") deep steel C-joists (steel thickness: 1.37 mm (0.054")) spaced 406 mm (16") o.c., attached to headers using bearing stiffeners and 19 mm (3/4") screws (#10 wafer head) through top of header into joists 203 mm (8") blocking strips, installed at the centre of the joists between the two last joists on each end and between the two joists in the floor centre Flat strap connecting blocking strips, attached to the bottom of each joist (5) Cavities between joists filled with 406 mm (16") wide by 92 mm (3-5/8") thick glass fibre insulation (B-12) resting on resilient channels
Ceiling	 (6) 13 mm resilient channels, spaced 305 mm (12") o.c., installed perpendicularly to the joists and attached to each joist using 19 mm (3/4") screws (#10 wafer head) (7) One layer of 15.9 mm (5/8") gypsum board Type X, long side installed perpendicularly to resilient channels, attached using 32 mm (1-1/4") screws (#6 scavenger head) spaced 305 mm (12") o.c. Gaps along the joints and the perimeter of gypsum boards caulked and taped with aluminum tape

Element	Actual thickness (mm)	Mass (kg)	Mass/length, area or volume
Laminate Flooring	10	162.7	8.3 kg/m ²
Styrofoam Bead Underlay	3	2.9	0.2 kg/m ²
Gypsum Concrete (24.3 MPa)	40	1260.0	1944.0 kg/m ³
Corrugated Steel Deck	14 *	147.4	6.9 kg/m ²
Steel Joists	254	224.6	3.9 kg/m
Web Stiffeners	254 **	12.0	1.9 kg/m
Glass Fibre Insulation	92 **	16.6	0.9 kg/m ²
Flat Strap	1 **	1.4	0.3 kg/m
Resilient Channels	13	14.4	0.2 kg/m
Gypsum Board	16	197.7	11.1 kg/m ²
Total	336	2040	

* Corrugated steel deck thickness already included in gypsum concrete thickness

** Element thickness does not contribute to total thickness (ie. in cavity)

- The exposed area of the floor specimen used for the calculations of the airborne sound transmission loss was 17.85 m² (4.71 m x 3.79 m).
- The total area of the floor assembly resting on top of the lip was 19.32 m^2 (4.88 m x 3.96 m).
- The mass per area of the elements above the lip was calculated using the total area (19.32 m²).
- The mass per area of the ceiling elements was calculated using the exposed area (17.85 m²).

ASTM E90 Test Results – Airborne Sound Transmission Loss

Client:

CSSBI

Specimen ID: A1-005007-04F

Test ID: Date of Test: TLF-14-052 25 September 2014

Room	Volume (m ³)	Air Temperature (°C)	Humidity (%)		
Upper	173.7	21.5 to 21.6	57.3 to 57.6	Area of test specimen:	17.85 m ²
Lower	176.6	19.5 to 19.6	54.3 to 54.4	Mass of test specimen:	2040 kg

For a description of the test specimen and mounting conditions see text pages before. The results in this report apply only to the specific sample submitted for measurement. No responsibility is assumed for performance of any other specimen. Airborne sound transmission loss measurements were conducted in accordance with the requirements of ASTM E90-09, "Standard Test Method for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions and Elements."

In the graph:

The solid line is the measured sound transmission loss for this specimen. The dashed line is the STC contour fitted to the measured values according to ASTM E413-10. The dotted line (may be above the displayed range) is the flanking limit established for this facility. For any frequency band where the measured transmission loss is above the dotted line, the reported value is potentially limited by flanking transmission via laboratory surfaces, and the true value may be higher than that measured. Bars at the bottom of the graph show deficiencies where the measured data are less than the reference contour as described in the fitting procedure for the STC, defined in ASTM E413-10. The shaded cells in the table and areas in the graph are outside the STC contour range.

In the table:

Values marked "c" indicate that the measured background level was between 5 dB and 10 dB below the combined receiving room level and background level. The reported values have been corrected according to the procedure outlined in ASTM E90-09. Values marked "*" indicate that the measured background level was less than 5 dB below the combined receiving room level and background level, in which case, the corrected values provide an estimate of the lower limit of airborne sound transmission loss.

ASTM E492 Test Results – Normalized Impact Sound Pressure Levels

Client:

CSSBI

Test ID:

IIF-14-023 24 September 2014

Specimen ID: A1-005007-04F

Date of Test:

Volume (m³) Air Temperature (°C) Humidity (%) Room 17.85 m² Area of test specimen: 173.7 20.1 to 20.3 61.1 to 61.5 Upper Mass of test specimen: 2040 kg Lower 176.6 18.7 to 18.8 53.7 to 54.1

For a description of the test specimen and mounting conditions see text pages before. The results in this report apply only to the specific sample submitted for measurement. No responsibility is assumed for performance of any other specimen. Measurements of normalized impact sound pressure level (NISPL) were conducted in accordance with the requirements of ASTM E492-09, "Standard Laboratory Measurement of Impact Sound Transmission through Floor-Ceiling Assemblies Using the Tapping Machine".

In the graph:

The solid line is the measured normalized impact sound pressure level (NISPL) for this specimen. The dashed line is the IIC contour fitted to the measured values according to ASTM E989-06. The dotted line is the background sound level measured in the receiving room during this test (may be below the displayed range). For any frequency where the measured NISPL is less than 10 dB above the dotted line, the reported values were adjusted as noted below. Bars at the bottom of the graph show positive differences; where the measured data are greater than the reference contour as defined in ASTM E989-06. Shaded cells in the table and areas in the graph are outside the IIC contour range.

In the table:

Values marked "c" indicate that the measured background level was between 5 dB and 10 dB below the combined receiving room level and background level. Values marked "*" indicate that the measured background level was less than 5 dB below the combined receiving room level and background level and the reported values of NISPL provide an estimate of the upper limit of normalized impact sound pressure level, according to the procedure outlined in ASTM E492-09. The reported values of NISPL have been corrected according to the procedure outlined in ASTM E492-09.

Floor assembly 05F: CAR11_UDLY9_GCON38_CORSTE14_SJ254(406)_GFB92_RC13(305)_G16

Description	11 mm carpet with 8 mm carpet cushion on 38 mm poured lightweight gypsum concrete on corrugated steel deck, attached to 254 mm deep steel joists spaced 406 mm o.c., with one layer of 15.9 mm gypsum board Type X, attached to resilient channels spaced 305 mm o.c., and 92 mm deep glass fibre insulation (R-12) in the cavity.
Toppina	• (1) 11 mm carpet with 8 mm carpet pad
Subfloor	• (2) 38 mm (1-1/2") nominal poured lightweight gypsum concrete, measured from
	the bottom of the flute, on corrugated steel deck (corrugation: 14 mm (9/16"),
	steel thickness: 0.76 mm (0.030"))
	• (3) Steel deck attached to joists using 19 mm (3/4") screws (#10 hex washer
	head) spaced 203 mm (8") o.c.
Framing &	• Framing headers resting on test frame (steel thickness: 1.37 mm (0.054"))
Cavity	• (4) 254 mm (10") deep steel C-joists (steel thickness: 1.37 mm (0.054")) spaced
Insulation	406 mm (16") o.c., attached to headers using bearing stiffeners and 19 mm (3/4")
	screws (#10 water nead) through top of neader into joists
	• 203 mm (8) blocking strips, installed at the centre of the joists between the two
	Elat strap connecting blocking strips, attached to the bottom of each joist
	 (5) Cavities between joists filled with 106 mm (16") wide by 02 mm (2.5/8") thick
	alass fibre insulation (R-12), resting on resilient channels
Ceiling	 (6) 13 mm resilient channels, spaced 305 mm (12") o.c., installed perpendicularly
U	to the joists and attached to each joist using 19 mm (3/4") screws (#10 wafer
	head)
	• (7) One layer of 15.9 mm (5/8") gypsum board Type X, long side installed
	perpendicularly to resilient channels, attached using 32 mm (1-1/4") screws (#6
	scavenger head) spaced 305 mm (12") o.c.
	• Gaps along the joints and the perimeter of gypsum boards caulked and taped
	with aluminum tape

Element	Actual thickn (mm)	ess Mass (kg)	Mass/length,	area or volume
Carpet	11	37.0	1.9	kg/m²
Carpet pad	8	21.0	1.1	kg/m²
Gypsum Concrete (24.3 MPa)	40	1260.0	1944.0	kg/m³
Corrugated Steel Deck	14 *	147.4	6.9	kg/m ²
Steel Joists	254	224.6	3.9	kg/m
Web Stiffeners	254 **	12.0	1.9	kg/m
Glass Fibre Insulation	92 **	16.6	0.9	kg/m²
Flat Strap	1 **	1.4	0.3	kg/m
Resilient Channels	13	14.4	0.2	kg/m
Gypsum Board	16	197.7	11.1	kg/m²
Total	342	1932		

* Corrugated steel deck thickness already included in gypsum concrete thickness

** Element thickness does not contribute to total thickness (ie. in cavity)

- The exposed area of the floor specimen used for the calculations of the airborne sound transmission loss was 17.85 m² (4.71 m x 3.79 m).
- The total area of the floor assembly resting on top of the lip was 19.32 m² (4.88 m x 3.96 m).
- The mass per area of the elements above the lip was calculated using the total area (19.32 m²).
- The mass per area of the ceiling elements was calculated using the exposed area (17.85 m²).

ASTM E90 Test Results – Airborne Sound Transmission Loss

Client:

CSSBI

Specimen ID: A1-005007-05F

Test ID: Date of Test: TLF-14-053 26 September 2014

Room	Volume (m ³)	Air Temperature (°C)	Humidity (%)		
Upper	173.5	22.3 to 22.9	53.6 to 54.5	Area of test specimen:	17.85 m ²
Lower	176.6	20.5 to 20.6	54.4 to 54.5	Mass of test specimen:	1932 kg

For a description of the test specimen and mounting conditions see text pages before. The results in this report apply only to the specific sample submitted for measurement. No responsibility is assumed for performance of any other specimen. Airborne sound transmission loss measurements were conducted in accordance with the requirements of ASTM E90-09, "Standard Test Method for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions and Elements."

In the graph:

The solid line is the measured sound transmission loss for this specimen. The dashed line is the STC contour fitted to the measured values according to ASTM E413-10. The dotted line (may be above the displayed range) is the flanking limit established for this facility. For any frequency band where the measured transmission loss is above the dotted line, the reported value is potentially limited by flanking transmission via laboratory surfaces, and the true value may be higher than that measured. Bars at the bottom of the graph show deficiencies where the measured data are less than the reference contour as described in the fitting procedure for the STC, defined in ASTM E413-10. The shaded cells in the table and areas in the graph are outside the STC contour range.

In the table:

Values marked "c" indicate that the measured background level was between 5 dB and 10 dB below the combined receiving room level and background level. The reported values have been corrected according to the procedure outlined in ASTM E90-09. Values marked "*" indicate that the measured background level was less than 5 dB below the combined receiving room level and background level, in which case, the corrected values provide an estimate of the lower limit of airborne sound transmission loss.

ASTM E492 Test Results – Normalized Impact Sound Pressure Levels

Client:

CSSBI

Specimen ID: A1-005007-05F

Test ID: Date of Test: IIF-14-024 29 September 2014

Room	Volume (m ³)	Air Temperature (°C)	Humidity (%)			
Upper	173.5	25.2 to 26.0	47.1 to 50.0		Area of test specimen:	17.85 m ²
Lower	176.6	22.8 to 22.8	54.3 to 54.5]	Mass of test specimen:	1932 kg

For a description of the test specimen and mounting conditions see text pages before. The results in this report apply only to the specific sample submitted for measurement. No responsibility is assumed for performance of any other specimen. Measurements of normalized impact sound pressure level (NISPL) were conducted in accordance with the requirements of ASTM E492-09, "Standard Laboratory Measurement of Impact Sound Transmission through Floor-Ceiling Assemblies Using the Tapping Machine".

In the graph:

The solid line is the measured normalized impact sound pressure level (NISPL) for this specimen. The dashed line is the IIC contour fitted to the measured values according to ASTM E989-06. The dotted line is the background sound level measured in the receiving room during this test (may be below the displayed range). For any frequency where the measured NISPL is less than 10 dB above the dotted line, the reported values were adjusted as noted below. Bars at the bottom of the graph show positive differences; where the measured data are greater than the reference contour as defined in ASTM E989-06. Shaded cells in the table and areas in the graph are outside the IIC contour range.

In the table:

Values marked "c" indicate that the measured background level was between 5 dB and 10 dB below the combined receiving room level and background level. Values marked "*" indicate that the measured background level was less than 5 dB below the combined receiving room level and background level and the reported values of NISPL provide an estimate of the upper limit of normalized impact sound pressure level, according to the procedure outlined in ASTM E492-09. The reported values of NISPL have been corrected according to the procedure outlined in ASTM E492-09.

