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ABSTRACT

One stage, of many, in the collection and analysis of mass spec-

trometry data is chosen for this investigative study. Closely related

problems that are of interest for this research are the determina-

tion of: i) which points in the plane should have membership to

which lines, ii) when a collection of points should be described as

a line, and iii) how one knows that all lines have been found and

that none have been missed in the particular data studied. This pa-

per presents a brief survey of possibly related solutions along with

the construction, experimentation and results of the use of a sim-

ple data structure for attempting to provide answers to the afore-

mentioned problems. Future studies involving the aid of domain

experts is required in order to further elaborate these preliminary

time-constrained findings.

Keywords

data structures, applied problem domain, mass spectrometry data

1. INTRODUCTION
In the design of a solution to both theoretical and applied prob-

lems, a computer scientist usually faces a decision point in which

the selection of the most appropriate data structure will need to be

made. Various aspects of the particular problem under study are

taken into account during the construction of such a potential so-

lution, including: i) conflicting problem goals possibly requiring

solution tradeoffs, ii) theoretical considerations from the mind of

a capable theoretician, and iii) applied constraints imposed by ob-

servations of the natural world. Once the data structure has been

chosen, a theoretical or applied algorithmic solution may be de-

rived that is as efficient as possible in terms of, for example, both

memory usage and query/search times. To know whether one has

reached the “efficient as possible” lower bound one usually requires

a restriction of a solution to a particular model of computation, in

which a bound may be possibly proven, for example in the asymp-

totic or amortized [13] senses. This paper does not attempt to theo-

retically prove lower or upper bounds of efficiency. Rather, it hopes

to attempt to properly empirically investigate one particular data

set’s properties in order to aid the selection of a data structure that

will lead to an efficient real world solution for this one particular

problem related to mass spectrometry data.

∗Report for the course COMP5408 entitled Advanced Data Struc-
tures at Carleton University
†Master of Computer Science (in progress)

In the study of real world data, one may start by asking the ques-

tion, “What is data?” To begin to answer the question, it may be

noted that a datum may exist in different forms in many possible

spaces containing various kinds of structure. To be more specific,

a datum is a statement accepted at face value (a “given”), with a

large class of practically important statements being measurements

or observations of a variable[15]. Such a set of datum is called a

space if the points are endowed with a structure[2]; and in Math-

ematics, a structure on a set, or more generally a type, consists of

additional mathematical objects that in some manner attach to the

set, making it easier to visualize or work with, or endowing the

collection with meaning or significance (e.g. metric structures –

geometries) [14].

For the particular case of Computer Science, the concepts of

“data” and “structure” may be combined in order to yield a data

structure. This is an organization of information for better algo-

rithm efficiency (e.g. queue, dictionary, tree, etc.) or conceptual

unity (e.g. name and address of a person). It may include redun-

dant information (e.g. number of nodes in a subtree). [1]

The goal of this paper is to preliminarily investigate possible so-

lutions by presenting a survey of potentially related work and ex-

perimenting with implementation variants for the purpose of im-

proving the collection of peptide ions measured using a high pres-

sure liquid chromatography (HPLC) mass spectrometry system. In

particular, a comparison with results obtained using a previously

reported domain heuristic based implementation ([8], [9]) is of in-

terest; but not possible without the aid of the domain expert, and so

will not be reported.

2. THE PROBLEM
The overall problem may be taken from four different perspec-

tives: i) a Biological problem in which particular types of mole-

cules are investigated with a measuring device (such as a mass

spectrometer) for the purpose of further understanding a disease,

biological process, etc. ii) an optimization problem in which an

unknown number of lines need to be found such that the lines prop-

erly represent a particular data set. iii) a geometrical problem in

which points are assigned to horizontal lines. However, the sense

of a geometrical line needs to be broadened to allow points to lie

on either side of the line and not directly on the line as traditionally

defined. iv) a data structures problem in which both efficient use of

memory and rapid data access times (e.g. query/search times) are

reduced as much as possible for a particular algorithm that would

need to be designed for use in a computer.



To be specific, the particular problems are: i) Given a point in

the plane, to what line should it have membership? ii) Given a

collection of points, when should all (or a subset) of the points be

promoted to the concept of a line? and iii) Given a collection of

points (a data set), how does one know that all lines have been

discovered and that none have been missed?

