
https://doi.org/10.4224/8914149

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez

pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the

first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien

DOI ci-dessous.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Fully Automatic Texture Mapping for Image-Based Modeling
Wuhrer, Stefanie; Atanossov, R.; Shu, Chang

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:
https://nrc-publications.canada.ca/eng/view/object/?id=7ebcbbe2-fdb3-4c38-a688-8d520cea3c9b

https://publications-cnrc.canada.ca/fra/voir/objet/?id=7ebcbbe2-fdb3-4c38-a688-8d520cea3c9b

National Research

Council Canada

Institute for

Information Technology

Conseil national

de recherches Canada

Institut de technologie

de l'information

Fully Automatic Texture Mapping for

Image-Based Modeling *

Wuhrer, S., Atanossov, R., and Shu, C.
August 2006

* published as NRC/ERB-1141. 18 pages. August 2006. NRC 48778.

Copyright 2006 by

National Research Council of Canada

Permission is granted to quote short excerpts and to reproduce figures and tables

from this report, provided that the source of such material is fully acknowledged.

National Research

Council Canada

Institute for

Information Technology

Conseil national

de recherches Canada

Institut de technologie

de l'information

Fully Automatic Texture

Mapping for Image-Based

Modeling

Wuhrer, S., Atanossov, R., and Shu, C.
August 2006

Copyright 2006 by

National Research Council of Canada

Permission is granted to quote short excerpts and to reproduce figures and tables from this report,

provided that the source of such material is fully acknowledged.

ERB-1141

NRC 48778

NRC-48778/ERB-1141
Printed September 7, 2006

Fully Automatic Texture Mapping for

Image-Based Modeling

Stefanie Wuhrer Rossen Atanassov Chang Shu

Abstract

Image based modeling techniques construct digital shape models from 2D
images of physical objects. They are used in a wide range of applications,
where both virtual and real data is required. Texture information is a crucial
part of virtual models used to represent real world objects in simulations, ani-
mations, virtual and augmented reality, reverse engineering, and various other
applications. In this paper, we describe a fully automated method for creating
digital 3D models of real world objects with high quality texture maps from
digital images. The camera calibration is obtained automatically by using self-
identifying markers. The approach for texture mapping is mainly based on
Hernandez-Esteban [5] and Rocchini et al. [10]. Examples of results obtained
using the proposed application are presented and discussed.

2

Contents

1 Introduction 4

2 Camera calibration 6

3 3D Reconstruction 6

4 Texture Mapping 7

4.1 Triangle-Image correspondence . 8
4.2 Vertex-Image correspondence . 8
4.3 Atlas packing . 9

5 Results 12

6 Conclusion 15

7 Acknowledgments 16

3

1 Introduction

Image based modeling techniques are used to construct three dimensional shape mod-
els from multiple two dimensional images of physical objects. They are used in a wide
range of applications, where both virtual and real data is required. Examples of these
applications include, but are not limited to simulations, animations, virtual and aug-
mented reality, and reverse engineering. Once a mesh representation of the three
dimensional model is acquired, it remains to find realistic texture information for the
object. Using high quality textures on coarse geometric models often yields better vi-
sual results than using poor texture on geometrically accurate models. Hence, texture
information is a crucial part of virtual models representing real world objects.

Reconstructing three dimensional digital shape models with texture information
from images is a well-studied problem, hence the following overview is not extensive.
Rocchini et al. [10] proposed a semi-automated approach for acquiring a three dimen-
sional model with texture information from a set of images. The approach requires
user interaction in order to calibrate the camera used to take the input images. After
this calibration step, the approach automatically reconstructs the three dimensional
geometry of the model by using a local registration step for each subsection of each
image and by using a silhouette-based approach. One of the major contributions
of Rocchini et al. is to obtain high quality texture maps for the three dimensional
model. The texture information is copied into a texture atlas, where special care is
taken to minimize artifacts along the edges of the mesh.