Floor assembly 06F: CAR11_UDLY9_GCON38_CORSTE14_SJ254(406)_GFB92_RC13(305)_2G16

Description	11 mm carpet with 8 mm carpet cushion on 38 mm poured lightweight gypsum					
	concrete on corrugated steel deck, attached to 254 mm deep steel joists spaced					
	406 mm o.c., with two layers of 15.9 mm gypsum board Type X, attached to resilient					
	channels spaced 305 mm o.c., and 92 mm deep glass fibre insulation (R-12) in the					
	cavity.					
Topping	• (1) 11 mm carpet with 8 mm carpet pad					
Subfloor	• (2) 38 mm (1-1/2") nominal poured lightweight gypsum concrete, measured from					
	the bottom of the flute, on corrugated steel deck (corrugation: 14 mm (9/16"),					
	steel thickness: 0.76 mm (0.030"))					
	• (3) Steel deck attached to joists using 19 mm (3/4") screws (#10 hex washer					
	head) spaced 203 mm (8") o.c.					
Framing &	• Framing headers resting on test frame (steel thickness: 1.37 mm (0.054"))					
Cavity	• (4) 254 mm (10") deep steel C-joists (steel thickness: 1.37 mm (0.054")) spaced					
Insulation	406 mm (16") o.c., attached to headers using bearing stiffeners and 19 mm (3/4")					
	screws (#10 wafer head) through top of header into joists					
	• 203 mm (8") blocking strips, installed at the centre of the joists between the two					
	last joists on each end and between the two joists in the floor centre					
	Flat strap connecting blocking strips, attached to the bottom of each joist					
	• (5) Cavities between joists filled with 406 mm (16") wide by 92 mm (3-5/8") thick					
	glass fibre insulation (R-12), resting on resilient channels					
Ceiling	• (6) 13 mm resilient channels, spaced 305 mm (12") o.c., installed perpendicularly					
	to the joists and attached to each joist using 19 mm (3/4") screws (#10 wafer					
	head)					
	• (7) Two layers of 15.9 mm (5/8") gypsum board Type X installed with long side					
	perpendicular to resilient channels					
	• Face layer attached using 41 mm (1-5/8") screws (#6 scavenger head) spaced					
	305 mm (12") o.c. along the perimeter and in the field					
	• Base layer attached using 32 mm (1-1/4") screws (#6 scavenger head) spaced					
	305 mm (12") o.c. along the perimeter and in the field					
	 Screws from base layer to face layer offset by 152 mm (6") 					
	• Gaps along the joints and the perimeter of gypsum boards caulked and taped					
	with aluminum tape					

Element	Actual thickness (mm)	Mass (kg)	Mass/length, area or volume
Carpet	11	37.0	1.9 kg/m ²
Carpet pad	8	21.0	1.1 kg/m ²
Gypsum Concrete (24.3 MPa)	40	1260.0	1944.0 kg/m ³
Corrugated Steel Deck	14 *	147.4	6.9 kg/m ²
Steel Joists	254	224.6	3.9 kg/m
Web Stiffeners	254 **	12.0	1.9 kg/m
Glass Fibre Insulation	92 **	16.6	0.9 kg/m ²
Flat Strap	1 **	1.4	0.3 kg/m
Resilient Channels	13	14.4	0.2 kg/m
Gypsum Board	16	197.7	11.1 kg/m ²
Gypsum Board	16	197.7	11.1 kg/m ²
Total	358	2130	

* Corrugated steel deck thickness already included in gypsum concrete thickness

** Element thickness does not contribute to total thickness (ie. in cavity)

- The exposed area of the floor specimen used for the calculations of the airborne sound transmission loss was 17.85 m^2 (4.71 m x 3.79 m).
- The total area of the floor assembly resting on top of the lip was 19.32 m² (4.88 m x 3.96 m).
- The mass per area of the elements above the lip was calculated using the total area (19.32 m²).
- The mass per area of the ceiling elements was calculated using the exposed area (17.85 m²).

ASTM E90 Test Results – Airborne Sound Transmission Loss

Client:

CSSBI Specimen ID: A1-005007-06F

Test ID: Date of Test: TLF-14-054 02 October 2014

Room	Volume (m ³)	Air Temperature (°C)	Humidity (%)		
Upper	173.5	24.2 to 24.2	50.7 to 51.7	Area of test specimen:	17.85 m ²
Lower	176.2	21.7 to 21.7	51.3 to 51.7	Mass of test specimen:	2130 kg

For a description of the test specimen and mounting conditions see text pages before. The results in this report apply only to the specific sample submitted for measurement. No responsibility is assumed for performance of any other specimen. Airborne sound transmission loss measurements were conducted in accordance with the requirements of ASTM E90-09, "Standard Test Method for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions and Elements."

In the graph:

The solid line is the measured sound transmission loss for this specimen. The dashed line is the STC contour fitted to the measured values according to ASTM E413-10. The dotted line (may be above the displayed range) is the flanking limit established for this facility. For any frequency band where the measured transmission loss is above the dotted line, the reported value is potentially limited by flanking transmission via laboratory surfaces, and the true value may be higher than that measured. Bars at the bottom of the graph show deficiencies where the measured data are less than the reference contour as described in the fitting procedure for the STC, defined in ASTM E413-10. The shaded cells in the table and areas in the graph are outside the STC contour range.

In the table:

Values marked "c" indicate that the measured background level was between 5 dB and 10 dB below the combined receiving room level and background level. The reported values have been corrected according to the procedure outlined in ASTM E90-09. Values marked "*" indicate that the measured background level was less than 5 dB below the combined receiving room level and background level, in which case, the corrected values provide an estimate of the lower limit of airborne sound transmission loss.

ASTM E492 Test Results – Normalized Impact Sound Pressure Levels

Client:

Specimen ID:

CSSBI

A1-005007-06F

Test ID: Date of Test: IIF-14-025 02 October 2014

Volume (m³) Air Temperature (°C) Humidity (%) Room 17.85 m² Area of test specimen: 173.5 24.1 to 24.3 48.7 to 49.0 Upper Mass of test specimen: 2130 kg Lower 176.2 21.7 to 21.7 50.1 to 50.8

For a description of the test specimen and mounting conditions see text pages before. The results in this report apply only to the specific sample submitted for measurement. No responsibility is assumed for performance of any other specimen. Measurements of normalized impact sound pressure level (NISPL) were conducted in accordance with the requirements of ASTM E492-09, "Standard Laboratory Measurement of Impact Sound Transmission through Floor-Ceiling Assemblies Using the Tapping Machine".

In the graph:

The solid line is the measured normalized impact sound pressure level (NISPL) for this specimen. The dashed line is the IIC contour fitted to the measured values according to ASTM E989-06. The dotted line is the background sound level measured in the receiving room during this test (may be below the displayed range). For any frequency where the measured NISPL is less than 10 dB above the dotted line, the reported values were adjusted as noted below. Bars at the bottom of the graph show positive differences; where the measured data are greater than the reference contour as defined in ASTM E989-06. Shaded cells in the table and areas in the graph are outside the IIC contour range.

In the table:

Values marked "c" indicate that the measured background level was between 5 dB and 10 dB below the combined receiving room level and background level. Values marked "*" indicate that the measured background level was less than 5 dB below the combined receiving room level and background level and the reported values of NISPL provide an estimate of the upper limit of normalized impact sound pressure level, according to the procedure outlined in ASTM E492-09. The reported values of NISPL have been corrected according to the procedure outlined in ASTM E492-09.

Floor assembly 07F: VIN2_GCON38_CORSTE14_SJ254(406)_GFB92_RC13(305)_2G16

Description	2 mm vinyl sheet flooring on 38 mm poured lightweight gypsum concrete on corrugated steel deck, attached to 254 mm deep steel joists spaced 406 mm o.c., with two layers of 15.9 mm gypsum board Type X, attached to resilient channels spaced 305 mm o.c., and 92 mm deep glass fibre insulation (R-12) in the cavity.
Topping	• (1) 2 mm fibre floor sheet vinyl installed without glue on top of the gypsum concrete
Subfloor	 (2) 38 mm (1-1/2") nominal poured lightweight gypsum concrete, measured from the bottom of the flute, on corrugated steel deck (corrugation: 14 mm (9/16"), steel thickness: 0.76 mm (0.030")) (3) Steel deck attached to joists using 19 mm (3/4") screws (#10 hex washer head) spaced 203 mm (8") o.c.
Framing & Cavity Insulation	 Framing headers resting on test frame (steel thickness: 1.37 mm (0.054")) (4) 254 mm (10") deep steel C-joists (steel thickness: 1.37 mm (0.054")) spaced 406 mm (16") o.c., attached to headers using bearing stiffeners and 19 mm (3/4") screws (#10 wafer head) through top of header into joists 203 mm (8") blocking strips, installed at the centre of the joists between the two last joists on each end and between the two joists in the floor centre Flat strap connecting blocking strips, attached to the bottom of each joist (5) Cavities between joists filled with 406 mm (16") wide by 92 mm (3-5/8") thick
Ceiling	 (6) 13 mm resilient channels, spaced 305 mm (12") o.c., installed perpendicularly to the joists and attached to each joist using 19 mm (3/4") screws (#10 wafer head) (7) Two layers of 15.9 mm (5/8") gypsum board Type X installed with long side perpendicular to resilient channels Face layer attached using 41 mm (1-5/8") screws (#6 scavenger head) spaced 305 mm (12") o.c. along the perimeter and in the field Base layer attached using 32 mm (1-1/4") screws (#6 scavenger head) spaced 305 mm (12") o.c. along the perimeter and in the field Screws from base layer to face layer offset by 152 mm (6") Gaps along the joints and the perimeter of gypsum boards caulked and taped with aluminum tape

Element	Actual thickness (mm)	Mass (kg)	Mass/length, area or volume
Vinyl Sheet Flooring	2	27.4	1.4 kg/m²
Gypsum Concrete (24.3 MPa)	40	1260.0	1944.0 kg/m ³
Corrugated Steel Deck	14 *	147.4	6.9 kg/m ²
Steel Joists	254	224.6	3.9 kg/m
Web Stiffeners	254 **	12.0	1.9 kg/m
Glass Fibre Insulation	92 **	16.6	0.9 kg/m ²
Flat Strap	1 **	1.4	0.3 kg/m
Resilient Channels	13	14.4	0.2 kg/m
Gypsum Board	16	197.7	11.1 kg/m ²
Gypsum Board	16	197.7	11.1 kg/m ²
Total	341	2099	

* Corrugated steel deck thickness already included in gypsum concrete thickness

** Element thickness does not contribute to total thickness (ie. in cavity)

- The exposed area of the floor specimen used for the calculations of the airborne sound transmission loss was 17.85 m² (4.71 m x 3.79 m).
- The total area of the floor assembly resting on top of the lip was 19.32 m² (4.88 m x 3.96 m).
- The mass per area of the elements above the lip was calculated using the total area (19.32 m²).
- The mass per area of the ceiling elements was calculated using the exposed area (17.85 m²).
Client:

CSSBI Specimen ID:

A1-005007-07F

Test ID: Date of Test: TLF-14-056 07 October 2014

Room Volume (m³) Air Temperature (°C) Humidity (%) 17.85 m² Area of test specimen: 173.9 23.2 to 23.2 46.2 to 46.5 Upper Mass of test specimen: 2099 kg Lower 176.2 21.0 to 21.0 53.8 to 54.0

For a description of the test specimen and mounting conditions see text pages before. The results in this report apply only to the specific sample submitted for measurement. No responsibility is assumed for performance of any other specimen. Airborne sound transmission loss measurements were conducted in accordance with the requirements of ASTM E90-09, "Standard Test Method for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions and Elements."

In the graph:

The solid line is the measured sound transmission loss for this specimen. The dashed line is the STC contour fitted to the measured values according to ASTM E413-10. The dotted line (may be above the displayed range) is the flanking limit established for this facility. For any frequency band where the measured transmission loss is above the dotted line, the reported value is potentially limited by flanking transmission via laboratory surfaces, and the true value may be higher than that measured. Bars at the bottom of the graph show deficiencies where the measured data are less than the reference contour as described in the fitting procedure for the STC, defined in ASTM E413-10. The shaded cells in the table and areas in the graph are outside the STC contour range.

In the table:

Client:

CSSBI

Test ID:

IIF-14-026 06 October 2014

Specimen ID: A1-005007-07F

Date of Test:

Volume (m³) Air Temperature (°C) Humidity (%) Room 17.85 m² Area of test specimen: 173.9 22.8 to 23.0 37.8 to 39.5 Upper Mass of test specimen: 2099 kg Lower 176.2 21.3 to 21.4 53.7 to 54.0

For a description of the test specimen and mounting conditions see text pages before. The results in this report apply only to the specific sample submitted for measurement. No responsibility is assumed for performance of any other specimen. Measurements of normalized impact sound pressure level (NISPL) were conducted in accordance with the requirements of ASTM E492-09, "Standard Laboratory Measurement of Impact Sound Transmission through Floor-Ceiling Assemblies Using the Tapping Machine".

In the graph:

The solid line is the measured normalized impact sound pressure level (NISPL) for this specimen. The dashed line is the IIC contour fitted to the measured values according to ASTM E989-06. The dotted line is the background sound level measured in the receiving room during this test (may be below the displayed range). For any frequency where the measured NISPL is less than 10 dB above the dotted line, the reported values were adjusted as noted below. Bars at the bottom of the graph show positive differences; where the measured data are greater than the reference contour as defined in ASTM E989-06. Shaded cells in the table and areas in the graph are outside the IIC contour range.

In the table:

Values marked "c" indicate that the measured background level was between 5 dB and 10 dB below the combined receiving room level and background level. Values marked "*" indicate that the measured background level was less than 5 dB below the combined receiving room level and background level and the reported values of NISPL provide an estimate of the upper limit of normalized impact sound pressure level, according to the procedure outlined in ASTM E492-09. The reported values of NISPL have been corrected according to the procedure outlined in ASTM E492-09.

