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with an Antibody-based Immune Programming Algorithm
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ABSTRACT
An attempt is made to improve swarm-based optimization
algorithms (SBOA) through an investigation and develop-
ment in C of the following: i) Random Algorithm, ii) Im-
mune Programming Algorithm (IP), iii) Ant Colony Opti-
mization Algorithm (ACO), and iv) Hybridized ACO and
IP. Preliminary experiments are performed and reported for
both integer (Z) stack-based and real (R) model-based prob-
lem representations.
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1. INTRODUCTION
We should not rely on careful examinations, we should

avoid the need for it. – J.W. Tukey, 1977 1

Nature inspires. Biology inspires. Computer Science may
use such inspiration for the construction of new algorithms.
In particular, foraging ants and the human immune system
[3] have lead to the ACO [1], [7] and IP [5], [2], [8] algorithms,
respectively. This work hopes to provide an explication of re-
lated algorithms from a Computer Science perspective with
the intent of contributing to the development of a hybrid
ant immune-system algorithm.

Given an input/output mapping, one becomes interested in
determining an apriori unknown exact-form analytical func-
tion that fits the data. There are many possible classical

∗Final Project for the course COMP5900Z entitled Swarm
Intelligence at Carleton University
†Master of Computer Science (in progress)
1John W. Tukey was referring to the fact that plotted data
(e.g. a scatter plot) should be clearly presented to a reader
when attempting to argue for a particular perspective[6].

Real Representation

1 2 3 4 ... L

4.6 3.1 8.1 -6.0 ... 7.4

Integer Representation

1 2 3 4 ... L

0 2 1 1 ... 0

Figure 1: Two possible representations having
length L. Left: Z-Antibody Right: R-Antibody

Inst. Code Description

nop 0 No Operation (enables antibodies of
varying length)

dup 1 Duplicate the top of the stack (x⇒ xx)
ste 2 Swap the top two elements of the stack

(xy ⇒ yx)
mult 3 Multiply the top two elements of the

stack (23⇒ 6)
add 4 Add the top two elements of the stack

(23⇒ 5)
over 5 Duplicate the second item on the stack

(xy ⇒ yxy)
etpo 6 The top of the stack is replaced with ex

(x⇒ ex). This was not in [5].

Table 1: A Z-Antibody may be decoded into stack-
based instructions using this instruction set

optimization algorithms that could be used (least squares
being one). There are also recent advances in local-search
based simple agents using stigmergy (environment-based mem-
ory) that could potentially be applied if a suitable problem
representation exists.

2. PROBLEM REPRESENTATION
At least two representations may be used (Fig.1), integer-
based, which shall be referred to as a Z-Antibody and real-
based, which shall be referred to as an R-Antibody. Decod-
ing the representation in order to solve the problem may
be done in at least two ways. The Z-Antibody’s elements
may be interpreted as op-codes from an instruction set [5],
but not sufficiently fine-grained in order to be useful for dis-
covering low error models, while the R-Antibody’s elements
may be considered as either op-codes from an instruction
set or constants in a model.

For example, for a Z-Antibody of length 4, with values as



in (Fig.1), it may be decoded as the stack-based evaluation
function (using the instruction set in Table.1).

nop ste dup dup (1)

For example, for an R-Antibody of length 4, with values as
in (Fig.1), it may be decoded as the model-based evaluation
function using the model

a · eb·x + c · x+ d

where antibody= [a, b, c, d].

4.6 · e3.1·x + 8.1 · x+−6.0 (2)

It becomes apparent that the latter form is easier to read
and interpret, inclining one to favour the model-based ap-
proach over the stack-based approach. Irrespective of this,
Z-Antibody and R-Antibody based algorithms were devel-
oped and investigated (albeit briefly for some).

3. ALGORITHMS
The following algorithms were implemented in the program-
ming language C. The Ant Colony Optimization subsection
begins to explain how the mapping is made from Z- and
R-Antibodies to patches and nests.