Duan [1] presents a fully automatic approach based on optimizing the photo con-
sistency using a system of partial differential equations (PDE). Starting from an ini-
tial mesh model, the PDE-based approach adaptively refines both the geometry and
the topology of the model. However, only closed surfaces can be modeled. Texture
information is found automatically.

Another fully automatic approach for acquiring a three dimensional model with
texture information from a set of images was proposed by Lensch et al. [7]. The
camera calibration is found using a silhouette-based approach. The silhouettes are
then used to reconstruct the three dimensional mesh model. The high quality texture
information for the model is found automatically and copied into a texture atlas.

Hernandez-Esteban [5] improved the approach of Lensch et al. [7] to find the cam-
era calibration automatically using a refined silhouette-based approach. The initial
silhouettes are used as input to an optimization problem that finds more accurate
calibration parameters. Hernandez-Esteban uses a particle-based approach that au-
tomatically creates textures for the mesh and filters highlights that may be present
in the input images.

In this paper, the following problems are addressed. Given a set of input images,
the camera calibration is found using a pattern of self-identifying markers. Once the

4

calibration is known, a silhouette-based approach is used to obtain a three dimensional
mesh representation of the model. Finally, a high quality texture map for the mesh is
computed. Once the texture information is found, we copy all the texture information
into a small set of images called atlases in order to export the texture mapped model
efficiently. It is possible to export the texture mapped mesh model along with the
texture atlases to VRML or POV-Ray1 file formats. A visualization of the problem
statement is given in Figure 1.

input images ⇒ result

Figure 1: Visualization of the problem statement

Unlike previous works reviewed above, we use self-identifying markers to calibrate
the cameras, which yields a fully automated approach for reconstructing three di-
mensional models from a set of images. To obtain high quality texture maps for the
model, we implemented an approach strongly based on previous work by Hernandez-
Esteban [5] and Rocchini et al. [10] that achieves relatively small and densely packed
texture atlases. The approach is particle-based and employs both triangle-to-image
bindings and vertex-to-image bindings. Highlights are filtered by the approach and
a blending technique ensures that patch boundaries along the edges of triangles are
smooth.

The paper is organized as follows. Section 2 discusses how the input images are
calibrated automatically using self-identifying markers. Section 3 explains how a
three dimensional mesh representation of the model is obtained. Section 4 discusses
how a high quality texture map for the three dimensional mesh model is obtained. In
particular, we discuss how triangles in 3D are associated with texture triangles in the
input images, how the best texture information for each vertex in 3D is found, and
what steps are required to create texture atlases. Section 5 gives results obtained by
our implementation and finally, Section 6 gives concluding remarks.

1Available at http://www.povray.org

5

2 Camera calibration

The first step in image-based modeling is to determine camera calibration parameters.
The pin-hole camera model, illustrated in Figure 2, is usually used in computer vision
and computer graphics to represent the image formation process [13]. Suppose X =
[X Y Z 1]⊤ is a 3D point and x = [x y 1]⊤ is its projection in the image plane,
both in homogeneous coordinate. The perspective projection can be modeled by

λx = K[R t]X,

where λ is an arbitrary constant, R is a rotation matrix and t is a translation vector,
together they relate the world coordinate frame to the camera coordinate frame, and
K is an upper triangular matrix defined as

K =

fx s u0

0 fy v0

0 0 1

 .

Camera calibration amounts to find out two types of parameters: intrinsic and
extrinsic [13]. The intrinsic parameters are in the matrix K, that is, the focal lengths
fx and fy, the principle point (u0, v0), and the skew factor s. For modern digital
camera, s can be safely assumed to be zero. The extrinsic parameters, the rotation
matrix R and the translation vector t, define the position of the camera where each
image is taken with respect to a world coordinate frame.

Camera calibration is usually done with the help of a calibration pattern. Tra-
ditionally, planar patterns, like chessboard [11], or 3D patterns, like cube [4], have
been used. These patterns have known geometry and when imaged, they provide
correspondences between 3D points with known coordinates and points in the image
plane. In this work, we use a planar pattern that consists of self-identifying markers,
called ARTags [2]. These markers can be identified reliably and quickly in the images.
The corners of the markers provide the 3D-2D correspondences that are pessary for
solving the calibration parameters.