Floor assembly 08F: VIN2_GCON38_CORSTE14_SJ254(406)_GFB92_RC13(305)_G16

Description	2 mm vinyl sheet flooring on 38 mm poured lightweight gypsum concrete on
	corrugated steel deck, attached to 254 mm deep steel joists spaced 406 mm o.c.,
	snaced 305 mm o c, and 92 mm deep glass fibre insulation (B-12) in the cavity
	spaced 505 min 0.c., and 52 min deep glass libre insulation (n-12) in the cavity.
Topping	• (1) 2 mm vinyl sheet flooring installed without glue on top of the gypsum concrete
Subfloor	• (2) 38 mm (1-1/2") nominal poured lightweight gypsum concrete, measured from
	the bottom of the flute, on corrugated steel deck (corrugation: 14 mm (9/16"),
	steel thickness: 0.76 mm (0.030))
	• (3) Steel deck attached to joists using 19 mm (3/4) screws (#10 nex washer back) appaad 202 mm (8") a a
Eroming 8	Freming baseders resting on test frame (steel this/mass) 1.97 mm (0.054"))
Fraining &	• Framing neaders resting on test frame (steel thickness: 1.37 mm (0.054))
Cavily	• (4) 254 mm (10") deep steel C-joists (steel thickness: 1.37 mm (0.054")) spaced
insulation	406 mm (16°) o.c., attached to headers using bearing stiffeners and 19 mm (3/4°)
	screws (#10 water nead) through top of neader into joists
	• 203 mm (8") blocking strips, installed at the centre of the joists between the two
	last joists on each end and between the two joists in the floor centre
	Flat strap connecting blocking strips, attached to the bottom of each joist
	• (5) Cavities between joists filled with 406 mm (16") wide by 92 mm (3-5/8") thick
	glass fibre insulation (R-12), resting on resilient channels
Ceiling	• (6) 13 mm resilient channels, spaced 305 mm (12") o.c., installed perpendicularly
	to the joists and attached to each joist using 19 mm (3/4") screws (#10 water
	• (7) One layer of 15.9 mm (5/8") gypsum board Type X, long side installed
	perpendicularly to resilient channels, attached using 32 mm (1-1/4") screws (#6
	scavenger nead) spaced 305 mm (12") o.c.
	• Gaps along the joints and the perimeter of gypsum boards caulked and taped
	with aluminum tape

Element	Actual thickness (mm)	Mass (kg)	Mass/length, area or volume
Vinyl Sheet Flooring	2	27.4	1.4 kg/m ²
Gypsum Concrete (24.3 MPa)	40	1260.0	1944.0 kg/m ³
Corrugated Steel Deck	14 *	147.4	6.9 kg/m ²
Steel Joists	254	224.6	3.9 kg/m
Web Stiffeners	254 **	12.0	1.9 kg/m
Glass Fibre Insulation	92 **	16.6	0.9 kg/m ²
Flat Strap	1 **	1.4	0.3 kg/m
Resilient Channels	13	14.4	0.2 kg/m
Gypsum Board	16	197.7	11.1 kg/m ²
Total	325	1901	

* Corrugated steel deck thickness already included in gypsum concrete thickness

** Element thickness does not contribute to total thickness (ie. in cavity)

- The exposed area of the floor specimen used for the calculations of the airborne sound transmission loss was 17.85 m² (4.71 m x 3.79 m).
- The total area of the floor assembly resting on top of the lip was 19.32 m^2 (4.88 m x 3.96 m). •
- The mass per area of the elements above the lip was calculated using the total area (19.32 m^2) . •
- The mass per area of the ceiling elements was calculated using the exposed area (17.85 m^2) . •

Client:

CSSBI Specimen ID: A1-005007-08F Test ID: Date of Test: TLF-14-057 09 October 2014

Room	Volume (m ³)	Air Temperature (°C)	Humidity (%)		
Upper	173.7	22.9 to 23.1	38.1 to 38.8	Area of test specimen:	17.85 m ²
Lower	176.9	20.9 to 20.9	54.3 to 54.5	Mass of test specimen:	1901 kg

For a description of the test specimen and mounting conditions see text pages before. The results in this report apply only to the specific sample submitted for measurement. No responsibility is assumed for performance of any other specimen. Airborne sound transmission loss measurements were conducted in accordance with the requirements of ASTM E90-09, "Standard Test Method for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions and Elements."

In the graph:

The solid line is the measured sound transmission loss for this specimen. The dashed line is the STC contour fitted to the measured values according to ASTM E413-10. The dotted line (may be above the displayed range) is the flanking limit established for this facility. For any frequency band where the measured transmission loss is above the dotted line, the reported value is potentially limited by flanking transmission via laboratory surfaces, and the true value may be higher than that measured. Bars at the bottom of the graph show deficiencies where the measured data are less than the reference contour as described in the fitting procedure for the STC, defined in ASTM E413-10. The shaded cells in the table and areas in the graph are outside the STC contour range.

In the table:

Client:

Specimen ID:

CSSBI

A1-005007-08F

Test ID: Date of Test: IIF-14-027 10 October 2014

Volume (m³) Air Temperature (°C) Humidity (%) Room 17.85 m² Area of test specimen: 173.7 22.6 to 22.7 43.1 to 43.6 Upper Mass of test specimen: 1901 kg Lower 176.9 20.6 to 20.6 54.4 to 54.5

For a description of the test specimen and mounting conditions see text pages before. The results in this report apply only to the specific sample submitted for measurement. No responsibility is assumed for performance of any other specimen. Measurements of normalized impact sound pressure level (NISPL) were conducted in accordance with the requirements of ASTM E492-09, "Standard Laboratory Measurement of Impact Sound Transmission through Floor-Ceiling Assemblies Using the Tapping Machine".

In the graph:

The solid line is the measured normalized impact sound pressure level (NISPL) for this specimen. The dashed line is the IIC contour fitted to the measured values according to ASTM E989-06. The dotted line is the background sound level measured in the receiving room during this test (may be below the displayed range). For any frequency where the measured NISPL is less than 10 dB above the dotted line, the reported values were adjusted as noted below. Bars at the bottom of the graph show positive differences; where the measured data are greater than the reference contour as defined in ASTM E989-06. Shaded cells in the table and areas in the graph are outside the IIC contour range.

In the table:

Values marked "c" indicate that the measured background level was between 5 dB and 10 dB below the combined receiving room level and background level. Values marked "*" indicate that the measured background level was less than 5 dB below the combined receiving room level and background level and the reported values of NISPL provide an estimate of the upper limit of normalized impact sound pressure level, according to the procedure outlined in ASTM E492-09. The reported values of NISPL have been corrected according to the procedure outlined in ASTM E492-09.

Floor assembly 09F: GCON38_CORSTE14_SJ254(406)_GFB92_RC13(305)_G13

Description	38 mm poured lightweight gypsum concrete on corrugated steel deck, attached to 254 mm deep steel joists spaced 406 mm o.c., with one layer of 15.9 mm gypsum board Type X, attached to resilient channels spaced 305 mm o.c., and 92 mm deep			
	glass fibre insulation (R-12) in the cavity.			
Topping	None			
Subfloor	• (1) 38 mm (1-1/2") nominal poured lightweight gypsum concrete, measured from the bottom of the flute, on corrugated steel deck (corrugation: 14 mm (9/16"), steel thickness: 0.76 mm (0.030"))			
	• (2) Steel deck attached to joists using 19 mm (3/4") screws (#10 hex washer head) spaced 203 mm (8") o.c.			
Framing & Cavity Insulation	 Framing headers resting on test frame (steel thickness: 1.37 mm (0.054")) (3) 254 mm (10") deep steel C-joists (steel thickness: 1.37 mm (0.054")) spaced 406 mm (16") o.c., attached to headers using bearing stiffeners and 19 mm (3/4") screws (#10 wafer head) through top of header into joists 203 mm (8") blocking strips, installed at the centre of the joists between the two last joists on each and between the two joists in the floor centre. 			
	 Flat strap connecting blocking strips, attached to the bottom of each joist (4) Cavities between joists filled with 406 mm (16") wide by 92 mm (3-5/8") thick glass fibre insulation (R-12), resting on resilient channels 			
Ceiling	• (5) 13 mm resilient channels, spaced 305 mm (12") o.c., installed perpendicularly to the joists and attached to each joist using 19 mm (3/4") screws (#10 wafer head)			
	• (6) One layer of 12.7 mm (1/2") gypsum board Firecode C, long side installed perpendicularly to resilient channels, attached using 32 mm (1-1/4") screws (#6 scavenger head) spaced 305 mm (12") o.c.			
	• Gaps along the joints and the perimeter of gypsum boards caulked and taped with aluminum tape			

Element	Actual thickness (mm)	Mass (kg)	Mass/length, area or volume
Gypsum Concrete (24.3 MPa)	40	1260.0	1944.0 kg/m ³
Corrugated Steel Deck	14 *	147.4	6.9 kg/m ²
Steel Joists	254	224.6	3.9 kg/m
Web Stiffeners	254 **	12.0	1.9 kg/m
Glass Fibre Insulation	92 **	16.6	0.9 kg/m ²
Flat Strap	1 **	1.4	0.3 kg/m
Resilient Channels	13	14.4	0.2 kg/m
Firecode C Gypsum Board	13	170.9	9.6 kg/m ²
Total	320	1847	

* Corrugated steel deck thickness already included in gypsum concrete thickness

** Element thickness does not contribute to total thickness (ie. in cavity)

- The exposed area of the floor specimen used for the calculations of the airborne sound transmission loss was 17.85 m^2 (4.71 m x 3.79 m).
- The total area of the floor assembly resting on top of the lip was 19.32 m^2 (4.88 m x 3.96 m).
- The mass per area of the elements above the lip was calculated using the total area (19.32 m²).
- The mass per area of the ceiling elements was calculated using the exposed area (17.85 m²).

Client:

CSSBI Specimen ID:

A1-005007-09F

Test ID: Date of Test: TLF-14-061 20 October 2014

Volume (m³) Air Temperature (°C) Humidity (%) Room 17.85 m² Area of test specimen: 173.9 24.3 to 24.4 52.8 to 55.3 Upper Mass of test specimen: 1847 kg Lower 176.6 20.5 to 20.5 60.4 to 60.5

For a description of the test specimen and mounting conditions see text pages before. The results in this report apply only to the specific sample submitted for measurement. No responsibility is assumed for performance of any other specimen. Airborne sound transmission loss measurements were conducted in accordance with the requirements of ASTM E90-09, "Standard Test Method for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions and Elements."

In the graph:

The solid line is the measured sound transmission loss for this specimen. The dashed line is the STC contour fitted to the measured values according to ASTM E413-10. The dotted line (may be above the displayed range) is the flanking limit established for this facility. For any frequency band where the measured transmission loss is above the dotted line, the reported value is potentially limited by flanking transmission via laboratory surfaces, and the true value may be higher than that measured. Bars at the bottom of the graph show deficiencies where the measured data are less than the reference contour as described in the fitting procedure for the STC, defined in ASTM E413-10. The shaded cells in the table and areas in the graph are outside the STC contour range.

In the table:

Client:

CSSBI

Test ID:

IIF-14-028 17 October 2014

Specimen ID: A1-005007-09F

Date of Test:

Volume (m³) Air Temperature (°C) Humidity (%) Room 17.85 m² Area of test specimen: 173.9 22.9 to 23.3 64.6 to 65.9 Upper Mass of test specimen: 1847 kg Lower 176.6 21.1 to 21.3 62.4 to 63.1

For a description of the test specimen and mounting conditions see text pages before. The results in this report apply only to the specific sample submitted for measurement. No responsibility is assumed for performance of any other specimen. Measurements of normalized impact sound pressure level (NISPL) were conducted in accordance with the requirements of ASTM E492-09, "Standard Laboratory Measurement of Impact Sound Transmission through Floor-Ceiling Assemblies Using the Tapping Machine".

In the graph:

The solid line is the measured normalized impact sound pressure level (NISPL) for this specimen. The dashed line is the IIC contour fitted to the measured values according to ASTM E989-06. The dotted line is the background sound level measured in the receiving room during this test (may be below the displayed range). For any frequency where the measured NISPL is less than 10 dB above the dotted line, the reported values were adjusted as noted below. Bars at the bottom of the graph show positive differences; where the measured data are greater than the reference contour as defined in ASTM E989-06. Shaded cells in the table and areas in the graph are outside the IIC contour range.

In the table:

Values marked "c" indicate that the measured background level was between 5 dB and 10 dB below the combined receiving room level and background level. Values marked "*" indicate that the measured background level was less than 5 dB below the combined receiving room level and background level and the reported values of NISPL provide an estimate of the upper limit of normalized impact sound pressure level, according to the procedure outlined in ASTM E492-09. The reported values of NISPL have been corrected according to the procedure outlined in ASTM E492-09.

Floor assembly 10F: GCON38_CORSTE14_SJ254(406)_GFB92_RC13(305)_2G13

Description	38 mm poured lightweight gypsum concrete on corrugated steel deck, attached to 254 mm deep steel joists spaced 406 mm o.c., with two layers of 12.7 mm gypsum board Firecode C, attached to resilient channels spaced 305 mm o.c., and 92 mm deep glass fibre insulation (B-12) in the cavity.			
Topping	None			
Subfloor	 (1) 38 mm (1-1/2") nominal poured lightweight gypsum concrete, measured from the bottom of the flute, on corrugated steel deck (corrugation: 14 mm (9/16"), steel thickness: 0.76 mm (0.030")) 			
	• (2) Steel deck attached to joists using 19 mm (3/4") screws (#10 hex washer head) spaced 203 mm (8") o.c.			
Framing &	• Framing headers resting on test frame (steel thickness: 1.37 mm (0.054"))			
Cavity	• (3) 254 mm (10") deep steel C-joists (steel thickness: 1.37 mm (0.054")) spaced			
Insulation	406 mm (16") o.c., attached to headers using bearing stiffeners and 19 mm (3/4") screws (#10 wafer head) through top of header into joists			
	• 203 mm (8") blocking strips, installed at the centre of the joists between the two last joists on each end and between the two joists in the floor centre			
	Flat strap connecting blocking strips, attached to the bottom of each joist			
	• (4) Cavities between joists filled with 406 mm (16") wide by 92 mm (3-5/8") thick glass fibre insulation (R-12), resting on resilient channels			
Ceiling	• (5) 13 mm resilient channels, spaced 305 mm (12") o.c., installed perpendicularly to the joists and attached to each joist using 19 mm (3/4") screws (#10 wafer head)			
	• (6) Two layers of 12.7 mm (1/2") gypsum board Firecode C, long side installed perpendicularly to resilient channels			
	• Face layer attached using 41 mm (1-5/8") screws (#6 scavenger head) spaced 305 mm (12") o.c. along the perimeter and in the field			
	 Base layer attached using 32 mm (1-1/4") screws (#6 scavenger head) spaced 305 mm (12") o.c. along the perimeter and in the field 			
	 Screws from base layer to face layer offset by 152 mm (6") 			
	• Gaps along the joints and the perimeter of gypsum boards caulked and taped with aluminum tape			

Element	Actual thic (mm	ckness)	Mass (kg)	Mass/length,	area or volume
Gypsum Concrete (24.3 MPa)	40		1260.0	1944.0	kg/m³
Corrugated Steel Deck	14	*	147.4	6.9	kg/m ²
Steel Joists	254		224.6	3.9	kg/m
Web Stiffeners	254	**	12.0	1.9	kg/m
Glass Fibre Insulation	92	**	16.6	0.9	kg/m²
Flat Strap	1	**	1.4	0.3	kg/m
Resilient Channels	13		14.4	0.2	kg/m
Firecode C Gypsum Board	13		170.9	9.6	kg/m ²
Firecode C Gypsum Board	13		170.9	9.6	kg/m²
Total	333		2018		

* Corrugated steel deck thickness already included in gypsum concrete thickness

** Element thickness does not contribute to total thickness (ie. in cavity)

- The exposed area of the floor specimen used for the calculations of the airborne sound transmission loss was 17.85 m^2 (4.71 m x 3.79 m).
- The total area of the floor assembly resting on top of the lip was 19.32 m^2 (4.88 m x 3.96 m).
- The mass per area of the elements above the lip was calculated using the total area (19.32 m²).
- The mass per area of the ceiling elements was calculated using the exposed area (17.85 m²).