3. RELATED WORK
Some related work is discussed.

For the general problem of feature extraction [10] cites Nilsson

who comments that:

1. No general theory exists to allow us to choose what features

are relevant for a particular problem.

2. Design of feature extractors is empirical and uses many ad

hoc strategies.

3. We can get some guidance from biological prototypes.

A further point is made in [10] who cites Selfridge and Neisser:

At present the only way the machine can get an ade-

quate set of features is from a human programmer. The

effectiveness of any particular set can be demonstrated

only by experiment. In general there is probably safety

in numbers. The designer will do well to include all the

features he can think of that might plausibly be useful.

In addition, such operations as smoothing, thinning and/or fil-

tering [10] may be applied when dealing with real data. Or the

concept of edging [10] such as that employed by the SLEN (short

line extractor neuron), which acts as an optical edge detector, may

be applied, but with difficulty [10] if the data is noisy, and espe-

cially if the edges are irregular and occur at various angles. They

state that “the main criteria in making a choice in a particular case

are simplicity and the amount of computer time required”.

Possibly one way to decide to which point a line belongs would

be to apply the nearest neighbour rule [4], [3] which states “the

nearest neighbour decision rule assigns to an unclassified sample

point the classification of the nearest of a set of previously classified

points”. The only drawback with this supervised approach, is that

the problem within this paper is an unsupervised one.

The range queries that are possible in space θ(N) [16] seem to

potentially not be applicable given a set of N , unbounded reals. Of

course an artificial bound may be applied and then changed over

time.

A classical pattern classification book[5] contains the following

3 algorithms: i) The minimum squared error line fitting algorithm.

Given a set of points (xi, yi), i = 1, . . . , n in the plane, find two

numbers c0 and c1 such that the following error function is mini-

mum:

nX
i=1

[(c0 + c1xi) − yi]
2

In other words (they state), find a straight line such that the sum

of squares of the vertical distances from each point to the line is

minimum. ii) Eigenvector line fitting[5] in which the perpendicular

(to the line) distance is wanted to be minimized, and iii) Line fitting

by clustering[5] in which a set of points is partitioned such that each

partition is reasonably represented by a single line.

Another important related work[11] contains a chapter on hash

functions, which could facilitate a particular algorithm’s reduction

in execution time, due to their O(1) nature.

Range searching[6]: Let S be a set of n points in Rd, and let

ℜ be a family of subsets of Rd; elements of ℜ are called ranges.

The goal is to preprocess S into a data structure so that for a query

range R, the points in S ∩R can be reported or counted efficiently.

Geometric properties of sets of lines[12] is interesting from the

point of view that a Möbius Hough space is described. It also dis-

cusses a fuzzy subset of Hough space, which is interesting because

instead of the classical notions of geometry, the Fuzzy Sets notion

[17] and appropriate previously extended work, such as the work of

Fuzzy plane projective geometry [7] could also be used to fuzzify

the crisp mass spectrometry data. This would be interesting work

to pursue, but time constraints do not allow it. One idea would be to

define triangular (or trapezoidal or guassian, etc) fuzzy numbers for

each point measured by the mass spectrometer and perform experi-

ments in order to analyse which approach may lead to better results.

Potentially such things as range queries might also be investigated

with respect to fuzzification.

3.1 Previous Work
Previous work published in the proteomics and systems biol-

ogy communities [8], [9] has been made. That approach was con-

structed by domain experts and might be very loosely described as

a point-based algorithm.

ALGORITHM 1. A domain heuristic approach.

(0) Determine specific charge values (z) for each of the mea-

sured ions via the following equation:

MWpep + (MWH) · z

z

where MWpep is the molecular weight of the peptide ion and

MWH is the molecular weight of Hydrogen.

(1) Remove all peaks with intensity less that 150 (Mass Spec-

trometer in Sequencing mode: lower limit)

(2) Sort and partition based on scan, mass to charge and inten-

sity.

(3) Sort each partition and split if contiguous missing values.

(4) Delete multiple points with same scan in a partition.

(5) Repeat 2 − 4 until no more partitions.

— End of Algorithm —

A base-line for which the current proposal is attempting to sur-

pass is shown in Fig-1 with the first three isotopic peaks and their

sum, for one of the largest lines that was constructed using the pre-

vious approach.