We arrange the markers in an array and print them on a planar panel. The
object to be modeled is put on the panel and multiple images are taken from different
viewpoints. We use Zhang’s algorithm [15] to compute both intrinsic and extrinsic
parameters.

3 3D Reconstruction

Once a set of images are calibrated, that is, the camera intrinsic parameters found and
camera pose for each image computed, we adopt the visual hull method to reconstruct

6

x

y

f

o

p

P

z

Camera frame

Image frame

Figure 2: The pinhole camera model

a 3D model [6]. The basic idea is that the camera pose together with the silhouette of
the object in the image define a cone in 3-space in which the object is contained. By
intersecting all such cones, we find an approximation (the visual hull) of the original
shape. The more images we take, the closer the visual hull approximates the object.
Certain concave part of the object can never been reconstructed. But for most shapes,
this method is a simple way to reconstruction 3D shape from images.

The key issue here is to find the silhouette. This is a segmentation problem, which
is generally difficult to solve. In practice, controlled background, for instance, blue
screen, has been used [12, 9]. In our system, the background is the ARTag array. We
use the ARTags as calibration patterns. What is remarkable is that they also help
separate the object from the background. This is because we can recreate the image
of the panel in each view as if it is imaged at the viewpoint but without the object.
Then background subtraction is simply the difference of the two images. Details of
this method can be found in Fiala and Shu [3].

Once we find the silhouettes, we use a volumetric method to reconstruct the model.
The 3D space is first divided into voxel grids. Each voxel is tested against all the
cones. If it is outside a cone, it is carved out. The voxels that have passed the tests
form the visual hull. Finally, we run the marching cube algorithm [8] to create the
triangle mesh.

4 Texture Mapping

In this section, we explain how to obtain a high quality texture map for the three
dimensional mesh model. Section 4.1 discusses how triangles in 3D are associated
with texture triangles in the input images, Section 4.2 discusses how the best texture
information for each vertex in 3D is found, and Section 4.3 explains the steps are
required to create texture atlases.

7

4.1 Triangle-Image correspondence

The aim is to find for each triangle T of the mesh a texture triangle T̃ located in a
single input image that best matches the 3D triangle. Denote the projection of T on
the input image I using the previously obtained calibration by T ′. The best matching
triangle T̃ is the projection T ′ onto an input image I, such that T is visible in I and
such that T̃ maximizes the area of all the projections T ′.

To find the best texture triangle for the 3D triangle T , we first test for each vertex
of the mesh whether it is occluded in any of the input images. This test is done using
a hardware-accelerated z-buffer solution offered by OpenGL. To use this solution,
the geometry of the mesh is rendered using the current calibration information as
viewing matrix. The vertex v for which the occlusion test is carried out is pushed
to the graphics card and the z-buffer value is read back. The vertex v is visible if
the z-buffer value corresponds to the position of v in the scene. Otherwise, v is not
visible. The results of the occlusion tests are stored in an incidence matrix. For
any given triangle, we then only take images into consideration where none of the
triangle’s vertices are occluded. For each image with this property, we compare the
outer normal of the triangle with the viewing direction of the camera. The most
fronto-normal camera is chosen, since this camera yields the maximal area in the
projection if zoom is neglected.

4.2 Vertex-Image correspondence

The method used for texture mapping requires for each vertex v of the mesh a texture
pixel of an input image that best matches v. Note that the matching of a texture pixel
to v is not determined by the mappings of texture triangles to v’s incident triangles.
The triangles incident to v may be associated with texture triangles in different input
images and conversely, the three vertices of a triangle T may be associated with pixels
in different input images. Therefore, the texture binding process outlined in Section
4.1 needs to be adapted to find the best texture pixel for a given 3D vertex.

