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ABSTRACT: The intrinsic viscosity of cyclic polystyrenes (C-
PS) and linear polystyrenes (L-PS) with molecular weight
(MW) ranging from 16K to 370K was measured in THF using
size exclusion chromatography coupled with a triple detection
system. The C-PS samples were prepared by a ring-closure
reaction of telechelic linear precursor synthesized by anionic
polymerization. As-synthesized C-PS samples after the ring-
closure reaction contain various byproducts, and they were
fractionated by liquid chromatography at the critical condition
to obtain highly pure C-PS. While the intrinsic viscosity of L-
PS agrees well with the literature data, C-PS shows
significantly lower value than the literature values. The
Mark−Houwink exponent of C-PS is 0.67, somewhat lower than 0.70 for L-PS in the good solvent over the MW range
examined. Therefore, the ratio of the intrinsic viscosity of C-PS to L-PS (g′ = [η]C/[η]L) in THF is not MW independent but
decreases as MW increases (0.63 ≥ [η]C/[η]L ≥ 0.57). The trend of intrinsic viscosity agrees well with the computer simulation
result. The discrepancy in [η]C from the literature values can largely be attributed to the contamination of linear byproducts in
the earlier studies.

■ INTRODUCTION

Cyclic polymers exhibit many interesting physical properties
distinct from linear polymers such as chain dimensions,
hydrodynamic properties, viscoelastic properties, etc.1,2 One
of the properties of cyclic polymers often compared with their
linear counterpart is the hydrodynamic property in the dilute
solution reflecting their chain dimension. The g′ factor (the
ratio of the intrinsic viscosity, [η]C/[η]L, of a cyclic polymer to
the linear polymer at the same molecular weight) in a theta
condition was theoretically predicted by Bloomfield and Zimm
(0.658)3 and Fukatsu and Kurata (0.645).4 Under good solvent
conditions, g′ was estimated by Douglas and Freed to be 0.673
using the preaveraging approximation5 and 0.561 by Schaub et
al.6 using the renormalization-group theory and perturbative
calculations. Although there are many extensive and accurate
simulations of other properties, g′ was studied considerably less
than the ratio of mean-square radius of gyration, g = (Rg

2)C/
(Rg

2)L, and the most advanced estimate of g′ for cyclic polymers
in a good solvent is perhaps of Rubio et al., g′ = 0.58 ± 0.01.7

Many experimental studies were also carried out. Geiser and
Höcker obtained g′ = 0.65 for cyclic polystyrenes (C-PS) with
molecular weight (MW) from 3K to 24K at the theta condition
of linear PS (L-PS, 34.5 °C, cyclohexane).8 Roovers reported
that Mark−Houwink exponent of C-PS with MW from 7K to
450K was lower than 0.5 ([η]C ∼ M0.465) at the theta condition
of L-PS (35 °C, cyclohexane), and g′ value decreases with MW
from 0.66−0.68 to 0.58−0.60.9 Roovers and Toporowski also
reported that the theta temperature (at which the second virial
coefficient, A2, vanishes) of C-PS (ΘC) in cyclohexane was 28
°C, about 6 °C lower than the theta temperature of L-PS
(ΘL).

10 Lutz et al. confirmed that ΘC ≈ ΘL − 6 °C for C-PS
(10K ≤ MW ≤ 200K) in a few theta solvents (cyclohexane, d-
cyclohexane, and decalin), but the Mark−Houwink exponent
was larger than 0.5 ([η]C ∼ M0.53) and g′ was 0.66 at 34.5 °C in
cyclohexane.11 Later, McKenna et al. confirmed the results of
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Lutz et al. with the same C-PS samples presenting [η]C ∼