4. THE SOLUTION
A desirable solution would take the least amount of time to build,

require the least amount of storage space at any point in time and

produce more accurate results than that of the previously used al-

gorithmic point-based solution.

One possibility could be to build a constrained (in the breadth not

depth sense) Euclidean (or other metric) based minimum spanning

tree (MST). This idea was envisioned during the investigation of

the construction algorithm for α-shapes and the way in which α

could be estimated via the use of a MST. The essential idea would

be that of building a forest of MSTs such that each MST would

represent a line.

Another possibility could be that of a data structure that uses per-

sistence (i.e. an external memory data structure). This data struc-

ture would have the feature that when a point is added to a line,

only the information necessary to retain the line description would
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Figure 1: View of one representative spectrum for the first three

isotopic peaks and their sum as extracted from the data (Fig-

3) after processing by MassLynx Software using the deisotope

algorithm. The spectrum has been truncated at 2, 000, but rises

to approx. 11, 000.

be kept, and the point itself would be written to disk. This approach

leads to a set of line summary descriptions being stored in memory

with the points on disk.

At least three possible representations may be chosen for a da-

tum: i) a classical point in Euclidean space, ii) a line spanning the

measurement error of the instrument, and iii) a fuzzy number cen-

tered on the datum (triangular, gaussian, etc.). In particular, case

(iii) subsumes case (i) in the event that a “spike” fuzzy number

is defined, and subsumes case (ii) in the event that a uniform fuzzy

number is defined. Therefore, case (iii) is the most general case, for

which at least three representations may be investigated. However,

due to time-constraints, only case (i) has been used in the empirical

investigation.

The proposed algorithm is that based on the concept of a sweep-

ing algorithm from Computational Geometry. The general idea is to

consider one step at a time and then move to the next step... greed-

ily constructing lines in an unsupervied fashion as the processing

of points is performed. For the particular solution proposed, each

step may consist of k scans (where a scan is those measurements

obtained from the mass spectrometry instrumentation at time ti)

and these set of k scans are used in the construction of lines.

The concept of a line may be considered in more than one way.

The simplest is to consider all points with exactly the same mass

to charge ratio (one of the point co-ordinates) as belonging to a

line. The next simplest approach would be to consider fixed small

intervals, such that all points falling within the interval would be

considered to belong to the line. Of course, during the construction

of lines, a point may be introduced into the data structure that is

related to the line in such a way that the point should not belong to

that line. This should trigger the growth of a new line. Such line

growing triggers are, for example, i) if the last inserted point’s time

tl and the new point’s time tn are far apart in time (tn − tl > θ)

then a new line should be constructed. ii) if the intensity of the last

point is very different than the new point, then a new line should

be constructed, iii) if k new points near a position are within k + ǫ

scans, for a fixed ǫ then all of the points should be considered to

belong to the concept of a line. iv) etc.

If the k scan approach is taken such that k > 1 then one ap-

proach for the sweeping algorithm to take would be that of finding

equivalence classes every j scans (e.g. the Numerical Recipes in C

page 345 describes such an algorithm) performing a “FindLines”

operation. What is an appropriate k value? This would need to

be experimentally determined for a particular data set investigated.

This paper does not address such an issue.

In summary, a sweep based algorithm that absorbs points into its

data structure is proposed, with the properties that no supervision is

provided and lines containing data points that are significantly older

than the current sweeping position are stored on disk and removed

from memory. In other words, the data structure self adjusts to the

data at a particular time point such that line structures emerge from

the data.

To be specific, the insertion of a point requires a hash into an

array O(1) and then an append into a singly linked list O(1) along

with checks that the currently stored line is sufficient to contain the

new point (if it isn’t, then that line is recorded to disk and a new

line is constructed based on the single new point).

The 1-based hashing function (h()) used is based on i) a width

as heuristically determined to be related to the resolution of the

mass spectrometer (e.g. a 1−1 correspondance would yield width =
0.1, while a 1 − 4 correspondance yields width = 0.025) and ii)

the mass to charge ratios a and b, where a is the lowest currently

known value based on the processed data up until that point and b

is the point to hash.

h (a, b, width) =

�
b − a

width

�
+ 1

The hashing function may be used to hash a point to its location,

or in the case that a new point exceeds the extremes of the current

data structure, to determine the total number of new line containers

(bins) to which the simple data structure should be extended.