The incidence matrix storing occlusion information explained in Section 4.1 is
used to find all the images in which a given vertex v is visible. Among all the images
in which v is visible, we only consider images in which the projection of v is not a
silhouette vertex. A pixel in an image is considered silhouette if it is located on the
boundary of the object and the background. Such pixels are not used for texture
mapping, because slight measurement errors in the camera’s calibration parameters
result in big color changes of the pixel. The projection of v is a silhouette vertex if
at least one of the triangles adjacent to v are occluded in the image [10]. Therefore,
the matrix storing occlusion information can be used to find silhouette vertices.

Among all the visible projections of v that are not silhouette vertices, we choose the
one located on the most fronto-normal image as the texture pixel with highest quality.

8

This requires the knowledge of the normal vector for each vertex of the mesh. Clearly,
differential geometry implies that since a vertex of the mesh is an discontinuity, the
normal vector is not defined. However, various approximation techniques exist to find
the normal vector ~n of a vertex in a triangular mesh. In this project, ~n is computed
as a weighted sum of the normals of v’s neighboring triangles. This approach is
both simple and yields acceptable results. For a more detailed discussion on possible
choices of weights, refer to Wilke [14].

4.3 Atlas packing

This section discusses the creation of texture atlases used for texture mapping. The
approach that was implemented mainly follows the approach published by Hernandez-
Esteban [5]. First, the layouts of the texture atlases are created and each triangle of
the mesh is associated with a triangle in an atlas by setting texture coordinates for
the 3D triangle. Second, the texture atlases are filled with color. Finally, all atlases
are exported to JPEG image files and the final representation of the mesh along with
texture coordinates is exported as a VRML or a POV-Ray file.

We create one texture triangle per 3D triangle, which has the advantages of in-
troducing zero rectification distortion as well as being easy to implement. To obtain
the layout of the texture atlases we assume that all 3D triangles have a good aspect
ratio, which allows us to choose texture triangles as equilateral triangles. The layout
of the texture atlas is a tiling where most of the triangles are grouped in squares, see
Figure 3. The pairing of triangles into squares ensures that the atlas maps are space
efficient in practice. Statistics on the space efficiency of this layout can be found in
Hernandez-Esteban [5]. Next we describe how to assign a texture tile to each 3D
triangle and how to place the texture tile into the global texture atlas.

Each 3D triangle T is associated with a texture tile size in the following way. The
longest edge of the texture triangle T̃ associated with T is multiplied by a quality
constant. Denote the result of this computation by l. The tile size is then found by
matching l to the closest integer in the series of tile sizes Si = 2Si−1−1, i > 0, S0 = 2.
Note that all the tile sizes Si, i > 0 are odd integers. Once the tile sizes are found
for each triangle of the mesh, the 3D triangles are associated with texture tiles. To
achieve that, tiles in the atlas are paired into squares, called quads, sharing a diagonal.
The 3D triangles are paired according to the following criteria. The first triangles to
be paired are adjacent triangles in the mesh having the same tile size. The next class
of triangles to be paired are adjacent triangles in the mesh with different tile sizes.
They are paired by increasing the smaller of the two tile sizes. The last triangles to be
paired are non-adjacent triangles in the mesh having the same tile size. Since the 3D
triangles are not adjacent, the shared diagonal results in a discontinuity in the image.
This results in artifacts along the boundary of the 3D texture mapped triangles. To

9

Figure 3: The layout of the texture atlases. Figure by Hernandez-Esteban [5].

avoid this artifact, the diagonal of the quad is doubled and bilinear interpolation is
used to obtain a smooth transition between the two triangles. Figure 4 shows this
effect.

Figure 4: Bilinear interpolation along texture tiles with doubled diagonals. Figure by
Hernandez-Esteban [5].

After pairing the tiles into quads, each tile is assigned a location in the set of
texture atlases. This is achieved by sorting the texture tiles in decreasing order by
size. For each tile size, the first tiles to be assigned a location are tiles assigned to
adjacent triangles in 3D. The next tiles to be layed out are tiles assigned to non-
adjacent triangles in 3D. Finally, isolated tiles are considered. Note that there exists

10

at most one isolated tile per tile size. The texture tiles are then put into the atlases
in decreasing order along rows. If the maximum width of an atlas is reached, a new
row is started. If the atlas does not contain sufficient space to hold further tiles, an
additional atlas is started. Note that due to the standard of graphics cards, the size
the atlas is always a power of 2. Along with laying out the triangular tiles in the
atlas, we set the texture coordinates accordingly for the corresponding triangle in 3D.