M0.52±0.03 and g′ = 0.65 at 35 °C in cyclohexane.12 They
suggested that the smaller Mark−Houwink exponent of
Roovers might be due to the knots formation in the C-PS
sample.
A similar discrepancy in the intrinsic viscosity of cyclic

polymers also exists in good solvents. Geiser and Höcker
reported with C-PS (3K ≤ MW ≤ 24K) that g′ decreased from
0.76 to 0.56 with increasing MW in toluene,8 while Hild et al.
reported an opposite trend for C-PS in THF that g′ = 0.65
when MW ≤ 60K and g′ increased to 0.92 when MW >
100K.13 Roovers reported for C-PS (7K ≤ MW ≤ 450K) that
the Mark−Houwink exponent of C-PS (0.67) was substantially
smaller than that of L-PS (0.73) in toluene;9 thus, g′ decreases
with MW from 0.67 to 0.57. Lutz et al. reported that the Mark−
Houwink exponent for C-PS (10K ≤ MW ≤ 200K) in THF
was 0.72 higher than the exponent of L-PS (0.70); thus, g′
increases with MW from 0.71 to 0.74.11

The apparent lack of consensus in the intrinsic viscosity of
the cyclic polymers is likely due to the low purity of the cyclic
polymers considering the good reproducibility for linear
polymers. The cyclic polymers were prepared by ring closure
of telechelic linear precursors. Because of the imperfect ring
closure reaction, contamination of the target cyclic polymers by
various byproducts, mostly linear precursors and their adducts,
is unavoidable. Therefore, postsynthesis fractionation is
necessary to obtain cyclic polymers with high purity. For the
fractionation of cyclic polymers from the ring closure reaction
mixture, fractional precipitation has been employed most
frequently, exploiting the lower theta temperature of cyclic
polymer; i.e., cyclic polymer is more soluble than linear
polymer near the theta condition.10,11,14 Nonetheless, it was not
possible to fractionate the byproducts completely from the
target cyclic polymers. The purity of cyclic polymers has been
examined mostly with size exclusion chromatography (SEC)
utilizing the fact that a cyclic polymer has a smaller chain
dimension than the linear counterpart at the same MW.
However, the SEC retention (related to the hydrodynamic
volume of polymer chains) of a cyclic polymer and that of a
linear precursor are not sufficiently different to allow complete
separation of the elution peaks, and it is not possible to assess
the purity of the cyclic polymers by SEC precisely. For example,
the C-PS samples prepared and used by Roovers were
recharacterized by liquid chromatography at critical condition
(LCCC) later, and the samples were found to contain as much
as 10−20% linear polymers.15 Efficiency of the LCCC
fractionation of cyclic polymers from their linear counterparts
was predicted theoretically and verified experimentally.15−18

It was found that a tiny amount of linear polymer
contaminant brought a considerable effect on the melt
viscoelastic properties.19 Although the effect of linear PS
contamination on the dilute solution property is expected not
as high as the melt property, the effect might be large enough to
prevent a reasonable consensus in the intrinsic viscosity of
cyclic polymers. Other puzzling reports are from the cyclic
polymers prepared by the ring-expansion method using
methathesis polymerization. Although the ring expansion
mechanism is supposed to produce pure cyclic polymers, the
method results in cyclic polymers with a broad MW
distribution, and the purity of the cyclic polymers is difficult
to be assessed. Interestingly, however, these analysis results of
the cyclic polymers commonly show very low g′ value,
∼0.4.20−23

Therefore, it appears worth to reexamine the intrinsic
viscosity of cyclic polymers with high purity samples to shed
light on the conflicting situation. In this study, we prepared a
set of C-PS of MW ranging from 16K to 370K (including
dimeric cycles) by anionic polymerization and LCCC
fractionation. The high purity of all samples was confirmed
by analytical LCCC. Their intrinsic viscosities were measured
in a good solvent (THF) and compared with the existing
literature data.