5. MASS SPECTROMETRY DATA
The central dogma of Biology revolves around the idea that DNA

molecules give rise to RNA molecules which give rise to protein

molecules through a very complex and currently not completely

understood process. One aspect that is being tackled, is that of at-

tempting to understand the differences in quantity of protein mole-

cules between different cells or tissues of various organisms. This

problem is important because it has been noted that a lot of the

changes in proteomics data are very subtle, but may lead to large

phenotypic differences.

Proteomics platforms that can efficiently identify and quantify

changes in proteins related to disease (e.g., stroke) offer great

promise for advancing biomedical research and the development

of novel medicines.

Mass spectrometry is an analytical technique used to measure

the mass-to-charge ratio (m/z) of ions. It is most generally used

to find the composition of a physical sample by generating a mass

spectrum representing the masses of sample components. The tech-

nique has several applications, including: i) identifying unknown

compounds by the mass of the compound and/or fragments thereof,

ii) determining the isotopic composition of one or more elements

in a compound, iii) determining the structure of compounds by

observing the fragmentation of the compound iv) quantifying the

amount of a compound in a sample using carefully designed meth-

ods (mass spectrometry is not inherently quantitative), v) studying

the fundamentals of gas phase ion chemistry (the chemistry of ions

and neutrals in vacuum), vi) determining other physical, chemical

or even biological properties of compounds with a variety of other

approaches.

Two of the most commonly used methods for quantitative pro-

teomics are i) two-dimensional electrophoresis (2DE) coupled



to either mass spectrometry (MS) or tandem mass spectrometry

(MS/MS) and ii) liquid chromatography coupled to mass spectrom-

etry (LC-MS).

In the 2DE-based approach, intact proteins are separated by 2DE,

and the abundance of a protein is determined based on the stain in-

tensity of the protein spot on the gel. The identity of the protein

is now generally determined by MS analysis peptides after prote-

olysis of the protein spot. Since its inception in the mid-1970s, the

2DE-based approach has been routinely used for large scale quan-

titative proteomics analysis. The 2DE method, however, is limited

in sensitivity and can be inefficient when analyzing hydrophobic

proteins or those with very high or low mass. In addition, 2DE ap-

proach is difficult to automate and has a limited detection capacity

for proteins with extreme ranges in pI values (the isoelectric point

of proteins, which is the pH at which the net charge of the protein

is zero), and for low abundance proteins.

HPLC

Sample

~5,000 Files, 250MB

Raw Data ~2GB

MassLynx

Data

MS

Figure 2: One biological sample is injected into the Mass Spec-

trometer (MS); first passing through the HPLC. 2GB of data

are collected, which are then processed with MassLynx Soft-

ware yielding the data set used as input for this study.

The LC-MS-based approach, on the other hand, can be auto-

mated and can identify proteins with extreme masses and pI values.

This approach is also more sensitive and can detect very low abun-

dant peptide peaks. However, to correctly quantify the low abun-

dant peaks, they need to be properly resolved from the background

“noise”. The LC-MS/MS based approach often uses stable isotope

labeling techniques, e.g. with 15N, 13C, stable isotope labeling

by amino acids in cell culture (SILAC), and isotope-coded affinity

tags (ICAT), to provide relative quantification. While potentially

providing the greatest accuracy, isotopic labeling has some disad-

vantages. Labeling with stable isotopes is expensive, and some

labeling procedures involve complex processes and yield artifacts.

A “label-free” LC-MS approach is based on the principle that

the MS signal intensity of each peptide in a substantially similar

sample analyzed under identical conditions is proportional to the

abundance of the peptide within the dynamic range of the instru-

ment. Therefore one may evaluate the relative abundance of a pep-

tide in different, related samples by analyzing the samples under

identical LC-MS conditions and by comparing MS signal intensity

of the same peptide in different LC-MS runs. A disadvantage of

such a label-free approach is that biological samples are usually

very complex, and as a result, overlapping peptide peaks are often

observed, which may be difficult to resolve. In order to accurately

quantify peptide levels in LC/MS sample, not only do we need to

identify and subtract the background noise but also need to decon-

volve overlapping peaks.