It remains to fill the texture atlases with color. This is achieved using a particle-
based approach, where each triangle of the mesh is treated as particle. To assign
colors to the pixels of the atlases, the vertex-image correspondences obtained in Sec-
tion 4.2 are used. The three vertices of a triangle T in 3D are associated with at
most three input images by vertex-image correspondences. This induces a correspon-
dence of T to at most three input images. Each 3D triangle T is projected to each
of the corresponding images, which yields at most three projected triangles. The
color information of the projections in the images is used to fill the tile in the atlas
corresponding to T with color using barycentric coordinates. Figure 5 illustrates this
coloring approach. For each pixel in the tile corresponding to T , we obtain the color
as a weighted sum of the projections of T in the at most three images associated with
T . The weight used for the coloring corresponds to the barycentric coordinate of the
tile pixel.

Figure 5: Particle based approach to blend the colors in the atlas. Figure by
Hernandez-Esteban [5].

For tiles assigned to non-adjacent triangles in 3D, the color of the doubled diagonal
is obtained using the bilinear interpolation approach discussed above and shown in
Figure 4. This approach blends the colors of the input images associated with vertices
of the mesh for each triangle of the mesh. It further offers the advantage that pair-
ing triangles into quads yields shared diagonals, thereby ensuring smooth transitions

11

along the boundaries of 3D triangles. For non-shared boundaries, the smooth transi-
tions are still achieved by using barycentric weights for the coloring approach. Even
adjacent triangles corresponding to tiles of different sizes do not introduce artifacts
in the texture map. The weighted blending of color information obtained using input
images offers the additional advantage that highlights in the images are filtered. Once
the texture atlases are filled with color, a full representation of the textured object
is available. The approach used in this project to create a texture atlas is strongly
based on the approach proposed by Hernandez-Esteban [5].

Finally, we export all atlases to JPEG image files and the final representation of the
mesh along with texture coordinates as a VRML or a POV-Ray file. The exported
representation can later be used, hence the proposed algorithm can be viewed as
a preprocessing step to various applications. Note that the running time of the
algorithm need not be real-time.

5 Results

We demonstrate our results using four models. The implementation is carried out
in C++ using the OpenGL2 library for rendering. The models are stored using
the trimesh3 library. This library offers data structures to store, read, write, and
manipulate three dimensional tiangular meshes. In the following, the running times
are only given for finding and exporting the high quality texture information. All
running times are measured using a 2.4 GHz Intel Pentium 4 processor with 1 GB
RAM. The code was compiled under Linux Fedora 4 using gcc 4.0.2. The images were
captured using a Canon Powershot S60 digital camera with 5 MB pixels.

The first model to be discussed is the model of a hat. The 30 input images were
automatically calibrated to yield a three dimensional mesh representation of the hat
consisting of 711 vertices and 1361 faces. Two of the input images are shown in
Figures 6(a) and (b), respectively. The camera positions for the 30 input images are
shown in Figure 6(c). Refer to Figure 6(d) to see the reconstructed geometry of the
model. All of the 30 calibrated input images were used to obtain the texture map.
The results of the textured model are shown in Figures 6(e)-(h). Figure 6(e) shows
the exported texture atlas.

Note that the packing of the atlas in Figure 6(e) is dense and space efficient.
Figure 6(f) shows that the overall appearance of the object is visually pleasing and
clearly compares to the input image shown in 6(a). Figure 6(g) shows a smooth
texture map. No artifacts along edges of the mesh are visible. Figure 6(h) illustrates
a few artifacts, but the quality is overall acceptable.