3.1 Random
Completely randomly generate populations of Z- and R-
Antibodies. This algorithm may be used as a baseline over
which all other algorithms should enhance.

Algorithm 1. Random(m, seed, tmax)

1 for ( t ← 1) to ( t max ) do
2 for ( k ← 0) to ( num ants−1) do
3 bu i l d s o l u t i o n f o r a n t (k )
4 c ompu t e c o s t o f s o l u t i o n f o r a n t (k )
5 recordBestSolut ionFoundSoFar ( )
6 endfor
7 endfor

— End of Algorithm —

3.2 Immune Programming
The Immune Programming algorithm as explained in [5] was
implemented with the help of the PGAPack library [4]. The
algorithm was enhanced in order to support various forms
of elitism, which was not used in [5]. For example, from
one repertoire to the next, one may keep r best affinity-
valued antibodies. The IP algorithm was also enhanced to
incorporate the idea of a maximum number of iterations,
which was not used in [5].

Algorithm 2. IP
(n,r,seed,tmax,Pr(Rep),Pr(Hyp),Pr(Clo))

1 i n i t p o p o f a n t i b o d i e s ( ) do
2 for ( i←0) to s i z e ( r e p e r t o i r e ) do
3 add new ant ibody to r epe r t o i r e ( )
4 for ( j←0) to l en ( new antibody ) do
5 new antibody [ j ] ←

6 [ minOpCode . . maxOpCode ]
7 endfor
8 endfor
9 endFcn

10 eva lua t eA f f i n i t yO fA l lAnt ibod i e s ( )
11 do
12 // E l i t i sm was not in o r i g i n a l a l gor i thm
13 copy r Best Ind iv idua l sToNewReperto i re ( )
14 i ← 0 // index in t o o ld r e p e r t o i r e
15 while (
16 constructionOfNewRepertoireNotComplete )
17 do
18 i f ( i = s i z e ( o ldRepe r to i r e ) ) do
19 i ← 0
20 endif
21 i f ( rand ( ) ≤ Pr (Rep ) ) do
22 generateRandomAntibody ( ) do
23 for ( j←0) to l en ( new antibody ) do
24 new antibody [ j ] ←
25 [ minOpCode . . maxOpCode ]
26 endfor
27 endFcn
28 addNewRandAntibodyToNewRepertoire ( )
29 else do
30 i ← i + 1
31 // c lone or mutate?
32 i f ( rand ( ) ≤ a f f in i tyOfAnt ibody ( i ) ) do
33 cloneAntibodyToNewRepertoire ( i )
34 i f ( rand ( ) > Pr ( Clo ) ) do
35 mutateAntibodyInNewRepertoire ( i )
36 endif
37 endif
38 endelse
39 endwhile
40 // construct ionOfNewRepertoireComplete
41 eva lua t eA f f i n i t yO fA l lAnt ibod i e s ( )
42 while ( notDone )
43 // tooS imi l a r | | noChange | | maxI tera t ions

— End of Algorithm —

3.3 Ant Colony Optimization
The ACO algorithm as applied to the Quadratic Assign-
ment Problem in [1] was implemented and modified for the
purposes outlined above. Fig.2 presents possible ways for
ants to forage over patches in a world, remembering their
graph traversal histories, and providing solutions at the end
of their life. An ant dies when it gets to the other side of
the world (the world is flat) or when it reaches food and
gorges itself to death. Fig.3 demonstrates another possi-
ble representation where an ant is born on any patch and
walks either east or west (wrapping around the world) un-
til it comes to its own nest and subsequently dies. Ants
must make a decision about which patch to move to based
on pheromone intensity on the patches in the neighbouring
nest in the direction of their world tour.