■ EXPERIMENTAL SECTION

Preparation and Characterization of C-PS. Five linear tele-
chelic PS precursors with weight-average MW (Mw) ranging from
16.4K to 185.2K were prepared by anionic polymerization. Cyclization
of the telechelic PS precursors was done by the end-to-end radical
coupling reaction between the two terminal diphenylethylene moieties.
The coupling reactions were carried out in THF to reduce the
possibility of the knot formation.24 Details of polymerization
procedure and the ring closure reaction of the PS precursors were
reported previously.25 All polymers used in this study were
characterized by SEC coupled with a triple detector (Malvern, TDA
302). The specific refractive index increment (dn/dc) of PS was
measured in THF as 0.185 mL/g. Three PS gel columns (Agilent
Polypore 300 × 7.5 mm, Waters Styragel HR4 300 × 7.8 mm, and
Jordi mixed bed 300 × 8.0 mm) were used, and the column
temperature was controlled at 40 °C by use of a column oven (Fiatron,
TC-50). The solvent was THF (Samchun, HPLC grade) at a flow rate
of 0.7 mL/min. Polymer samples for the SEC analysis were dissolved
in THF at a concentration of ∼3 mg/mL, and the injection volume
was 100 μL.

LCCC Fractionation. For the preparative fractionation of C-PS
from the as-synthesized mixture, two large bore C18 bonded silica
columns (Nucleosil C18, 250 × 9.8 mm, 100 Å pore, 5 μm particle and
Nucleosil C18, 250 × 9.8 mm, 300 Å pore, 5 μm particle) and a mixed
eluent of CH2Cl2/CH3CN (58/42, v/v, Samchun, HPLC grade) at a
flow rate of 2 mL/min were used. Temperature of the column was
controlled at 19 °C by circulating water from a programmable bath/
circulator (Thermo-Haake, C25P) through a homemade column
jacket. The injection sample solution (∼10 mg/mL) was prepared by
dissolving the polymers in the eluent, and the injection volume was
500 μL. The chromatograms were recorded by a light scattering
detector (Wyatt, miniDAWN) and a UV absorption detector
(Younglin, UV7300) operating at a wavelength of 260 nm.

Purity Assessment of Fractionated C-PS. Purity assessment of
the C-PS fractionated by preparative LCCC was carried out by
analytical LCCC at the critical adsorption point (CAP) of C-PS. Three
C18 bonded silica columns (Nucleosil C18, 250 × 4.6 mm, 500 Å
pore, 7 μm particle, Lunasil C18, 250 × 4.6 mm, 300 Å pore, 5 μm
particle, Fuji C18, 150 × 4.6 mm, 100 Å pore, 5 μm particle) and a
mixed eluent of CH2Cl2/CH3CN (58/42, v/v, Samchun, HPLC
grade) were used. Column temperature was 21 °C, and 100 μL sample
(2 mg/mL) was injected.

Computer Simulations. There are several approximate simulation
methods for calculation of intrinsic viscosity available.26 In this work
we use a modified variational lower bound method proposed by
Fixman27 and further elaborated by others.28,29 A lower bound to the
intrinsic viscosity is usually calculated using a fixed approximate
diffusion tensor Da, which is easier to handle in calculations than the
original diffusion tensor D, and the computationally expensive matrix
inversion of Da is calculated only once. In our method we set Da = D
and solve the matrix equation Dx = b for vector x using the conjugate
gradients method30 for each conformation (no preaveraging was
used). As the preconditioner we use the inverse of the nearest circulant
matrix to D.31 Choosing this form of a preconditioner allows for
efficient calculations using the discrete fast Fourier transform and
results in a rapid convergence of the conjugate gradients method. For
the diffusion tensor we use the usual Rotne−Prager−Yamakawa
form.32 The ensemble averaging over polymer conformations is done
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using samples generated by a hybrid Monte Carlo simulation for a
coarse-grained bead−spring model of the chain in a good solvent. Full
details of this simulation method and the polymer model are given
elsewhere.33 The simulation traces of Rg

2 and [η] showing efficient
Monte Carlo sampling are given in Figures S1 and S2. The
combination of these two methods allowed us to run simulations for
chains up to 1000 beads with modest computer resources. Simulations
of cyclic polymers started from an unknot. Under good solvent
conditions the fraction of knots is very small (less than 0.005) for
chain lengths considered here.34 The formation of knots in our hybrid
Monte Carlo simulations would require crossing of a rather high
energy barrier and was not observed. Sample conformations with radii
of gyration near the ensemble averages are given in Figures S3 and S4.

■ RESULTS AND DISCUSSION

Intrinsic Viscosity of High Purity C-PS. The results for
five PS precursors characterized by SEC with LS detection are
summarized in Table 1.