2Available at http://www.opengl.org
3Available at http://graphics.stanford.edu/software/trimesh

12

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6: Texture mapping of a hat model

The second model to be discussed is the model of a clown. The 20 input images
were automatically calibrated to yield a three dimensional mesh representation of the
clown consisting of 2346 vertices and 4641 faces. Two of the input images are shown
in Figures 7(a) and (b), respectively. The camera positions for the 20 input images
are shown in Figure 7(c). Refer to Figure 7(d) to see the reconstructed geometry
of the model. All of the 20 calibrated input images were used to obtain the texture
map. The results of the textured model are shown in Figures 7(e)-(h). Figure 7(e)
shows the exported texture atlas.

The geometric reconstruction of the clown is erroneous, since the hole of the piggy
bank at the back of the clown’s head does not correspond to a hole in the mesh. The
quality of the texture mapped model shown in Figures 7(f)-(h) is of lower quality
than in the previous model. This is due to specularity on the surface of the physical
object.

The third model to be discussed is the model of a stuffed dog. The 17 input images
were automatically calibrated to yield a three dimensional mesh representation of the
dog consisting of 3036 vertices and 5856 faces. One input image is shown in Figures
8(a). The camera positions for the 17 input images are shown in Figure 8(b). Refer to
Figure 8(c) to see the reconstructed geometry of the model. All of the 17 calibrated
input images were used to obtain the texture map. The results of the textured model
are shown in Figures 8(d)-(h). Figures 8(d) and (e) show the two exported texture
atlases. Note that although the second atlas is almost empty, we can not increase the
atlas size slightly, since the size of the atlases needs to be a power of 2.

Figures 8(f)-(h) show that the quality of the texture mapped model is high. Only
a few artifacts appear along the dog’s face. This implies that the approach yields

13

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7: Texture mapping of a clown model

high-quality texture maps even when the geometry of the input model is very coarse
and does not capture the geometry of the real-world object well.

The last model to be discussed is the model of a bag. The 20 input images were
automatically calibrated to yield a three dimensional mesh representation of the bag
consisting of 7091 vertices and 13975 faces. One input image is shown in Figure 9(a).
The camera positions for the 20 input images are shown in Figure 9(b). Refer to
Figure 9(c) to see the reconstructed geometry of the model. All of the 20 calibrated
input images were used to obtain the texture map. The results of the textured model
are shown in Figures 9(d)-(h). Figures 9(d) and (e) show the two exported texture
atlases.

The geometric reconstruction of the bag contains holes. This is due to occlusions
in the images. Clearly, it is only possible to reconstruct visible parts of the object.
Figure 9(f) has the same appearance as the input image shown in Figure 9(a). Figure
9(h) shows an up close rendering of the model, where no artifacts are visible. This
shows that the approach yields high quality for diffuse surfaces when the geometry
of the object is approximated well by the input model.

The running times of the approach for each of the input images are given in Table
1 below. Note that the application discussed in this paper does not require to obtain
real-time running times. The texture mapping is performed once for a given model
and then exported. When using the model later, only a VRML file with corresponding
JPEG images needs to be read. Therefore, running times in the order of a few minutes
as achieved by the presented application are acceptable.

Finally, we illustrate six different renderings of a scene using POV-Ray and the

14

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8: Texture mapping of a dog model

Model # of # of # of Building Building Exporting Exporting Total
triangles vertices input incidence atlas JPEG VRML time

images matrix
Hat 1361 711 30 6.1s 4.6s 0.2s 0.1s 12.6s

Clown 4641 2346 20 13.1s 25.0s 0.2s 0.2s 52.8s
Dog 5856 3036 17 15.0s 36.7s 0.3s 0.2s 52.8s
Bag 13975 7091 20 39.5s 200.7s 0.3s 0.4s 242.1s

Table 1: Running times of the algorithm.

clown model. The composition was built using the exported clown model, a glass
sphere, and a metallic frame. All scenes were rendered using POV-Ray’s advanced
photon mapping in order to create the caustics effects on the floor and the metallic
walls. The left column of images in Figure 10 illustrates the rendering of the scene
using three bright white-colored lights and different colored floors respectively. The
top two images in the right column were rendered using three different colors for each
light source. The last image was rendered using red tinted glass material for the
sphere around the clown, all light sources and the floor are white colored.