Fig.3 shows a Z-Antibody mapped onto the ant world, where
Nest i is position i in the Z-antibody. For example, if an
ant is standing on a patch that has a mapped value coming
from a Z-Antibody, then that may be decoded using the
instruction set in Table.1.
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Figure 2: Two possible nest/food configurations.
Left: 1 nest and one food source, where ants build
a solution as they traverse the graph from left to
right. Right: 2 nests (and no food) where ants sim-
ply move away from their respective nests, thereby
building a solution. This variant may have ψ ants at
Nest 1 and n− ψ at Nest 2.
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Nest 1 Nest 2 Nest 3 Nest 4

Figure 3: Ants foraging and making decisions about
what patch to move to. In this scheme, every ant
may stand on a patch irrespective of how many ants
are already standing on the patch, but the patches
only exist in the world inside of nests.

Algorithm 3. ACO
(n, seed, α, β, ρ, tmax, τ0, Q)

1 a s s i g n i n i t i a l p h e r omon e l e v e l s ( )
2 p l a c e a n t s o n l o c a t i o n s ( )
3 p ← constructAPermutation ( )
4 for ( t ← 1) to ( t max ) do
5 // p l a c e a n t s o n l o c a t i o n s ()?
6 randomize (p)
7 for ( k ← 0) to ( num ants−1) do
8 // cons ider ants in random order
9 bu i l d s o l u t i o n f o r a n t (p [ k ] )

10 endfor
11 for ( k ← 0) to ( num ants−1) do
12 c ompu t e c o s t o f s o l u t i o n f o r a n t (k )
13 endfor
14 recordBestSolutionFoundByAnAnt ( )
15 update pheromone t ra i l s ( )
16 endfor

— End of Algorithm —

3.4 Hybrid
This algorithm is a hybridization of ACO and IP in the sense
that ACO is used, but every resetFreq time steps a com-
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Figure 4: Z-Antibody mapped onto the ant World,
where Nest i represents position i in the antibody.

pletely new mapping on the world is performed. This new
generation of map values may be done in the same manner
as upon initialization (e.g. uniform random distribution) or
may be done based on the learned pheromone levels of the
ants, thereby passing learned information from one world
map to the next. It is hoped that the ants have learned
good mapping values, from which nearby values could be
generated (a local search heuristic). This is in the spirit of
IP w.r.t. the generation of new antibodies based on their
affinity to the antigen, which represents the problem (in-
put/output mapping) that is being attempted to be solved.

Algorithm 4. Hybrid
(n, seed, resetFreq, α, ρ, L, P , tmax, τ0, Q)

1 a s s i g n i n i t i a l p h e r omon e l e v e l s ( )
2 p l a c e a n t s o n l o c a t i o n s ( )
3 p ← constructAPermutation ( )
4 for ( t ← 1) to ( t max ) do
5 randomize (p)
6 for ( k ← 0) to ( num ants−1) do
7 // cons ider ants in random order
8 bu i l d s o l u t i o n f o r a n t (p [ k ] ) do
9 for ( i ← 0 to ( l en ( antibody ) ) do

10 do
11 j ← nextIndexBasedOnDirection ( )
12 Pr ( patch ) ← basedOnPheromone ( )
13 while ( rand ( ) < Pr ( patch )
14 ants [ p [ k ] ] . h i s t o r y [ i ] ← j
15 // i . e . a l l ow ant to move to patch
16 // ( a s s i gn opcode to ant ’ s s o l u t i o n
17 endfor
18 endFcn
19 endfor
20 for ( k ← 0) to ( num ants−1) do
21 c ompu t e c o s t o f s o l u t i o n f o r a n t ( k )
22 endfor
23 recordBestSolutionFoundByAnyAnt ( )
24 update pheromone t ra i l s ( )
25 i f ( r e s e t f r e q > 0 do
26 i f ( t%r e s e t f r e q =0) do
27 update map and pheromone levels ( )
28 endif
29 endif
30 endfor
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Figure 5: A static snapshot of a dynamic ant World
with a mapping to the reals. N- and R-antibodies
may be represented in this world.