Data was collected after one biological sample was injected into

a mass spectrometer operating in survey mode (See Fig-2). MassL-

ynx software (available from http://www.waters.com) was

Figure 3: Visualization of data after processing by MassLynx

Software for a set of eluting peptides from one biological sam-

ple. Time increases down the y-axis. Mass over charge in-

creases along the x-axis. Intensity (pixel grey levels) represent

ion counts.

used to generate peak lists for each of the MS survey scans (usually

2, 000−4, 000 per sample). Each list contains three types of infor-

mation: i) mass over charge, which is very accurate with an error

of ±0.05 Daltons (for peptides, the range is between about 400 and

1600 , ii) intensity (ion counts) from 0 to, for example, 11, 000 and

iii) time, which can have a high error of ±10 min. Fig-3 shows an

example of raw mass spectrometry data for a set of eluting peptides

from one sample.

6. EXPERIMENTAL SETTINGS
Experiments using the previously described mass spectrometry

data were performed in order to attempt to justify the data struc-

ture selection. Table-1 shows the particular parameters for which a

program was developed. The current implementation work has not

been completed, but was capable of being used for performing the

experiments and should be straightforward to extend and modify

for other solutions that have been proposed.

Table 1: Experimental Settings for obtained results under the

time constraints of the course submission deadline.

Start Scan 1

End Scan -1 (determine dynamically)

Lowest M/z -1 (determine dynamically)

Highest M/z -1 (determine dynamically)

M/z Estimation using scan 1

Resolution (r) 0.025 and 0.1
Sliding Window Size (k) 1 and 10

Datum Type (t) Crisp

Distance (d) Euclidean

Max Allowable Missing 7 points

Min Required Points 5 for 1 line

Contiguous Window Size (c) 882
Line Construction Policy (p) InsertPointsOnly,

InsertAndWriteOldLines



7. RESULTS
Table-2 has the locations of the disruptive events – those points

that cause a resizing on the low or high side of the data structure.

In this experiment, the first scan was used to obtain initial min-

imum and maximum mass/z estimates. Row 1 of the table lists

the number of points (46) in scan 1 along with the minimum and

maximum mass/z values (429.087311 and 1561.113525). This ini-

tial information was then used at a resolution of 0.025 to construct

45, 282 bins. The next row of Table-2 reports that scan 2 contains

69 points and has caused 843 new bins to be constructed on the

low side of the data structure. During the course of all 2646 scans,

there were 10 update minimums and 8 update maximums leading

to a final bin interval of [399.587311, 1601.312378] representing a

data range of [399.612213, 1601.311401]. Analysing the bin inter-

val closely, yields a span of 1201.725067; and with a resolution of

0.025 results in 1201.725067

0.025
= 48069.00268 bins. From a different

perspective, summing all of the increases in the number of bins on

the low side of the data structure (= 1180) across all 2646 scans

with all of the increases in the bins on the high side of the data

structure (= 1606) results in 45, 282 + 1, 180 + 1, 606 = 48, 069
bins as we expected based on the previous calculation.

It can be observed that not all decreases (respectively increases)

in the value of the data points will cause an increase in the data

structure size at the top-most level (i.e. the array of pointers to

lines). This occurs when a point falls within the bounds of the last

“overhanging” interval.

Table 2: Disruptive events for particular scans over all 2646
scans. Resolution 0.025. Total number of data points:

5, 480, 201 NC = No Change in number of bins.

Scan Num Minimum + Maximum +
Points Data/Scan Bins Data/Scan Bins

∞ −∞

1 46 429.087311 45282 1561.113525 ∗

2 69 408.015808 843

5 80 400.220703 312 1564.464478 134

6 85 1579.637451 607

7 72 1598.740356 764

16 73 399.993011 9

41 47 399.912903 3

43 66 399.904785 1

82 57 399.677185 9

86 874 399.661011 1

92 146 1599.796021 42

108 1076 1601.046631 50

123 1063 1601.213867 7

126 1080 1601.285767 2

218 1388 399.620300 1

536 1991 399.613403 NC

556 2183 1601.290527 1

577 3367 1601.295288 NC

591 1563 1601.306641 NC

822 3184 1601.311401 NC

891 2618 399.612213 1

2646 788

7.1 Memory Usage
The InsertPointsOnly line construction policy lead to a max-

imum memory usage of 20, 920K while processing the first 200
scans and over 600MB while processing all 2, 646 scans. This

indicates the necessity for an approach that leads to a reduction in

run-time memory usage. The InsertPointsAndWriteOldLines

policy lead to an approximate maximum run-time memory usage

of 25MB (down from over 600MB) while processing all 2, 646
scans. This resulted in the unsupervised construction of 165, 819
lines. Further experiments in consultation with domain experts are

required to evaluate which lines are appropriate for the investigated

problem.