6 Conclusion

We described a fully automated application which creates three dimensional models
with high quality texture maps from images of real world objects. The approach
uses self-identifying markers to obtain a fully automatic system. The texture map

15

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 9: Texture mapping of a bag model

of the model offers the advantages of minimizing artifacts along mesh boundaries, of
filtering highlights present in the input images, and of space savings. The texture
mapped models can be exported by the application and later be loaded by various
applications in order to use the digital model of a physical object in simulations,
animations, virtual and augmented reality, reverse engineering, and various other
applications.

7 Acknowledgments

Part of this project was initiated as a course project of a Computer Graphics grad-
uate course lectured by Dr. Jochen Lang at Ottawa University. We wish to thank
Dr. Jochen Lang for fruitful discussions on the part of the paper related to texture
mapping.

References

[1] Y. Duan. Topology Adaptive Deformable Models for Visual Computing. PhD
thesis, State Univeristy of New York, 2003.

[2] M. Fiala. ARTag: a fiducial marker system using digital techniques. In CVPR’05,
volume 1, pages 590 – 596, 2005.

16

Figure 10: Scene composition using the clown model. Rendered using POV-Ray.

[3] M. Fiala and C. Shu. Background subtraction using self-identifying patterns. In
Proc. of CRV’05 (Canadian Confernence on Computer and Robot Vision), pages
558–565, May 2005.

[4] Janne Heikkilä. Geometric camera calibration using circular control points. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 22(10):1066–1077,
October 2000.

[5] C. Hernandez-Esteban. Stereo and Silhouette Fusion for 3D Object Modeling
from Uncalibrated Images Under Circular Motion. PhD thesis, cole Nationale
Suprieure des Tlcommunications, Paris, 2004.

17

[6] A. Laurentini. The visual hull concept for silhouette based image understanding.
IEEE PAMI, 16(2):150–162, 1994.

[7] H. Lensch, W. Heidrich, and H. Seidel. Automated texture registration and
stitching for real world models. Graphical Models, 63:245–262, 2001.

[8] W.E. Lorenson and H.E. Cline. Marching Cubes: A High Resolution 3-D Sur-
face Construction Algorithm. In Proceedings of the 14th annual conference on
Computer graphics and interactive techniques, volume 21, pages 163–169, July
1987.

[9] Wojciech Matusik, Hanspeter Pfister, Addy Ngan, Paul Beardsley, Remo Ziegler,
and Leonard McMillan. Image-based 3D photography using opacity hulls. In
SIGGRAPH ’02: Proceedings of the 29th annual conference on computer graphics
and interactive techniques, pages 427–437, 2002.

[10] Claudio Rocchini, Paolo Cignoni, Claudio Montani, and Roberto Scopigno. Ac-
quiring, stitching and blending diffuse appearance attributes on 3d models. The
Visual Computer, 18(3):186–204, 2002.

[11] Chang Shu, Alan Brunton, and Mark Fiala. Automatic grid finding in calibra-
tion patterns using Delaunay triangulation. Technical Report NRC-46497/ERB-
1104, National Research Council of Canada, Institute for Information Technol-
ogy, 2003.

[12] Alvy Ray Smith and James F. Blinn. Blue screen matting. In SIGGRAPH ’96:
Proceedings of the 23rd annual conference on Computer graphics and interactive
techniques, pages 259–268, 1996.

[13] E. Trucco and A. Verri. Introductory Techniques for 3-D Computer Vision.
Prentice-Hall, 1998.

[14] W. Wilke. Segmentierung und Approximation grosser Punktwolken. Ph.D Dis-
sertation, Technische Universitaet Darmstadt, November 2000.

[15] Z. Zhang. Flexible camera calibration by viewing a plane from unknown ori-
entations. In International Conference on Computer Vision (ICCV99), pages
666–673, Corfu, Greece, 1999.

18