— End of Algorithm —

Fig.5 demonstrates a static snapshot of how an R-antibody
may be computationally evolved from ants and immune-
system concepts. A new patch representing an additional
real value on an attribute in the search space that the ants
are exploring may be generated in many possible ways. The
current implementation generates a new real value com-
pletely randomly, but a more local based generation strat-
egy, such as generating based on a gaussian distribution of
mean µ and standard deviation σ, may lead to faster con-
vergence.

4. EXPERIMENTAL RESULTS
All of the algorithms were implemented and executables run.
Only the results of the most complex implementation are
reported.

Fig.6 shows the best antibody found for a series of 100 exper-
iments where all parameters were kept constant except the
seed, which was calculated based on computer clock time.
In particular, the number of ants was 200, the maximum
number of iterations was 200, the mapping graph would be
regenerated completely at randomly every 4 iterations (in
order to give the ants enough time to search), α was 2, ρ was
0.1, τ0 was 0.1, the strategy for updating the pheromone lev-
els was based on normalization, the R-antibody had length
4 and the number of patches per nest was fixed at 20.

The overall distribution of solution costs is shown in Fig.7.
It can be seen to have a skewed distribution with average
solution costs in the neighbourhood of 1.

The best solution (Fig.6) was found at t = 153, with a so-
lution cost of 0.224718 and Seed= 1113951307. The ant
started at Nest 0, and moved in an westerly direction. The
complete graph traversal history is [19, 17, 4, 12], where the
corresponding mapped R-Antibody (labelled as antibody1)
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Figure 6: 100 trials with fixed algorithm parame-
ters, except seed. Good solutions (models fitting
the antigen very closely) are distributed throughout
the space of time steps. Demonstrating the stochas-
tic nature of the hybrid algorithm.
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Figure 7: Distribution of 100 best solutions from
trials of the hybrid algorithm with a fixed parameter
set (except varying seed). Binning via Scott’s Rule.
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Figure 8: Residuals for best fit (out of 100 trials)
to the input/output mapping problem (f(x) = x) for
x = 1, 2, 3, ..., 20).

x f(x) antibody1 antibody2

1 1 1.103267 0.883816
2 2 2.082888 1.890011
3 3 3.077486 2.896206
... ... ... ...
19 19 18.991054 18.995326
20 20 19.985652 20.001521

x = 10.5 cost 0.224718) 0.301971)
seed 1113951307 1113926247

Table 2: First 6 values of the 20 (x,y) sampled point
values used to build the solution costs

[4.992523,−5.565050, 0.994598, 0.093692]. These mapping
values represent the constants in Eqn(2) above. This an-
tibody solution has the residuals as indicated in Fig.8. It is
interesting that the residuals display such a high correlation,
as this indicates a further area for antibody improvement.
Possibly, if the hybrid algorithm had tmax increased, the
solution cost would be able to decrease in this case.

The model that was learnt is not similar to the expected
solution. That is, the expected form of the solution, based
on the generated data, is f(x) = a·x, but we were giving the
hybrid algorithm a vastly different underlying data model
assumption (Eqn(2)) in order to investigate the robustness
of the hybrid algorithm with respect to underlying incorrect
assumptions.

It is interesting, that one experiment of higher cost seems
to model the problem much better. For example, antibody2
in Table.2 can be seen to have discovered a much better
solution (even though it is of higher cost than antibody1) be-
cause it is [0.313425,−6.967681, 1.006195,−0.122379], where
the first and fourth co-ordinates are closer to 0.

5. CONCLUSIONS
A number of algorithms were implemented with the goal of
developing a hybrid ACO immune-system algorithm. Pre-
liminary results look promising (further experiments are re-

quired to more fully cover the space of possible algorithm pa-
rameters) as the hybrid algorithm was able to find vastly dif-
ferent models to fit the data (as one would expect). Future
extensions include i) incorporating the concept of dynamic
nest size, and ii) investigating other local/global heuristics
(e.g. w.r.t. a) pheromone levels, b) patch generation/elimi-
nation, c) number of ants based on the number of patches/n-
odes in the world/graph) that may help improve convergence
time and/or solution cost.
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