Client:

CSSBI

Specimen ID: A1-005007-10F

Test ID: Date of Test: TLF-14-062 24 October 2014

Room	Volume (m ³)	Air Temperature (°C)	Humidity (%)		
Upper	174.6	23.7 to 23.8	56.4 to 56.8	Area of test specimen:	17.85 m ²
Lower	176.3	19.4 to 19.5	47.1 to 47.2	Mass of test specimen:	2018 kg

For a description of the test specimen and mounting conditions see text pages before. The results in this report apply only to the specific sample submitted for measurement. No responsibility is assumed for performance of any other specimen. Airborne sound transmission loss measurements were conducted in accordance with the requirements of ASTM E90-09, "Standard Test Method for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions and Elements."

In the graph:

The solid line is the measured sound transmission loss for this specimen. The dashed line is the STC contour fitted to the measured values according to ASTM E413-10. The dotted line (may be above the displayed range) is the flanking limit established for this facility. For any frequency band where the measured transmission loss is above the dotted line, the reported value is potentially limited by flanking transmission via laboratory surfaces, and the true value may be higher than that measured. Bars at the bottom of the graph show deficiencies where the measured data are less than the reference contour as described in the fitting procedure for the STC, defined in ASTM E413-10. The shaded cells in the table and areas in the graph are outside the STC contour range.

In the table:

Client:

Room

Upper

Lower

CSSBI

Test ID: Date of Test: IIF-14-029 24 October 2014

Specimen ID: A1-005007-10F

Humidity (%)

Volume (m³) Air Temperature (°C) 17.85 m² Area of test specimen: 174.6 23.6 to 23.7 55.7 to 56.3 Mass of test specimen: 2018 kg 176.3 19.4 to 19.4 46.8 to 47.0

For a description of the test specimen and mounting conditions see text pages before. The results in this report apply only to the specific sample submitted for measurement. No responsibility is assumed for performance of any other specimen. Measurements of normalized impact sound pressure level (NISPL) were conducted in accordance with the requirements of ASTM E492-09, "Standard Laboratory Measurement of Impact Sound Transmission through Floor-Ceiling Assemblies Using the Tapping Machine".

In the graph:

The solid line is the measured normalized impact sound pressure level (NISPL) for this specimen. The dashed line is the IIC contour fitted to the measured values according to ASTM E989-06. The dotted line is the background sound level measured in the receiving room during this test (may be below the displayed range). For any frequency where the measured NISPL is less than 10 dB above the dotted line, the reported values were adjusted as noted below. Bars at the bottom of the graph show positive differences; where the measured data are greater than the reference contour as defined in ASTM E989-06. Shaded cells in the table and areas in the graph are outside the IIC contour range.

In the table:

Values marked "c" indicate that the measured background level was between 5 dB and 10 dB below the combined receiving room level and background level. Values marked "*" indicate that the measured background level was less than 5 dB below the combined receiving room level and background level and the reported values of NISPL provide an estimate of the upper limit of normalized impact sound pressure level, according to the procedure outlined in ASTM E492-09. The reported values of NISPL have been corrected according to the procedure outlined in ASTM E492-09.

Floor assembly 11F: GCON38_CORSTE14_SJ317(406)_GFB92_RC13(305)_G16

Description 38 mm poured lightweight gypsum concrete on corrugated steel deck, attached to 317 mm deep steel joists spaced 406 mm o.c., with two layers of 15.9 mm gypsum board Type X, attached to resilient channels spaced 305 mm o.c., and 92 mm deep glass fibre insulation (R-12) in the cavity.

Topping	•	None
Subfloor	•	 (1) 38 mm (1-1/2") nominal poured lightweight gypsum concrete, measured from the bottom of the flute, on corrugated steel deck (corrugation: 14 mm (9/16"), steel thickness: 0.76 mm (0.030")) (2) Steel deck attached to joists using 19 mm (3/4") screws (#10 hex washer head) spaced 203 mm (8") o.c.
Framing &	٠	Framing headers resting on test frame (steel thickness: 1.37 mm (0.054"))
Cavity	•	(3) 317 mm (12-1/4") deep steel C-joists (steel thickness: 1.37 mm (0.054"))
Insulation		spaced 406 mm (16") o.c., attached to headers using bearing stiffeners and
		19 mm (3/4") screws (#10 wafer head) through top of header into joists
	•	203 mm (8") blocking strips, installed at the centre of the joists between the two
		last joists on each end and between the two joists in the floor centre
	•	Flat strap connecting blocking strips, attached to the bottom of each joist
	•	(4) Cavities between joists filled with 406 mm (16") wide by 92 mm (3-5/8") thick
		glass fibre insulation (R-12), resting on resilient channels
Ceiling	•	(5) 13 mm resilient channels, spaced 305 mm (12") o.c., installed perpendicularly
		to the joists and attached to each joist using 19 mm (3/4") screws (#10 wafer head)
	•	(6) One layer of 15.9 mm (5/8") gypsum board Type X, long side installed
		perpendicularly to resilient channels, attached using 32 mm (1-1/4") screws (#6
		scavenger head) spaced 305 mm (12") o.c.
	•	Gaps along the joints and the perimeter of gypsum boards caulked and taped
		with aluminum tape

Element	Actual thickness (mm)	Mass (kg)	Mass/length, area or volume
Gypsum Concrete (24.3 MPa)	40	1260.0	1944.0 kg/m ³
Corrugated Steel Deck	14 *	147.4	6.9 kg/m ²
Steel Joists	317	236.4	4.4 kg/m
Web Stiffeners	317 **	14.4	1.9 kg/m
Glass Fibre Insulation	92 **	16.6	0.9 kg/m ²
Flat Strap	1 **	1.4	0.3 kg/m
Resilient Channels	13	14.4	0.2 kg/m
Gypsum Board	16	197.7	11.1 kg/m ²
Total	386	1889	

* Corrugated steel deck thickness already included in gypsum concrete thickness

** Element thickness does not contribute to total thickness (ie. in cavity)

- The exposed area of the floor specimen used for the calculations of the airborne sound transmission loss was 17.85 m^2 (4.71 m x 3.79 m).
- The total area of the floor assembly resting on top of the lip was 19.32 m² (4.88 m x 3.96 m).
- The mass per area of the elements above the lip was calculated using the total area (19.32 m²).
- The mass per area of the ceiling elements was calculated using the exposed area (17.85 m²).

Client:

CSSBI Specimen ID:

A1-005007-11F

Test ID: Date of Test: TLF-14-063 30 October 2014

Volume (m³) Air Temperature (°C) Humidity (%) Room 17.85 m² Area of test specimen: 173.8 24.1 to 24.2 42.5 to 42.9 Upper Mass of test specimen: 1889 kg Lower 175.9 19.9 to 19.9 47.0 to 47.1

For a description of the test specimen and mounting conditions see text pages before. The results in this report apply only to the specific sample submitted for measurement. No responsibility is assumed for performance of any other specimen. Airborne sound transmission loss measurements were conducted in accordance with the requirements of ASTM E90-09, "Standard Test Method for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions and Elements."

In the graph:

The solid line is the measured sound transmission loss for this specimen. The dashed line is the STC contour fitted to the measured values according to ASTM E413-10. The dotted line (may be above the displayed range) is the flanking limit established for this facility. For any frequency band where the measured transmission loss is above the dotted line, the reported value is potentially limited by flanking transmission via laboratory surfaces, and the true value may be higher than that measured. Bars at the bottom of the graph show deficiencies where the measured data are less than the reference contour as described in the fitting procedure for the STC, defined in ASTM E413-10. The shaded cells in the table and areas in the graph are outside the STC contour range.

In the table:

Client:

CSSBI

Test ID:

IIF-14-030 30 October 2014

Specimen ID: A1-005007-11F

Date of Test:

Volume (m³) Air Temperature (°C) Humidity (%) Room 17.85 m² Area of test specimen: 24.0 to 24.1 37.0 to 45.5 Upper 173.8 Mass of test specimen: 1889 kg Lower 175.9 20.1 to 20.2 46.7 to 46.9

For a description of the test specimen and mounting conditions see text pages before. The results in this report apply only to the specific sample submitted for measurement. No responsibility is assumed for performance of any other specimen. Measurements of normalized impact sound pressure level (NISPL) were conducted in accordance with the requirements of ASTM E492-09, "Standard Laboratory Measurement of Impact Sound Transmission through Floor-Ceiling Assemblies Using the Tapping Machine".

In the graph:

The solid line is the measured normalized impact sound pressure level (NISPL) for this specimen. The dashed line is the IIC contour fitted to the measured values according to ASTM E989-06. The dotted line is the background sound level measured in the receiving room during this test (may be below the displayed range). For any frequency where the measured NISPL is less than 10 dB above the dotted line, the reported values were adjusted as noted below. Bars at the bottom of the graph show positive differences; where the measured data are greater than the reference contour as defined in ASTM E989-06. Shaded cells in the table and areas in the graph are outside the IIC contour range.

In the table:

Values marked "c" indicate that the measured background level was between 5 dB and 10 dB below the combined receiving room level and background level. Values marked "*" indicate that the measured background level was less than 5 dB below the combined receiving room level and background level and the reported values of NISPL provide an estimate of the upper limit of normalized impact sound pressure level, according to the procedure outlined in ASTM E492-09. The reported values of NISPL have been corrected according to the procedure outlined in ASTM E492-09.

Floor assembly 12F: LAM10_STY3_GCON38_CORSTE14_SJ317(406)_GFB92_RC13(305)_G16

Description	10 mm laminate flooring on 3 mm styrofoam bead underlay on 38 mm poured lightweight gypsum concrete on corrugated steel deck, attached to 317 mm deep steel joists spaced 406 mm o.c., with one layer of 15.9 mm gypsum board Type X, attached to resilient channels spaced 305 mm o.c., and 92 mm deep glass fibre insulation (B-12) in the cavity.			
Topping	• (1) 10 mm glueless laminate floor installed on 3 mm (1/8") styrofoam bead underlay			
Subfloor	• (2) 38 mm (1-1/2") nominal poured lightweight gypsum concrete, measured from the bottom of the flute, on corrugated steel deck (corrugation: 14 mm (9/16"), steel thickness: 0.76 mm (0.030"))			
	• (3) Steel deck attached to joists using 19 mm (3/4") screws (#10 hex washer head) spaced 203 mm (8") o.c.			
Framing &	• Framing headers resting on test frame (steel thickness: 1.37 mm (0.054"))			
Cavity	• (4) 317 mm (12-1/4") deep steel C-joists (steel thickness: 1.37 mm (0.054"))			
Insulation	 spaced 406 mm (16") o.c., attached to headers using bearing stiffeners and 19 mm (3/4") screws (#10 wafer head) through top of header into joists 203 mm (8") blocking strips, installed at the centre of the joists between the two last joists on each end and between the two joists in the floor centre 			
	Flat strap connecting blocking strips, attached to the bottom of each joist			
	• (5) Cavities between joists filled with 406 mm (16") wide by 92 mm (3-5/8") thick glass fibre insulation (R-12), resting on resilient channels			
Ceiling	• (6) 13 mm resilient channels, spaced 305 mm (12") o.c., installed perpendicularly to the joists and attached to each joist using 19 mm (3/4") screws (#10 wafer head)			
	• (7) One layer of 15.9 mm (5/8") gypsum board Type X, long side installed perpendicularly to resilient channels, attached using 32 mm (1-1/4") screws (#6 scavenger head) spaced 305 mm (12") o.c.			
	• Gaps along the joints and the perimeter of gypsum boards caulked and taped with aluminum tape			

Element	Actual thickness (mm)	Mass (kg)	Mass/length, area or volume
Laminate Flooring	10	162.7	8.3 kg/m ²
Styrofoam Bead Underlay	3	2.9	0.2 kg/m ²
Gypsum Concrete (24.3 MPa)	40	1260.0	1944.0 kg/m ³
Corrugated Steel Deck	14 *	147.4	6.9 kg/m ²
Steel Joists	317	236.4	4.4 kg/m
Web Stiffeners	317 **	14.4	1.9 kg/m
Glass Fibre Insulation	92 **	16.6	0.9 kg/m ²
Flat Strap	1 **	1.4	0.3 kg/m
Resilient Channels	13	14.4	0.2 kg/m
Gypsum Board	16	197.7	11.1 kg/m ²
Total	399	2054	

* Corrugated steel deck thickness already included in gypsum concrete thickness

** Element thickness does not contribute to total thickness (ie. in cavity)

- The exposed area of the floor specimen used for the calculations of the airborne sound transmission loss was 17.85 m² (4.71 m x 3.79 m).
- The total area of the floor assembly resting on top of the lip was 19.32 m² (4.88 m x 3.96 m).
- The mass per area of the elements above the lip was calculated using the total area (19.32 m²).
- The mass per area of the ceiling elements was calculated using the exposed area (17.85 m²).