Figure 1 shows the SEC chromatograms of the PS precursors
(dotted lines) and the as-synthesized ring-closure products

(solid lines). The as-synthesized polymers contain C-PS that
elutes later than the precursor PS as well as various high-MW
adducts that elute earlier than the precursor PS. The as-
synthesized products were fractionated by preparative LCCC.
Figure 2 displays a LCCC chromatogram of as-synthesized

C-PS 5 (185.2K) obtained in the LCCC fractionation. The
separation condition is between the critical adsorption points
(CAP) of L-PS and C-PS.25 Therefore, the C-PS part is
separated well from the L-PS part while the individual adducts
in both C-PS and L-PS parts are not resolved well. The L-PS

part appears to have higher MW than C-PS part (from the
relatively higher intensity of the LS detector signal than the UV
detector signal) since the L-PS part contains more high-MW
adducts than the C-PS part. The L-PS part was collected at tE =
14−16.4 min, and the C-PS part was collected after tE = 18.1
min. The part of tE = 16.4−18.1 min was discarded to remove
the coexisting linear and cyclic PS.
Figure 3 displays the SEC chromatograms of the LCCC

fractions of C-PS and L-PS. Both C-PS and L-PS fractions

contain high-MW adducts that are identified as the multimers
of C-PS and L-PS from the MW of individual peaks determined
by LS detection. The enlarged rings were used together with
the single ring for the intrinsic viscosity measurement since
they are well resolved one another by SEC as shown in Figure
3. The purity assessment of the C-PS was also done without
further fractionation of multiple adducts. The elution time of C-
PS is longer than L-PS of the same MW to make the apparent
MW measured by standard PS calibration smaller than L-PS.
We found that MWC,App = 0.72MWL (see Figure S5) that is

Table 1. Molecular Characteristics of PS Precursorsa

sample Mw Mw/Mn

PS 1 16.4K 1.01

PS 2 33.1K 1.01

PS 3 64.6K <1.01

PS 4 92.2K <1.01

PS 5 185.2K <1.01
aDetermined by SEC/light scattering in THF.

Figure 1. SEC chromatograms of the five as-synthesized C-PSs (solid
lines) and the corresponding precursors (dashed lines) recorded by a
refractive index detector.

Figure 2. LCCC chromatogram of the as-synthesized C-PS 5 in the
preparative LCCC fractionation recorded by a UV absorption (black
solid line) and a light scattering (red dashed line) detector.

Figure 3. SEC chromatograms of the LCCC-fractionated L-PS parts
(black dashed lines) and C-PS parts (red solid lines) recorded by a
refractive index detector.
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essentially the same as that reported before by Roovers (0.71)10

and Takano et al. (0.73).18

Figure 4 shows the analytical LCCC chromatograms at the
CAP of C-PS at which different MW C-PS coelute while L-PS

elute earlier.22 They clearly show that the elution peaks of L-PS
and C-PS are completely resolved down to the baseline,
indicating the high purity of C-PS.
The intrinsic viscosity of the L-PS and C-PS samples was

measured individually by SEC separation coupled with triple
detection (a refractive index detector to measure the
concentration, a light scattering detector to measure the
molecular weight, and a differential viscosity detector to
measure the viscosity). While the SEC column temperature
was set at 40 °C, absolute Mw and intrinsic viscosity were
measured at 25 °C at the detector. Figure 5 shows the SEC
chromatograms of the C-PS 5 (red solid line) and the L-PS 5
(black dashed line) recorded by a differential refractive index
detector in the triple detection. In addition, MW (top) and
intrinsic viscosity ([η], bottom) measured by the triple
detection are also plotted. Data of the other samples are
shown in Figure S6. C-PS and L-PS are easily distinguishable by
comparing their relative elution times, MW, or [η]: C-PS elutes
later and has a smaller [η] value than the L-PS of the same
MW. The LCCC fractionated C-PS part and L-PS part
containing multimers are used without further fractionation
since SEC resolution is good enough to provide useful
information on the dimers in addition to the unimers as
shown in Figure 5.
The results of MW (Mp) and [η] at each peak position are

summarized in Table S1 and plotted in a double logarithmic
plot of log [η] vs log MW in Figure 6. In addition to the data
obtained in this study, some representative data of PS in the
literature are also plotted together for easy comparison. Our
data of C-PS and L-PS show excellent linear relationship
between log [η] and log MW. In addition, the universal
calibration35 for the SEC data analysis works well for C-PS as
shown in Figure S7. The linear least-squares fits yield the
following relationships for L-PS and C-PS,