7.2 Line­based Algorithm Result Example
A portion of the implemented and examined line-constructing

approach is shown in Fig-9. The constructed lines may not be prop-

erly representative of real-world molecules. For example, in Fig-9

it may be observed that some spurious lines exist (which might

need to be deleted). However, it is interesting to observe that there

is at least one example of a line that looks like a curve by the jux-

taposition of line segments at their endpoints. A domain expert

would need to be consulted in order to determine which lines may

be joined/merged and which should be deleted.

Figure 9: Selected subset of the constructed 165, 819 lines.

These results clearly indicate that a data structure that stores all

points from the input data source is not the best solution. Therefore,

the notion that only those points in the current set of lines should

be stored within the data structure is put forth. In fact, a subset of

the points within any particular line may be all that is required if

the points are written “through” the data structure at an appropriate

time. Such a data structure would have the property that the points

will be stored in external memory (e.g. on disk).

8. CONCLUSION
The notion and use of a finite structure to potentially represent

uncountable infinite data has been investigated through a brief sur-

vey of related work. A proposal of several possible data structure

and algorithm variants has been made and three simple data struc-

tures were implemented using combinations of arrays and linked

lists in order to collect and report experimental results. The use of

hashing for O(1) access was made. Brute force search on small

problem sizes was also noted to be of use. Counting based analy-

sis (non-parametric) of the experiments was made. The conclusion

that high bin counts corrolate to high intensities was not collabo-

rated by the data due to the time-constrained deadline imposed by

the course attended. A careful investigation of different point in-

sertion approaches will need to be made with an examination of

the possibility of post-processing the lines in order to merge and/or

delete inappropriate line structures. The data structures proposed

may potentially be parallelized or failing that, a distributed or grid

computing environment could be considered. Further evaluation of

the results with domain experts is required.
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Figure 4: Effect of changing resolution on the data distribution for selected contiguous time (scan) periods) [a..b]. Left Column: Bin

width = 0.025 Right column: Bin width = 0.1 Top Row: [1..882] Middle Row: [883..1764] Bottom Row: [1765..2646]
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Figure 5: Effect of changinging resolution on average number of points per bin over all 2646 scans. Left: Resolution 0.025 Right:

Resolution 0.1 For left: 48, 069 bins

scan
· 2646 scans = 127, 190, 574 bins, Divided by 5, 480, 201 points ≈ 23 bins

point
≈ 0.043 points
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Figure 6: Effect of resolution on behaviour of largest bins for sliding windows of size k = 10. Left column: Resolution 0.025 Right

column: Resolution 0.1 Let θ be the total number of points summed over the previous k scans for a particular bin. Top row: Each

plot has 2 lines (upper and lower). Upper line: Value of maximum θ for each scan > k. Lower line: Number of bins having maximum

θ points (upper line’s size) for each scan > k. Bottom row: Each plot has 2 lines (upper and lower). Upper line: Number of bins

having θ > k for all scans > k. Lower line: Number of bins having θ > 1.5 · k for all scans > k.
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Figure 7: Investigation of properties when one line is used per bin (Resolution 0.025) throughout the 2646 scans (Points are not

deleted after insertion in this scheme). Top Left: Time of first point insertion into the line data structure. Top Right: Time of last

point insertion into the line data structure. Bottom Left: Number of points per line (≡ bin) for all 48, 069 bins (See Fig-4). Bottom

Right: Time of point in line data structure having maximum intensity.
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Figure 8: The policy was changed from InsertPointsOnly in Fig-7 to InsertAndWriteOldLines. See Fig-7 for a description of

the graphics. The essential difference lies in the fact that now the lines are observed to be distributed throughout the 2, 646 scans as

one might hope when peptides are eluting.