Client:

CSSBI Specimen ID: A1-005007-12F

Test ID: Date of Test: TLF-14-064 17 November 2014

Room Volume (m³) Air Temperature (°C) Humidity (%) 17.85 m² Area of test specimen: 172.7 21.3 to 21.3 39.4 to 39.5 Upper Mass of test specimen: 2054 kg Lower 176.8 18.1 to 18.1 49.6 to 49.6

For a description of the test specimen and mounting conditions see text pages before. The results in this report apply only to the specific sample submitted for measurement. No responsibility is assumed for performance of any other specimen. Airborne sound transmission loss measurements were conducted in accordance with the requirements of ASTM E90-09, "Standard Test Method for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions and Elements."

In the graph:

The solid line is the measured sound transmission loss for this specimen. The dashed line is the STC contour fitted to the measured values according to ASTM E413-10. The dotted line (may be above the displayed range) is the flanking limit established for this facility. For any frequency band where the measured transmission loss is above the dotted line, the reported value is potentially limited by flanking transmission via laboratory surfaces, and the true value may be higher than that measured. Bars at the bottom of the graph show deficiencies where the measured data are less than the reference contour as described in the fitting procedure for the STC, defined in ASTM E413-10. The shaded cells in the table and areas in the graph are outside the STC contour range.

In the table:

Client:

CSSBI

Specimen ID: A1-005007-12F

Test ID: Date of Test: IIF-14-032 18 November 2014

Room	Volume (m ³)	Air Temperature (°C)	Humidity (%)			
Upper	172.7	21.5 to 21.5	31.2 to 39.8		Area of test specimen:	17.85 m ²
Lower	176.8	17.8 to 17.8	49.7 to 49.9]	Mass of test specimen:	2054 kg

For a description of the test specimen and mounting conditions see text pages before. The results in this report apply only to the specific sample submitted for measurement. No responsibility is assumed for performance of any other specimen. Measurements of normalized impact sound pressure level (NISPL) were conducted in accordance with the requirements of ASTM E492-09, "Standard Laboratory Measurement of Impact Sound Transmission through Floor-Ceiling Assemblies Using the Tapping Machine".

In the graph:

The solid line is the measured normalized impact sound pressure level (NISPL) for this specimen. The dashed line is the IIC contour fitted to the measured values according to ASTM E989-06. The dotted line is the background sound level measured in the receiving room during this test (may be below the displayed range). For any frequency where the measured NISPL is less than 10 dB above the dotted line, the reported values were adjusted as noted below. Bars at the bottom of the graph show positive differences; where the measured data are greater than the reference contour as defined in ASTM E989-06. Shaded cells in the table and areas in the graph are outside the IIC contour range.

In the table:

Values marked "c" indicate that the measured background level was between 5 dB and 10 dB below the combined receiving room level and background level. Values marked "*" indicate that the measured background level was less than 5 dB below the combined receiving room level and background level and the reported values of NISPL provide an estimate of the upper limit of normalized impact sound pressure level, according to the procedure outlined in ASTM E492-09. The reported values of NISPL have been corrected according to the procedure outlined in ASTM E492-09.

Floor assembly 13F: LAM10_STY3_GCON38_CORSTE14_SJ317(406)_GFB92_RC13(305)_2G16

Description	10 mm laminate flooring on 3 mm styrofoam bead underlay on 38 mm poured lightweight gypsum concrete on corrugated steel deck, attached to 317 mm deep steel joists spaced 406 mm o.c., with two layers of 15.9 mm gypsum board Type X, attached to resilient channels spaced 305 mm o.c., and 92 mm deep glass fibre insulation (P. 12) in the cavity.
Topping	• (1) 10 mm glueless laminate installed on 3 mm (1/8") styrofoam bead underlay
Subfloor	 (2) 38 mm (1-1/2") nominal poured lightweight gypsum concrete, measured from the bottom of the flute, on corrugated steel deck (corrugation: 14 mm (9/16"), steel thickness: 0.76 mm (0.030")) (3) Steel deck attached to joists using 19 mm (3/4") screws (#10 hex washer head) spaced 203 mm (8") o.c.
Framing &	• Framing headers resting on test frame (steel thickness: 1.37 mm (0.054"))
Cavity	• (4) 317 mm (12-1/4") deep steel C-joists (steel thickness: 1.37 mm (0.054"))
Insulation	 spaced 406 mm (16") o.c., attached to headers using bearing stiffeners and 19 mm (3/4") screws (#10 wafer head) through top of header into joists 203 mm (8") blocking strips, installed at the centre of the joists between the two last joists on each end and between the two joists in the floor centre Flat strap connecting blocking strips, attached to the bottom of each joist
	• (5) Cavities between joists filled with 406 mm (16") wide by 92 mm (3-5/8") thick glass fibre insulation (R-12), resting on resilient channels
Ceiling	• (6) 13 mm resilient channels, spaced 305 mm (12") o.c., installed perpendicularly to the joists and attached to each joist using 19 mm (3/4") screws (#10 wafer head)
	• (7) Two layers of 15.9 mm (5/8") gypsum board Type X installed with long side perpendicular to resilient channels
	 Face layer attached using 41 mm (1-5/8") screws (#6 scavenger head) spaced 305 mm (12") o.c. along the perimeter and in the field
	• Base layer attached using 32 mm (1-1/4") screws (#6 scavenger head) spaced 305 mm (12") o.c. along the perimeter and in the field
	 Screws from base layer to face layer offset by 152 mm (6")
	• Gaps along the joints and the perimeter of gypsum boards caulked and taped with aluminum tape

Element	Actual thickn (mm)	Mass (kg)	Mass/length, area or volume	
Laminate Flooring	10	162.7	8.3	kg/m²
Styrofoam Bead Underlay	3	2.9	0.2	kg/m ²
Gypsum Concrete (24.3 MPa)	40	1260.0	1944.0	kg/m³
Corrugated Steel Deck	14 *	147.4	6.9	kg/m ²
Steel Joists	317	236.4	4.4	kg/m
Web Stiffeners	317 **	14.4	1.9	kg/m
Glass Fibre Insulation	92 **	16.6	0.9	kg/m²
Flat Strap	1 **	1.4	0.3	kg/m
Resilient Channels	13	14.4	0.2	kg/m
Gypsum Board	16	197.7	11.1	kg/m ²
Gypsum Board	16	197.7	11.1	kg/m²
Total	415	2252		

* Corrugated steel deck thickness already included in gypsum concrete thickness

** Element thickness does not contribute to total thickness (ie. in cavity)

- The exposed area of the floor specimen used for the calculations of the airborne sound transmission loss was 17.85 m^2 (4.71 m x 3.79 m).
- The total area of the floor assembly resting on top of the lip was 19.32 m² (4.88 m x 3.96 m).
- The mass per area of the elements above the lip was calculated using the total area (19.32 m²).
- The mass per area of the ceiling elements was calculated using the exposed area (17.85 m²).

Client:

CSSBI Specimen ID: A1-005007-13F

Test ID: Date of Test: TLF-14-065 21 November 2014

Room	Volume (m ³)	Air Temperature (°C)	Humidity (%)		
Upper	172.7	22.3 to 22.3	36.3 to 36.7	Area of test specimen:	17.85 m ²
Lower	176.5	17.7 to 17.8	44.7 to 45.0	Mass of test specimen:	2252 kg

For a description of the test specimen and mounting conditions see text pages before. The results in this report apply only to the specific sample submitted for measurement. No responsibility is assumed for performance of any other specimen. Airborne sound transmission loss measurements were conducted in accordance with the requirements of ASTM E90-09, "Standard Test Method for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions and Elements."

In the graph:

The solid line is the measured sound transmission loss for this specimen. The dashed line is the STC contour fitted to the measured values according to ASTM E413-10. The dotted line (may be above the displayed range) is the flanking limit established for this facility. For any frequency band where the measured transmission loss is above the dotted line, the reported value is potentially limited by flanking transmission via laboratory surfaces, and the true value may be higher than that measured. Bars at the bottom of the graph show deficiencies where the measured data are less than the reference contour as described in the fitting procedure for the STC, defined in ASTM E413-10. The shaded cells in the table and areas in the graph are outside the STC contour range.

In the table:

Client:

CSSBI

Specimen ID: A1-005007-13F

Test ID: Date of Test: IIF-14-034 21 November 2014

Room	Volume (m ³)	Air Temperature (°C)	Humidity (%)		
Upper	172.7	22.5 to 22.6	34.9 to 35.4	Area of test specimen:	17.85 m ²
Lower	176.5	17.7 to 17.8	44.4 to 44.8	Mass of test specimen:	2252 kg

For a description of the test specimen and mounting conditions see text pages before. The results in this report apply only to the specific sample submitted for measurement. No responsibility is assumed for performance of any other specimen. Measurements of normalized impact sound pressure level (NISPL) were conducted in accordance with the requirements of ASTM E492-09, "Standard Laboratory Measurement of Impact Sound Transmission through Floor-Ceiling Assemblies Using the Tapping Machine".

In the graph:

The solid line is the measured normalized impact sound pressure level (NISPL) for this specimen. The dashed line is the IIC contour fitted to the measured values according to ASTM E989-06. The dotted line is the background sound level measured in the receiving room during this test (may be below the displayed range). For any frequency where the measured NISPL is less than 10 dB above the dotted line, the reported values were adjusted as noted below. Bars at the bottom of the graph show positive differences; where the measured data are greater than the reference contour as defined in ASTM E989-06. Shaded cells in the table and areas in the graph are outside the IIC contour range.

In the table:

Values marked "c" indicate that the measured background level was between 5 dB and 10 dB below the combined receiving room level and background level. Values marked "*" indicate that the measured background level was less than 5 dB below the combined receiving room level and background level and the reported values of NISPL provide an estimate of the upper limit of normalized impact sound pressure level, according to the procedure outlined in ASTM E492-09. The reported values of NISPL have been corrected according to the procedure outlined in ASTM E492-09.

Floor assembly 14F: GCON38_CORSTE14_SJ317(406)_GFB92_RC13(305)_2G16

Description 38 mm poured lightweight gypsum concrete on corrugated steel deck, attached to 317 mm deep steel joists spaced 406 mm o.c., with two layers of 15.9 mm gypsum board Type X, attached to resilient channels spaced 305 mm o.c., and 92 mm deep glass fibre insulation (R-12) in the cavity.

Topping • None	
Subfloor • (1) 38 mm (1-1/2") nominal poured lightweight gypsum concrete, measured	red from
the bottom of the flute, on corrugated steel deck (corrugation: 14 mr	ı (9/16"),
steel thickness: 0.76 mm (0.030"))	
• (2) Steel deck attached to joists using 19 mm (3/4") screws (#10 he	(washer
head) spaced 203 mm (8") o.c.	
Framing & • Framing headers resting on test frame (steel thickness: 1.37 mm (0.054)))
Cavity • (3) 317 mm (12-1/4") deep steel C-joists (steel thickness: 1.37 mm	(0.054"))
Insulation spaced 406 mm (16") o.c., attached to headers using bearing stiffe	ners and
19 mm (3/4") screws (#10 wafer head) through top of header into joists	
• 203 mm (8") blocking strips, installed at the centre of the joists betwee	1 the two
last joists on each end and between the two joists in the floor centre	
Flat strap connecting blocking strips, attached to the bottom of each jois	
• (4) Cavities between joists filled with 406 mm (16") wide by 92 mm (3-	/8") thick
glass fibre insulation (R-12), resting on resilient channels	
• (5) 13 mm resilient channels, spaced 305 mm (12") o.c., installed perpe	ndicularly
to the joists and attached to each joist using 19 mm (3/4") screws (#	10 water
• (6) I wo layers of 15.9 mm (5/8") gypsum board I ype X installed with	ong side
perpendicular to resilient channels	`
Face layer attached using 41 mm (1-5/8") screws (#6 scavenger head) spaced
305 mm (12) o.c. along the perimeter and in the field	
 Base layer attached using 32 mm (1-1/4) screws (#6 scavenger nead 205 mm (10") a p along the perimeter and in the field) spaced
305 mm (12) o.c. along the perimeter and in the field	
Screws from base layer to face layer offset by 152 mm (6)	
 Gaps along the joints and the perimeter of gypsum boards callked a 	<u>~~</u>

Element	Actual thickness (mm)		Mass (kg)	Mass/length,	area or volume
Gypsum Concrete (24.3 MPa)	40		1260.0	1944.0	kg/m³
Corrugated Steel Deck	14	*	147.4	6.9	kg/m ²
Steel Joists	317		236.4	4.4	kg/m
Web Stiffeners	317	**	14.4	1.9	kg/m
Glass Fibre Insulation	92	**	16.6	0.9	kg/m²
Flat Strap	1	**	1.4	0.3	kg/m
Resilient Channels	13		14.4	0.2	kg/m
Gypsum Board	16		197.7	11.1	kg/m ²
Gypsum Board	16		197.7	11.1	kg/m ²
Total	402		2086		

* Corrugated steel deck thickness already included in gypsum concrete thickness

** Element thickness does not contribute to total thickness (ie. in cavity)

- The exposed area of the floor specimen used for the calculations of the airborne sound transmission loss was 17.85 m² (4.71 m x 3.79 m).
- The total area of the floor assembly resting on top of the lip was 19.32 m^2 (4.88 m x 3.96 m).
- The mass per area of the elements above the lip was calculated using the total area (19.32 m²).
- The mass per area of the ceiling elements was calculated using the exposed area (17.85 m²).

Client:

CSSBI

Specimen ID: A1-005007-14F

Test ID: Date of Test: TLF-14-066 26 November 2014

Room	Volume (m ³)	Air Temperature (°C)	Humidity (%)		
Upper	173.2	20.6 to 20.6	35.4 to 35.8	Area of test specimen:	17.85 m ²
Lower	176.5	17.5 to 17.7	48.2 to 48.5	Mass of test specimen:	2086 kg

For a description of the test specimen and mounting conditions see text pages before. The results in this report apply only to the specific sample submitted for measurement. No responsibility is assumed for performance of any other specimen. Airborne sound transmission loss measurements were conducted in accordance with the requirements of ASTM E90-09, "Standard Test Method for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions and Elements."