η = ×
− ±
M[ ] 1.363 10L

4 0.700 0.005

Figure 4. Analytical LCCC chromatograms of the fractionated C-PS
parts (red solid lines) and the fractionated L-PS parts (black dashed
lines) at the CAP of C-PS recorded by a UV absorption detector.

Figure 5. SEC chromatograms of the C-PS 5 part (red solid line) and
the L-PS 5 part (black dashed line) recorded by a RI detector. The Mw

obtained from the light scattering detection (top) and the intrinsic
viscosity obtained from the viscosity detection (bottom) are shown in
the plot.

Figure 6. Comparison of Mark−Houwink plots of C-PS and L-PS.
This work: L-PS (black filled square and solid line), C-PS (red open
square and solid line). Literature data: L-PS in THF at 25 °C (pink
dotted line),36 L-PS in toluene at 35 °C (dark green dashed line),37 L-
PS in THF at 25 °C (light blue dotted line),38 C-PS in THF at 25 °C
(violet open circle and dashed line),11 C-PS in toluene at 35 °C (light
green open triangle and dashed line),9 and the C-PS data of Roovers9

corrected for linear contaminants (blue cross).
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η = ×
− ±
M[ ] 1.198 10C

4 0.666 0.005

Although the SEC-TD method is widely used to measure
intrinsic viscosity of polymers, the accuracy of the method
needs to be examined vis-a-̀vis the data obtained by the
traditional method using capillary viscometers and extrapola-
tion to the zero concentration. For the purpose, we compare
the L-PS data measured by the SEC-TD method in this study
with three sets of literature data that are most frequently cited
as references: Meyerhoff and Appelt ([η]L = 1.363 × 10−4M0.714

in THF, 25 °C),38 Strazielle and Herz ([η]L = 1.4 × 10−4M0.7 in
THF, 25 °C),36 and Roovers ([η]L = 1.02 × 10−4M0.73 in
toluene, 35 °C).37 Although they do not match perfectly one
another due to the experimental uncertainty and different MW
range of the studies, they are remarkably similar. Our SEC-TD
data are consistent with the literature data that verifies the
accuracy of our SEC-TD measurements.
On the other hand, we found that the literature data of C-PS

deviate one another seriously: Lutz et al. ([η]C = 7.88 ×

10−5M0.73 in THF, 25 °C)11 and Roovers ([η]C = 1.413 ×

10−5M0.658 in toluene, 35 °C).9 Our [η]C values are significantly
lower than the others. We speculate that the disparity of the C-
PS data can be attributed to the low purity of the C-PS used in
the earlier studies. According to the later LCCC character-
ization result of the C-PS samples used in the study of
Roovers,9 the contamination of L-PS was not negligible,
amounting 10−20% despite the extensive purifications by
fractional precipitation.15 We do not know the purity of the
samples of Lutz et al., but it would not be an unreasonable
speculation that their samples also would have contained a
significant amount of L-PS contaminants since no purification
method better than fractional precipitation was available at that
time.
In his earlier work, Roovers suspected the purity of his C-PS

and suggested a correction method for the experimentally
observed [η] as follows:9

η η η= + −x x[ ] [ ] (1 )[ ]L C

where the [η], [η]L, and [η]C are the intrinsic viscosity of the
impure sample, pure linear polymer, and pure cyclic polymer,
respectively, and x is the weight fraction of the linear polymer
in the sample. The C-PS samples used by Roovers in his study9

was examined by LCCC earlier.15 The fraction of the L-PS
contaminant in the samples was estimated from the LCCC
chromatogram (Figure 2 in ref 15), and the results are shown in
Table 2.