In the graph:

The solid line is the measured sound transmission loss for this specimen. The dashed line is the STC contour fitted to the measured values according to ASTM E413-10. The dotted line (may be above the displayed range) is the flanking limit established for this facility. For any frequency band where the measured transmission loss is above the dotted line, the reported value is potentially limited by flanking transmission via laboratory surfaces, and the true value may be higher than that measured. Bars at the bottom of the graph show deficiencies where the measured data are less than the reference contour as described in the fitting procedure for the STC, defined in ASTM E413-10. The shaded cells in the table and areas in the graph are outside the STC contour range.

In the table:

Client:

CSSBI Specimen ID: A1-005007-14F

Test ID: Date of Test: IIF-14-035 27 November 2014

Room	Volume (m ³)	Air Temperature (°C)	Humidity (%)		
Upper	173.2	21.5 to 21.6	37.8 to 38.1	Area of test specimen:	17.85 m ²
Lower	176.5	17.6 to 17.7	47.9 to 48.2	Mass of test specimen:	2086 kg

For a description of the test specimen and mounting conditions see text pages before. The results in this report apply only to the specific sample submitted for measurement. No responsibility is assumed for performance of any other specimen. Measurements of normalized impact sound pressure level (NISPL) were conducted in accordance with the requirements of ASTM E492-09, "Standard Laboratory Measurement of Impact Sound Transmission through Floor-Ceiling Assemblies Using the Tapping Machine".

In the graph:

The solid line is the measured normalized impact sound pressure level (NISPL) for this specimen. The dashed line is the IIC contour fitted to the measured values according to ASTM E989-06. The dotted line is the background sound level measured in the receiving room during this test (may be below the displayed range). For any frequency where the measured NISPL is less than 10 dB above the dotted line, the reported values were adjusted as noted below. Bars at the bottom of the graph show positive differences; where the measured data are greater than the reference contour as defined in ASTM E989-06. Shaded cells in the table and areas in the graph are outside the IIC contour range.

In the table:

Values marked "c" indicate that the measured background level was between 5 dB and 10 dB below the combined receiving room level and background level. Values marked "*" indicate that the measured background level was less than 5 dB below the combined receiving room level and background level and the reported values of NISPL provide an estimate of the upper limit of normalized impact sound pressure level, according to the procedure outlined in ASTM E492-09. The reported values of NISPL have been corrected according to the procedure outlined in ASTM E492-09.

Floor assembly 15F: GCON38_CORSTE14_SJ317(406)_GFB92_RC13(305)_G16

Description	38 mm poured lightweight gypsum concrete on corrugated steel deck, attached to
	317 mm deep steel joists spaced 406 mm o.c., with one layer of 15.9 mm gypsum
	board Type X, attached to resilient channels spaced 305 mm o.c., and 92 mm deep
	glass fibre insulation (R-12) in the cavity. Ceiling gypsum board screwed at 203 mm
	0.C.

Topping	•	None
Subfloor	•	(1) 38 mm (1-1/2") nominal poured lightweight gypsum concrete, measured from
		the bottom of the flute, on corrugated steel deck (corrugation: 14 mm (9/16"),
		steel thickness: 0.76 mm (0.030"))
	•	(2) Steel deck attached to joists using 19 mm (3/4") screws (#10 hex washer
		head) spaced 203 mm (8") o.c.
Framing &	•	Framing headers resting on test frame (steel thickness: 1.37 mm (0.054"))
Cavity	•	(3) 317 mm (12-1/4") deep steel C-joists (steel thickness: 1.37 mm (0.054"))
Insulation		spaced 406 mm (16") o.c., attached to headers using bearing stiffeners and
		19 mm (3/4") screws (#10 wafer head) through top of header into joists
	•	203 mm (8") blocking strips, installed at the centre of the joists between the two
		last joists on each end and between the two joists in the floor centre
	•	Flat strap connecting blocking strips, attached to the bottom of each joist
	•	(4) Cavities between joists filled with 406 mm (16") wide by 92 mm (3-5/8") thick
		glass fibre insulation (R-12), resting on resilient channels
Ceiling	•	(5) 13 mm resilient channels, spaced 305 mm (12") o.c., installed perpendicularly
		to the joists and attached to each joist using 19 mm (3/4") screws (#10 wafer
		head)
	•	(6) One layer of 15.9 mm (5/8") gypsum board Type X installed with long side
		perpendicular to resilient channels
	•	Gypsum layer attached using 41 mm (1-5/8") screws (#6 scavenger head)
		spaced 203 mm (8") o.c. along the perimeter and in the field
	•	Gaps along the joints and the perimeter of gypsum boards caulked and taped
		with aluminum tape

Element	Actual thickness (mm)	Mass (kg)	Mass/length, area or volume
Gypsum Concrete (24.3 MPa)	40	1260.0	1944.0 kg/m ³
Corrugated Steel Deck	14 *	147.4	6.9 kg/m ²
Steel Joists	317	236.4	4.4 kg/m
Web Stiffeners	317 **	14.4	1.9 kg/m
Glass Fibre Insulation	92 **	16.6	0.9 kg/m ²
Flat Strap	1 **	1.4	0.3 kg/m
Resilient Channels	13	14.4	0.2 kg/m
Gypsum Board	16	197.7	11.1 kg/m ²
Total	386	1988	

* Corrugated steel deck thickness already included in gypsum concrete thickness

** Element thickness does not contribute to total thickness (ie. in cavity)

- The exposed area of the floor specimen used for the calculations of the airborne sound transmission loss was 17.85 m^2 (4.71 m x 3.79 m).
- The total area of the floor assembly resting on top of the lip was 19.32 m² (4.88 m x 3.96 m).
- The mass per area of the elements above the lip was calculated using the total area (19.32 m²).
- The mass per area of the ceiling elements was calculated using the exposed area (17.85 m²).

Client:

CSSBI Specimen ID: A1-005007-15F

Test ID: Date of Test: TLF-14-067 28 November 2014

Room	Volume (m ³)	Air Temperature (°C)	Humidity (%)		
Upper	173.2	21.3 to 21.6	37.8 to 38.4	Area of test specimen:	17.85 m ²
Lower	176.8	17.8 to 17.9	34.0 to 34.7	Mass of test specimen:	1988 kg

For a description of the test specimen and mounting conditions see text pages before. The results in this report apply only to the specific sample submitted for measurement. No responsibility is assumed for performance of any other specimen. Airborne sound transmission loss measurements were conducted in accordance with the requirements of ASTM E90-09, "Standard Test Method for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions and Elements."

In the graph:

The solid line is the measured sound transmission loss for this specimen. The dashed line is the STC contour fitted to the measured values according to ASTM E413-10. The dotted line (may be above the displayed range) is the flanking limit established for this facility. For any frequency band where the measured transmission loss is above the dotted line, the reported value is potentially limited by flanking transmission via laboratory surfaces, and the true value may be higher than that measured. Bars at the bottom of the graph show deficiencies where the measured data are less than the reference contour as described in the fitting procedure for the STC, defined in ASTM E413-10. The shaded cells in the table and areas in the graph are outside the STC contour range.

In the table:

This page was intentionally left blank.

Floor assembly 16F: VIN2_GCON38_CORSTE14_SJ317(406)_GFB92_RC13(305)_G16

Description	2 mm vinyl sheet flooring on 38 mm poured lightweight gypsum concrete on corrugated steel deck, attached to 254 mm deep steel joists spaced 406 mm o.c., with one layers of 15.9 mm gypsum board Type X, attached to resilient channels							
	spaced 305 mm o.c., and 92 mm deep glass fibre insulation (R-12) in the cavity.							
Topping	• (1) 2 mm fibre floor sheet vinyl installed without glue on top of the gypsum concrete							
Subfloor	 (2) 38 mm (1-1/2") nominal poured lightweight gypsum concrete, measured from the bottom of the flute, on corrugated steel deck (corrugation: 14 mm (9/16"), steel thickness: 0.76 mm (0.030")) (3) Steel deck attached to joists using 19 mm (3/4") screws (#10 hex washer head) spaced 203 mm (8") o.c. 							
Framing & Cavity Insulation	 Framing headers resting on test frame (steel thickness: 1.37 mm (0.054")) (4) 317 mm (12-1/4") deep steel C-joists (steel thickness: 1.37 mm (0.054")) spaced 406 mm (16") o.c., attached to headers using bearing stiffeners and 19 mm (3/4") screws (#10 wafer head) through top of header into joists 203 mm (8") blocking strips, installed at the centre of the joists between the two last joists on each end and between the two joists in the floor centre Flat strap connecting blocking strips, attached to the bottom of each joist (5) Cavities between joists filled with 406 mm (16") wide by 92 mm (3-5/8") thick glass fibre insulation (R-12), resting on resilient channels 							
Ceiling	 (6) 13 mm resilient channels, spaced 305 mm (12") o.c., installed perpendicularly to the joists and attached to each joist using 19 mm (3/4") screws (#10 wafer head) (7) One layer of 15.9 mm (5/8") gypsum board Type X installed with long side perpendicular to resilient channels Gypsum layer attached using 41 mm (1-5/8") screws (#6 scavenger head) spaced 203 mm (8") o.c. along the perimeter and in the field Gaps along the joints and the perimeter of gypsum boards caulked and taped with aluminum tape 							

Element	Actual thickness (mm)	Mass (kg)	Mass/length, area or volume
Vinyl Sheet Flooring	2	27.4	1.4 kg/m ²
Gypsum Concrete (24.3 MPa)	40	1260.0	1944.0 kg/m ³
Corrugated Steel Deck	14 *	147.4	6.9 kg/m ²
Steel Joists	317	236.4	4.4 kg/m
Web Stiffeners	317 **	14.4	1.9 kg/m
Glass Fibre Insulation	92 **	16.6	0.9 kg/m ²
Flat Strap	1 **	1.4	0.3 kg/m
Resilient Channels	13	14.4	0.2 kg/m
Gypsum Board	16	197.7	11.1 kg/m ²
Total	388	1915	

* Corrugated steel deck thickness already included in gypsum concrete thickness

** Element thickness does not contribute to total thickness (ie. in cavity)

- The exposed area of the floor specimen used for the calculations of the airborne sound transmission loss was 17.85 m² (4.71 m x 3.79 m).
- The total area of the floor assembly resting on top of the lip was 19.32 m^2 (4.88 m x 3.96 m).
- The mass per area of the elements above the lip was calculated using the total area (19.32 m²).
- The mass per area of the ceiling elements was calculated using the exposed area (17.85 m²).
ASTM E90 Test Results – Airborne Sound Transmission Loss

Client:

CSSBI Specimen ID: A1-005007-16F

Test ID: Date of Test: TLF-14-068 02 December 2014

Volume (m³) Air Temperature (°C) Humidity (%) Room Area of test specimen: 17.85 m² 173.2 21.2 to 21.4 32.7 to 32.9 Upper Mass of test specimen: 1915 kg Lower 176.5 17.7 to 17.8 42.3 to 42.5

For a description of the test specimen and mounting conditions see text pages before. The results in this report apply only to the specific sample submitted for measurement. No responsibility is assumed for performance of any other specimen. Airborne sound transmission loss measurements were conducted in accordance with the requirements of ASTM E90-09, "Standard Test Method for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions and Elements."

In the graph:

The solid line is the measured sound transmission loss for this specimen. The dashed line is the STC contour fitted to the measured values according to ASTM E413-10. The dotted line (may be above the displayed range) is the flanking limit established for this facility. For any frequency band where the measured transmission loss is above the dotted line, the reported value is potentially limited by flanking transmission via laboratory surfaces, and the true value may be higher than that measured. Bars at the bottom of the graph show deficiencies where the measured data are less than the reference contour as described in the fitting procedure for the STC, defined in ASTM E413-10. The shaded cells in the table and areas in the graph are outside the STC contour range.

In the table:

Values marked "c" indicate that the measured background level was between 5 dB and 10 dB below the combined receiving room level and background level. The reported values have been corrected according to the procedure outlined in ASTM E90-09. Values marked "*" indicate that the measured background level was less than 5 dB below the combined receiving room level and background level, in which case, the corrected values provide an estimate of the lower limit of airborne sound transmission loss.

ASTM E492 Test Results – Normalized Impact Sound Pressure Levels

Client:

CSSBI

Test ID:

IIF-14-036 02 December 2014

Specimen ID: A1-005007-16F

Date of Test:

Volume (m³) Air Temperature (°C) Humidity (%) Room Area of test specimen: 17.85 m² 173.2 21.5 to 21.8 33.4 to 35.0 Upper Mass of test specimen: 1915 kg Lower 176.5 17.8 to 17.8 42.3 to 42.4

For a description of the test specimen and mounting conditions see text pages before. The results in this report apply only to the specific sample submitted for measurement. No responsibility is assumed for performance of any other specimen. Measurements of normalized impact sound pressure level (NISPL) were conducted in accordance with the requirements of ASTM E492-09, "Standard Laboratory Measurement of Impact Sound Transmission through Floor-Ceiling Assemblies Using the Tapping Machine".

In the graph:

The solid line is the measured normalized impact sound pressure level (NISPL) for this specimen. The dashed line is the IIC contour fitted to the measured values according to ASTM E989-06. The dotted line is the background sound level measured in the receiving room during this test (may be below the displayed range). For any frequency where the measured NISPL is less than 10 dB above the dotted line, the reported values were adjusted as noted below. Bars at the bottom of the graph show positive differences; where the measured data are greater than the reference contour as defined in ASTM E989-06. Shaded cells in the table and areas in the graph are outside the IIC contour range.

In the table:

Values marked "c" indicate that the measured background level was between 5 dB and 10 dB below the combined receiving room level and background level. Values marked "*" indicate that the measured background level was less than 5 dB below the combined receiving room level and background level and the reported values of NISPL provide an estimate of the upper limit of normalized impact sound pressure level, according to the procedure outlined in ASTM E492-09. The reported values of NISPL have been corrected according to the procedure outlined in ASTM E492-09.

Floor assembly 17F: VIN2_GCON38_CORSTE14_SJ317(406)_GFB92_RC13(305)_G16

Description	2 mm vinyl sheet flooring glued on 38 mm poured lightweight gypsum concrete on corrugated steel deck, attached to 254 mm deep steel joists spaced 406 mm o.c., with one layers of 15.9 mm gypsum board Type X, attached to resilient channels							
	spaced 305 mm o.c., and 92 mm deep glass fibre insulation (R-12) in the cavity.							
Topping	• (1) 2 mm fibre floor sheet vinyl glued on top of the gypsum concrete. Vinyl adhesive troweled on the gypsum concrete surface.							
Subfloor	 (2) 38 mm (1-1/2") nominal poured lightweight gypsum concrete, measured from the bottom of the flute, on corrugated steel deck (corrugation: 14 mm (9/16"), steel thickness: 0.76 mm (0.030")) (3) Steel deck attached to joists using 19 mm (3/4") screws (#10 hex washer 							
Froming 9	head) spaced 203 mm (8") o.c.							
Framing & Cavity Insulation	 Framing headers resting on test frame (steel thickness: 1.37 mm (0.054")) (4) 317 mm (12-1/4") deep steel C-joists (steel thickness: 1.37 mm (0.054")) spaced 406 mm (16") o.c., attached to headers using bearing stiffeners and 19 mm (3/4") screws (#10 wafer head) through top of header into joists 203 mm (8") blocking strips, installed at the centre of the joists between the two last joists on each end and between the two joists in the floor centre Flat strap connecting blocking strips, attached to the bottom of each joist (5) Cavities between joists filled with 406 mm (16") wide by 92 mm (3-5/8") thick glass fibre insulation (R-12), resting on resilient channels 							
Ceiling	 (6) 13 mm resilient channels, spaced 305 mm (12") o.c., installed perpendicularly to the joists and attached to each joist using 19 mm (3/4") screws (#10 wafer head) (7) One layer of 15.9 mm (5/8") gypsum board Type X installed with long side perpendicular to resilient channels Gypsum layer attached using 41 mm (1-5/8") screws (#6 scavenger head) spaced 203 mm (8") o.c. along the perimeter and in the field Gaps along the joints and the perimeter of gypsum boards caulked and taped with aluminum tape 							

Specimen Properties

Element	Actual thickness (mm)		Mass (kg)	Mass/length, area or volume	
Vinyl Sheet Flooring	pring 2		27.4	1.4	kg/m ²
Polyurethane Adhesive	0		15.0	0.8	kg/m ²
Gypsum Concrete (24.3 MPa)	40		1260.0	1944.0	kg/m ³
Corrugated Steel Deck	14 *		147.4	6.9	kg/m ²
Steel Joists	317		236.4	4.4	kg/m
Web Stiffeners	317 **	*	14.4	1.9	kg/m
Glass Fibre Insulation	92 **	*	16.6	0.9	kg/m ²
Flat Strap	1 **	*	1.4	0.3	kg/m
Resilient Channels	13		14.4	0.2	kg/m
Gypsum Board	16		197.7	11.1	kg/m²
Total	388		1930		

* Corrugated steel deck thickness already included in gypsum concrete thickness

** Element thickness does not contribute to total thickness (ie. in cavity)

Test Specimen Installation

- The exposed area of the floor specimen used for the calculations of the airborne sound transmission loss was 17.85 m² (4.71 m x 3.79 m).
- The total area of the floor assembly resting on top of the lip was 19.32 m^2 (4.88 m x 3.96 m).
- The mass per area of the elements above the lip was calculated using the total area (19.32 m²).
- The mass per area of the ceiling elements was calculated using the exposed area (17.85 m²).

ASTM E90 Test Results – Airborne Sound Transmission Loss

Client:

CSSBI Specimen ID: A1-005007-17F

Test ID: Date of Test: TLF-14-070 04 December 2014

Room	Volume (m ³)	Air Temperature (°C)	Humidity (%)		
Upper	173.2	21.2 to 21.3	35.7 to 35.9	Area of test specimen:	17.85 m ²
Lower	176.5	17.4 to 17.4	43.4 to 43.6	Mass of test specimen:	1930 kg

For a description of the test specimen and mounting conditions see text pages before. The results in this report apply only to the specific sample submitted for measurement. No responsibility is assumed for performance of any other specimen. Airborne sound transmission loss measurements were conducted in accordance with the requirements of ASTM E90-09, "Standard Test Method for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions and Elements."

In the graph:

The solid line is the measured sound transmission loss for this specimen. The dashed line is the STC contour fitted to the measured values according to ASTM E413-10. The dotted line (may be above the displayed range) is the flanking limit established for this facility. For any frequency band where the measured transmission loss is above the dotted line, the reported value is potentially limited by flanking transmission via laboratory surfaces, and the true value may be higher than that measured. Bars at the bottom of the graph show deficiencies where the measured data are less than the reference contour as described in the fitting procedure for the STC, defined in ASTM E413-10. The shaded cells in the table and areas in the graph are outside the STC contour range.

In the table:

Values marked "c" indicate that the measured background level was between 5 dB and 10 dB below the combined receiving room level and background level. The reported values have been corrected according to the procedure outlined in ASTM E90-09. Values marked "*" indicate that the measured background level was less than 5 dB below the combined receiving room level and background level, in which case, the corrected values provide an estimate of the lower limit of airborne sound transmission loss.

ASTM E492 Test Results – Normalized Impact Sound Pressure Levels

Client:

CSSBI

Test ID:

IIF-14-037 04 December 2014

Specimen ID: A1-005007-17F

Date of Test:

Volume (m³) Air Temperature (°C) Humidity (%) Room 17.85 m² Area of test specimen: 173.2 21.2 to 21.4 35.2 to 36.2 Upper Mass of test specimen: 1930 kg Lower 176.5 17.5 to 17.5 43.7 to 43.9

For a description of the test specimen and mounting conditions see text pages before. The results in this report apply only to the specific sample submitted for measurement. No responsibility is assumed for performance of any other specimen. Measurements of normalized impact sound pressure level (NISPL) were conducted in accordance with the requirements of ASTM E492-09, "Standard Laboratory Measurement of Impact Sound Transmission through Floor-Ceiling Assemblies Using the Tapping Machine".

In the graph:

The solid line is the measured normalized impact sound pressure level (NISPL) for this specimen. The dashed line is the IIC contour fitted to the measured values according to ASTM E989-06. The dotted line is the background sound level measured in the receiving room during this test (may be below the displayed range). For any frequency where the measured NISPL is less than 10 dB above the dotted line, the reported values were adjusted as noted below. Bars at the bottom of the graph show positive differences; where the measured data are greater than the reference contour as defined in ASTM E989-06. Shaded cells in the table and areas in the graph are outside the IIC contour range.

In the table:

Values marked "c" indicate that the measured background level was between 5 dB and 10 dB below the combined receiving room level and background level. Values marked "*" indicate that the measured background level was less than 5 dB below the combined receiving room level and background level and the reported values of NISPL provide an estimate of the upper limit of normalized impact sound pressure level, according to the procedure outlined in ASTM E492-09. The reported values of NISPL have been corrected according to the procedure outlined in ASTM E492-09.

This page was intentionally left blank.

2.3 Analysis of Results for CFS-Framed Floors – Airborne Sound Transmission

The following sections present a brief analysis of some parameters affecting the airborne sound insulation of floor assemblies with cold-formed steel-framed joists. A more detailed analysis can be found in [6].

2.3.1 Transmission Loss of Reference Assembly

Floor assembly A1-005007-01F is used as a reference. The assembly consisted of 254 mm (10") deep cold-formed steel joists spaced 406 mm (16") on centres, with a corrugated steel deck and 38 mm (1-1/2") thick lightweight gypsum concrete on top. The ceiling consisted of one layer of 15.9 mm (5/8") gypsum board type X attached to resilient channels spaced 305 mm (12") on centres, with 92 mm (3-5/8") thick glass fibre batts resting on the resilient channels in the joist cavities. The floor also included blocking strips, installed at the centre of the joists between the two last joists on each end and between the two joists in the floor centre, and a steel strap connecting the three blocking strips with each other and with the other joists. The reference assembly achieved a Sound Transmission Class (STC) rating of 57 and an Impact Insulation Class (IIC) rating of 21.

Figure 14 shows the measured transmission loss curve of the reference assembly 01F in the frequency range between 50 Hz and 5000 Hz. Only the frequency range between 125 Hz and 4000 Hz is used for the calculation of the STC rating, according to the procedure of ASTM E413 [4].

Figure 14: Transmission loss of reference floor assembly

2.3.2 Influence of Joist Depth

Figure 15 shows the transmission loss of four floors: two floors with 254 mm deep joists and one or two layers of gypsum board on the ceiling (Floor 01F and Floor 02F), and the same two floors but with 317 mm deep joists (Floor 11F and Floor 14F).

While the change from one layer to two layers of gypsum board on the ceiling clearly has a significant influence on the transmission loss (compare Floor 01F vs Floor 02F and Floor 11F vs Floor 14F, also see Section 2.3.3), the difference between floors with the same ceiling but different joist depth is smaller. The STC ratings between floors with different joist depths and same ceilings are within 1 point of each other.

The differences in transmission loss are larger – they are shown in Figure 16. For the floors with one layer of gypsum board, the differences between the floor with 254 mm joists and the floor with 317 mm joists are within ± 3 dB below 200 Hz, and within ± 2 dB above 200 Hz. For the floors with two layers of gypsum board, the differences are within ± 5 dB below 200 Hz, and within ± 3 dB above 200 Hz. In both cases, the differences decrease with increasing frequency. From the data presented in Figure 15 and Figure 16, it is difficult to precisely describe the influence of the joist depth on the sound insulation performance. The joist depth appears to be more important at lower frequencies, while generally being of minor importance compared with e.g. additional layers of gypsum board. Even though the two floors are nominally the same (except for the different joist depth), some variability due to workmanship and the mounting of the floors in the chamber does play a role. It is believed that at least some of the differences shown in Figure 16 can be attributed to these uncertainties.

Figure 16: Influence of joist depth – Change in transmission loss

2.3.3 Influence of Gypsum Board Ceiling

Figure 17 shows the transmission loss of one floor with four different ceiling configurations. The reference ceiling consists of one layer of 15.9 mm gypsum board mounted on resilient metal channels. The other transmission loss curves are for a ceiling with two layers of 15.9 mm gypsum mounted in the same way, and for ceilings with one or two layers of 12.7 mm gypsum board mounted on resilient metal channels. Figure 18 shows the differences between ceilings with one layer or two layers of gypsum board.

Adding one layer of gypsum board yields an improvement in the transmission loss of about 4 dB across the frequency range of interest. Consequently, the STC ratings improve by 3-4 points when adding a layer of gypsum board.

The type of gypsum board used (15.9 mm vs. 12.7 mm) is less important. One important factor for the sound insulation performance is the mass of the assembly. The difference in mass per area between the two types of gypsum board is relatively small (11.0 kg/m² vs. 10.0 kg/m²). This is reflected in the fact that at low and mid-frequencies, the transmission loss curves between ceilings with the same number of gypsum board layers are very similar. In this frequency region, both types of gypsum board perform equally well for sound insulation.

In the region of the coincidence frequency, however, the transmission loss curves for the 15.9 mm gypsum boards and the 12.7 mm gypsum boards show distinct differences. This is due to their different bending stiffness *B*, which is cubically proportional to their thickness:

$$B = \frac{Eh^3}{12(1-\nu^2)}$$

Here, *E* is Young's modulus, *h* is the board thickness, and *v* is Poisson's ratio. A thinner board leads to a lower bending stiffness, which in turn leads to a higher coincidence frequency:

$$f_c = \frac{c_0^2}{2\pi} \sqrt{\frac{m''}{B}}$$

Here, c_0 is the speed of sound in air, and m'' is the mass per area of the board.

In terms of STC rating, the differences in the region of the coincidence frequency only lead to a small shift. The STC ratings are within 1 point of each other for one layer of gypsum board, and are the same for two layers of gypsum board.

Figure 17: Influence of gypsum board ceiling

Figure 18: Influence of gypsum board ceiling – Change in transmission loss

2.3.4 Influence of Floor Coverings

Floor coverings are known to significantly improve the impact sound insulation of floors. This is investigated in Section 2.4.4. However, floor coverings can also affect the airborne sound insulation of floors.

Figure 19 shows the transmission loss curves of the reference assembly without any floor covering and with three different types of floor covering: laminate, carpet, and vinyl.

There is very little change between the bare floor and the other three assemblies at low frequencies. The differences are within ± 1 dB below 500 Hz. Above the coincidence frequencies of the floor (500 Hz and 630 Hz) however, the differences between the bare configuration and the floors with coverings are significant. With carpet or laminate, the transmission loss increases by up to 18 dB. The STC ratings are not affected significantly by this improvement, though. They increase by 1 point each, except for the vinyl covering.

The results for the vinyl covering in Figure 19 were contrary to the expectations. It seemed that by adding the vinyl to the floor, the sound insulation performance decreased. This was investigated further. It was found that due to the glueless installation of the vinyl, small air gaps between the gypsum concrete and the vinyl were created, which acted as a spring, introducing additional mass-spring resonances. In order to verify this assessment, additional tests were conducted at the very end of the testing series. The vinyl was again placed on the concrete floor as before, but this time was area-glued to the floor surface. The glue was supposed to eliminate the air pockets and provide a good bond between the two elements.

The results of the additional tests are shown in Figure 20. The floor with glued-down vinyl performed as expected, slightly better than the bare floor at high frequencies, but similarly otherwise. The results from Floor 08F (or the repeated test 16F) should therefore be treated with caution. When installing glueless vinyl it should be ensured that there are no air gaps between the vinyl and the subfloor.

The differences in transmission loss shown in Figure 21 again demonstrate the significant improvement at high frequencies for laminate and carpet, the limited effect of vinyl on the airborne sound insulation, and the very limited effect of any floor covering for low-frequency airborne sound insulation.