Using the L-PS fractions listed in Table 2, the intrinsic
viscosities of pure C-PS are calculated and plotted with blue
crosses in Figure 6. They are in good agreement with the [η]C
values measured in this study. It strongly supports the
speculation that the disparate [η]C data found in the literature
are due to the imperfect purity of the cyclic polymers in the
earlier studies.

Computer Simulations. The main results of our computer
simulations are the ratios g = (Rg

2)C/(Rg
2)L and g′ = [η]C/[η]L

given in Figure 7. The estimated value of g = 0.538 ± 0.006 for

the longest chains agrees perfectly with the results of extensive
lattice simulation of Fuereder and Zifferer (0.535) for about 4
times longer chains34 and with the extrapolation of Rubio et al.
(0.54 ± 0.01) for shorter chain as well.7 The dependence of Rg

2

on the number of beads N is given in Figure S8. As usual, there
is a certain curvature at low values of N due to the corrections
to scaling. For simplicity, we fitted the relationship Rg

2
∼ N2ν

for highest values of N only. The determined exponents of ν =
0.60 ± 0.01 are not very accurate, but within the statistical
uncertainty they are the same as the more accurate values
obtained by Fuereder and Zifferer37 and by the renormalization
group theory calculations (0.588 ± 0.0015).39 We did not find
any statistically significant difference of the exponents ν

between cyclic unknot and linear chains.
Similarly, the dependence of [η] on the number of beads N is

given in Figure S9. The fitted Mark−Houwink exponents at
high N are again approximately the same but showed a more
pronounced curvature than Rg toward low N. Therefore, as
shown in Figure 7, the ratio g′ is more dependent on the chain
length than the ratio g. The value of g′ decrease from 0.637 for
the shortest chains to 0.577 ± 0.007 for the longest chains.
These values agree well with the extrapolation of Rubio et al.
(0.58 ± 0.01).7 Furthermore, they are in excellent agreement
with the present experimental results with the values of g′
decreasing from 0.63 for the shortest chains to 0.57 for the
longest chains. A different dependence of g and g′ of cyclic
polymers on molecular weight was observed also in a previous
simulation study,40 suggesting a nontrivial relationship between
chain architecture, excluded volume, and hydrodynamic
interactions. The calculated values of g′ may be also affected
by a slower convergence of dynamical properties with the chain
length.41

■ CONCLUSION

In this study, C-PS with MW ranging from 16K to 370K were
prepared and fractionated to high purity and their intrinsic
viscosity was measured in THF, a good solvent for PS, together
with the precursor L-PS. While the intrinsic viscosity of L-PS
agrees well with the literature data, that of C-PS is significantly

Table 2. Weight Fraction of L-PS Contaminants in the C-PS
Samples in Ref 15

Mw weight fraction of L-PS Mw weight fraction of L-PS

6.9K 0.23 73.3K 0.21

18K 0.19 86.9K 0.11

23.4K 0.26 198K 0.18

48K 0.22

Figure 7. Ratios g = (Rg
2)C/(Rg

2)L and g′ = [η]C/[η]L as a function of
the number of beads N.
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lower than the literature values. The Mark−Houwink exponent
of C-PS is found 0.67, somewhat lower than 0.70 for L-PS in
the good solvent over the MW range examined. Therefore, the
ratio of the intrinsic viscosity of C-PS to L-PS (g′ = [η]C/[η]L)
in THF is not MW independent but decreases as MW increases
(0.63 ≥ [η]C/[η]L ≥ 0.57). The trend of intrinsic viscosity
change with MW agrees well with the computer simulation
result. The discrepancy in [η]C from the literature values can
largely be attributed to the contamination of linear byproducts
in the earlier studies.
The g′ value has been used often as an “indicator” to justify

the successful preparation of cyclic polymers. But the
experimental g′ values in the literature are scattered and did
not reach a reasonable consensus. We hope that the results of
this study draw attention from the research community of cyclic
polymers for a better assessment of the purity of cyclic
polymers.
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