Figure 20: Influence of bonding method for vinyl covering

Figure 21: Influence of floor coverings – Change in transmission loss

2.4 Analysis of Results for CFS-Framed Floors – Impact Sound Transmission

The following sections present a brief analysis of some parameters affecting the impact sound insulation of floor assemblies with cold-formed steel-framed joists. Parts of the analysis were also presented in [6].

2.4.1 Normalized Impact Sound Pressure Level of Reference Assembly

Floor assembly A1-005007-01F is used as a reference. The assembly consisted of 254 mm (10") deep cold-formed steel joists spaced 406 mm (16") on centres, with a corrugated steel deck and 38 mm (1-1/2") thick lightweight gypsum concrete on top. The ceiling consisted of one layer of 15.9 mm (5/8") gypsum board type X attached to resilient channels spaced 305 mm (12") on centres, with 92 mm (3-5/8") thick glass fibre batts resting on the resilient channels in the joist cavities. The floor also included blocking strips, installed at the centre of the joists between the two last joists on each end and between the two joists in the floor centre, and a steel strap connecting the three blocking strips with each other and with the other joists. The reference assembly achieved a Sound Transmission Class (STC) rating of 57 and an Impact Insulation Class (IIC) rating of 21.

Figure 22 shows the measured normalized impact sound pressure level for the reference assembly 01F in the frequency range between 50 Hz and 5000 Hz. Only the frequency range between 100 Hz and 3150 Hz is used for the calculation of the IIC rating, according to the procedure of ASTM E989 [7].

Figure 22: Normalized impact sound pressure level of reference floor assembly

2.4.2 Influence of Joist Depth

Figure 23 shows the normalized impact sound pressure levels for four floors: two floors with 254 mm deep joists and one or two layers of gypsum board on the ceiling (Floor 01F and Floor 02F), and the same two floors but with 317 mm deep joists (Floor 11F and Floor 14F).

As was observed for the airborne sound insulation in Section 2.3.2, the influence of the different joist depths on the impact sound insulation is relatively small. The IIC ratings for the floors with same ceiling but different joist depth are within 1 point, and the main discrepancies occur at the low frequencies.

Considering the difference in normalized impact sound pressure levels in Figure 24, similarities to the same plot for airborne sound insulation (Figure 16) can be observed. Again, the joist depth seems to have the most influence at low frequencies, and less influence with increasing frequency.

Figure 23: Influence of joist depth

Figure 24: Influence of joist depth – Change in normalized impact sound pressure level

2.4.3 Influence of Gypsum Board Ceiling

Figure 25 shows the normalized impact sound pressure level for one floor with four different ceiling configurations. The reference ceiling consists of one layer of 15.9 mm gypsum board mounted on resilient metal channels. The other curves are for a ceiling with two layers of 15.9 mm gypsum mounted in the same way, and for ceilings with one or two layers of 12.7 mm gypsum board mounted on resilient metal channels. Figure 26 shows the differences between ceilings with one layer or two layers of gypsum board.

The difference in normalized impact sound pressure level between floors with one layer of gypsum board and with two layers of gypsum board is about 4 dB on average. The IIC ratings improve between 5 and 6 points, for either type of gypsum board.

As in Figure 18, the differences between 15.9 mm thick gypsum board and 12.7 mm thick gypsum board are small at low and mid frequencies. And as in Figure 18, there is a systematic difference in the normalized impact sound pressure levels in the region of the coincidence frequency. Due to the differences at the coincidence frequency, the IIC rating drops by 2-3 points when using 12.7 mm board instead of 15.9 mm board. However, it should be noted that this change in IIC ratings only occurs for bare floors, because in that case the single-number rating is driven by the high frequencies. For floors with coverings such as laminate or carpet (see Section 2.4.4), a shift in the coincidence frequency will usually not lead to a change in the IIC rating.

Figure 25: Influence of gypsum board ceiling

Figure 26: Influence of gypsum board ceiling – Change in normalized impact sound pressure level

2.4.4 Influence of Floor Coverings

Figure 27 illustrates the significant improvement that floor coverings produce when installed on the bare reference floor assembly. The normalized impact sound pressure level drops significantly for all three coverings, in particular at high frequencies. In consequence, the IIC ratings increase by 29, 46, and 29 points for laminate, carpet, and vinyl, respectively. The improvement for carpet at high frequencies exceeds the dynamic range of the measurement system – above 1 kHz, the normalized impact sound pressure level runs into background noise. However, the IIC ratings are not affected by this limitation, as they are dominated by the lowest frequency bands for this floor assembly.

Figure 28 shows the difference between the floors with vinyl covering installed without and with glue. As for airborne sound insulation (see Figure 20), it is advantageous to glue down the vinyl so as to eliminate any remaining air pockets.

Figure 29 shows the differences in normalized impact sound pressure levels between the bare floor assembly and the floor assemblies with coverings. Once again the significant improvement due to floor coverings at mid and high frequencies can be observed.

Figure 27: Influence of floor coverings

Figure 29: Influence of floor coverings – Change in normalized impact sound pressure level

500

Frequency [Hz]

1k

2k

250

63

125

4k

References

- [1] C. Höller, D. Quirt, B. Zeitler and I. Sabourin, "NRC Research Report RR-337: Apparent Sound Insulation in Cold-Formed Steel-Framed Buildings," National Research Council Canada, Ottawa, Ontario, 2017.
- [2] ASTM E90: Standard Test Method for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions and Elements, ASTM International, 2009.
- [3] C. Höller, B. Zeitler and J. Mahn, "Direct Sound Transmission Loss of Heavy Gauge Steel Stud Walls," in *EURONOISE*, Maastricht, 2015.
- [4] ASTM E413: Classification for Rating Sound Insulation, ASTM International, 2010.
- [5] ASTM E492: Standard Test Method for Laboratory Measurement of Impact Sound Transmission Through Floor-Ceiling Assemblies Using the Tapping Machine, ASTM International, 2009.
- [6] C. Höller, B. Zeitler and I. Sabourin, "Direct airborne and impact sound insulation of steelframed floors for mid-rise constructions," in *INTERNOISE*, San Francisco, 2015.
- [7] ASTM E989: Standard Classification for Determination of Impact Insulation Class (IIC), ASTM International, 2006.
- [8] C. Höller and B. Zeitler, "Laboratory Study on Flanking Sound Transmission in Cold-Formed Steel-Framed Constructions," in *INTERNOISE*, Hamburg, 2016.
- [9] C. Höller, D. Quirt, B. Zeitler and I. Sabourin, "Apparent sound insulation in cold-formed steel-framed buildings," in *International Congress on Sound and Vibration*, London, 2017.

Appendix A - ASTM E90-09 – Airborne Sound Transmission – Wall Facility

Facility and Equipment: The NRC Construction Wall Sound Transmission Facility comprises two reverberation rooms (referred to in this report as the large and the small room) with a moveable test frame between the rooms. The rooms have approximate volumes of 255 m³ and 140 m³, respectively. In each room, a calibrated Bruel & Kjaer condenser microphone (type 4166 or 4165) with preamp is moved under computer control to nine positions, and measurements are made in both rooms using an 8-channel National Instrument NI-4472 system installed in a computer. Each room has four bi-amped loudspeakers driven by separate amplifiers and noise sources. To increase randomness of the sound field, there are fixed diffusing panels in each room.

Test Procedure: Airborne sound transmission measurements were conducted in accordance with the requirements of ASTM E90-09, "Standard Method for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions". Airborne sound transmission loss tests were performed in the forward (receiving room is the large room) and reverse (receiving room is the small room) directions. Results presented in this report are the average of the tests in these two directions. In each case, sound transmission loss values were calculated from the average sound pressure levels of both the source and receiving rooms and the average reverberation times of the receiving room. One-third octave band sound pressure levels were measured for 32 seconds at nine microphone positions in each room and then averaged to get the average sound pressure level in each room. Five sound decays were averaged to get the average reverberation times for each room. Information on the flanking limit of the facility and reference specimen test results are available on request.

Significance of Test Results: ASTM E90-09 requires measurements in one-third octave bands in the frequency range 100 Hz to 5000 Hz. The standards recommend making measurements and reporting results over a larger frequency range, and this report presents such results, which may be useful for expert evaluation of the specimen performance. The precision of results outside the 100 Hz to 5000 Hz range has not been established, but is expected to depend on laboratory-specific factors.

Sound Transmission Class (STC): The Sound Transmission Class (STC) was determined in accordance with ASTM E413-10, "Classification for Rating Sound Insulation". It is a single-number rating scheme intended to rate the acoustical performance of a partition element separating offices or dwellings. The higher the value of the rating, the better the performance. The rating is intended to correlate with subjective impressions of the sound insulation provided against the sounds of speech, radio, television, music, and similar sources of noise characteristic of offices and dwellings. The STC is of limited use in applications involving noise spectra that differ markedly from those referred to above (for example, heavy machinery, power transformers, aircraft noise, motor vehicle noise). Generally, in such applications it is preferable to consider the source levels and insulation requirements for each frequency band.

In Situ Performance: Ratings obtained by this standard method tend to represent an upper limit to what might be measured in a field test, due to structure-borne transmission ("flanking") and construction deficiencies in actual buildings.

Appendix B - ASTM E90-09 – Airborne Sound Transmission – Floor Facility

Facility and Equipment: The NRC Construction Floor Sound Transmission Facility comprises two reverberation rooms (referred to in this report as the upper and lower rooms) with a moveable test frame between the rooms. Both rooms have an approximate volume of 175 m³. In each room, a calibrated Bruel & Kjaer condenser microphone (type 4166 or 4165) with preamp is moved under computer control to nine positions, and measurements are made in both rooms using an 8-channel National Instrument NI-4472 system installed in a computer. Each room has four bi-amped loudspeakers driven by separate amplifiers and noise sources. To increase randomness of the sound field, there are fixed diffusing panels in each room.

Test Procedure: Airborne sound transmission measurements were conducted in accordance with the requirements of ASTM E90-09, "Standard Method for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions". Airborne sound transmission loss tests were performed in the forward (receiving room is the lower room) and reverse (receiving room is the upper room) directions. Results presented in this report are the average of the tests in these two directions. In each case, sound transmission loss values were calculated from the average sound pressure levels of both the source and receiving rooms and the average reverberation times of the receiving room. One-third octave band sound pressure levels were measured for 32 seconds at nine microphone positions in each room and then averaged to get the average sound pressure level in each room. Five sound decays were averaged to get the average reverberation times for each room. Information on the flanking limit of the facility and reference specimen test results are available on request.

Significance of Test Results: ASTM E90-09 requires measurements in one-third octave bands in the frequency range 100 Hz to 5000 Hz. The standards recommend making measurements and reporting results over a larger frequency range, and this report presents such results, which may be useful for expert evaluation of the specimen performance. The precision of results outside the 100 Hz to 5000 Hz range has not been established, but is expected to depend on laboratory-specific factors.

Sound Transmission Class (STC): The Sound Transmission Class (STC) was determined in accordance with ASTM E413-10, "Classification for Rating Sound Insulation". It is a single-number rating scheme intended to rate the acoustical performance of a partition element separating offices or dwellings. The higher the value of the rating, the better the performance. The rating is intended to correlate with subjective impressions of the sound insulation provided against the sounds of speech, radio, television, music, and similar sources of noise characteristic of offices and dwellings. The STC is of limited use in applications involving noise spectra that differ markedly from those referred to above (for example, heavy machinery, power transformers, aircraft noise, motor vehicle noise). Generally, in such applications it is preferable to consider the source levels and insulation requirements for each frequency band.

In Situ Performance: Ratings obtained by this standard method tend to represent an upper limit to what might be measured in a field test, due to structure-borne transmission ("flanking") and construction deficiencies in actual buildings.

Appendix C - ASTM E492-09 – Light Impact Sound Transmission – Floor Facility

Facility and Equipment: The NRC Construction Floor Sound Transmission Facility comprises two reverberation rooms (referred to in this report as the upper and lower rooms) with a moveable test frame between the two rooms. Both rooms have an approximate volume of 175 m³. For impact sound transmission, only the lower room is used. A calibrated Bruel & Kjaer condenser microphone (type 4166 or 4165) with preamp is moved under computer control to nine positions, and measurements are made using an 8-channel National Instrument NI 4472 system installed in a computer. The room has 4 bi-amped loudspeakers driven by separate amplifiers and incoherent noise sources. To increase randomness of the sound field, there are fixed diffusing panels in the room.

Test Procedure: Impact sound transmission measurements were conducted in accordance with ASTM E492-09, "Standard Test Method for Laboratory Measurement of Impact Sound Transmission through Floor-Ceiling Assemblies Using the Tapping Machine". This method uses a standard tapping machine placed at four prescribed positions on the floor. One-third octave band sound pressure levels were measured for 32 seconds at each microphone position in the receiving room and then averaged to get the average sound pressure level in the room. Five sound decays were averaged to get the reverberation time at each of the nine microphone positions in the receiving room; these nine reverberation times were averaged to get the spatial average reverberation times for the room. The spatial average sound pressure levels and reverberation times of the receiving room were used to calculate the Normalized Impact Sound Pressure Levels.

Significance of Test Results: ASTM E492-09 requires measurements in one-third octave bands in the frequency range 100 Hz to 3150 Hz. The standard recommends making measurements and reporting results over a larger frequency range, and this report presents such results, which may be useful for expert evaluation of the specimen performance. The precision of results outside the standard ranges has not been established, and is expected to depend on laboratory-specific factors such as room size and specimen dimensions.

Impact Insulation Class (IIC): The Impact Insulation Class (IIC) was determined in accordance with ASTM E989-06, "Standard Classification for Determination of Impact Insulation Class (IIC)". It is a single-number rating scheme intended to rate the effectiveness of floor-ceiling assemblies at preventing the transmission of impact sound from the standard tapping machine. A higher IIC value indicates a better floor performance.

In Situ Performance: Ratings obtained by this standard method tend to represent an upper limit to what might be measured in a field test, due to structure-borne transmission ("flanking") and construction deficiencies in actual buildings.