Discontinuity in the realization of the Vienna Peedee Belemnite Carbon Isotope Ratio Scale

Hélie, Jean-François; Adamowicz-Walczak, Agnieszka; Middlestead, Paul; Chartrand, Michelle M. G.; Mester, Zoltán; Meija, Juris

This publication could be one of several versions: author's original, accepted manuscript or the publisher's version.

For the publisher’s version, please access the DOI link below.

Publisher’s version / Version de l’éditeur:
https://doi.org/10.1021/acs.analchem.1c02458

Analytical Chemistry, 93, 31, pp. 10740-10743, 2021-07-27

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at https://nrc-publications.canada.ca/eng/copyright

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site https://publications-cnrc.canada.ca/fra/droits

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Questions? Contact the NRC Publications Archive team at PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.
Discontinuity in the Realization of the Vienna Peedee Belemnite Carbon Isotope Ratio Scale

Jean-François Hélie,* Agnieszka Adamowicz-Walczak, Paul Middlestead, Michelle M.G. Chartrand, Zoltán Mester, and Juris Meija

Cite This: Anal. Chem. 2021, 93, 10740–10743

ACCESS | Metrics & More | Article Recommendations | Supporting Information

Carbonate reference materials have long been used as standards for reporting natural variations of carbon isotope ratios. Since the 1980s, the zero point of this scale is, by convention, a virtual material (Vienna Peedee Belemnite, VPDB), defined by a fixed isotope ratio value assigned to a calcite reference material NBS19. Efforts are underway to provide SI-traceable isotopic composition of carbon for this material. While there is a general desire in metrology to define reliable measurement units and scales that do not rely on physical artifacts, physical standards are often employed to disseminate such scales. In this sense, the relative carbon isotope ratio (isotope delta) scale is similar to temperature measurements: both have scale-defining zero points (absolute zero and VPDB) and practical realization of both scales typically relies on a constellation of calibration standards, as exemplified with the ITS-90 temperature scale.

The carbon isotope delta scale is defined by a single fixed point. To improve agreement between different laboratories, however, a second fixed-point reference material on which to normalize carbon isotope delta values has been widely desired, largely to account for instrumental effects. However, the isotopic instability of the second fixed-point (LSVEC), coupled with the limited access to NBS19, have challenged the reliability of carbon isotope ratio measurements and have led to renewed efforts toward a more reliable realization of the VPDB isotope ratio scale. Indeed, maintaining the long-term stability of carbon isotope measurements means not only reducing offsets between laboratories from calibration but also aims at improving the consistency of values assigned to the reference materials themselves.

The recent introduction of new carbonate reference materials now allows two different realizations of the VPDB scale. One can either continue to employ the existing reference materials, which were characterized with NBS19 and LSVEC as fixed points (the VPDB2006 scale realization) or use the new set of reference carbonates IAEA-603, IAEA-610, IAEA-611, and IAEA-612 (the VPDB2020 scale realization). Here, we compare these two VPDB scale realization approaches using isotope ratio mass spectrometry by analyzing certified reference materials. The systematic offset between the isotope delta values assigned to these materials (on the VPDB2006) and those measured on the VPDB2020 is shown in Figure 1. Our results show that isotope delta values currently assigned to carbon reference materials, and subsequently to all measurements that rely on them, are biased. This bias varies linearly and reaches +0.20‰ in the vicinity of natural methane, well above the World Meteorological Organization (WMO) data quality objective of ±0.02 ‰. We also analyzed

Received: June 10, 2021
Accepted: July 21, 2021
Published: July 27, 2021

https://doi.org/10.1021/acs.analchem.1c02458
Anal. Chem. 2021, 93, 10740−10743
samples of LSVEC and NBS19 whose average results, shown in Figure 1, align well with the trend observed from all other reference materials. This bias trend (the red line) can be used to adjust the isotope delta values currently assigned to reference materials using the NBS19-LSVEC scale realization (VPDB2006) to bring them on the new VPDB2020. For example, the value currently assigned to the NBS22 reference oil, \(\delta_{\text{VPDB2006}} = -30.03\text{‰} \), corresponds to a bias of +0.13 %e, meaning that the isotope delta value of NBS22, relative to the VPDB, ought to be \(\delta_{\text{VPDB2020}} = -30.03\%e + 0.13\%e = -29.90\%e \) (see Table 1).

The problems with isotopically unstable LSVEC material\(^1\) illustrate that our incomplete understanding of the absolute isotopic composition of VPDB is only a part of the overall struggle for making more trustworthy measurements. Carbon isotope analysis of the NBS22 reference oil over the last four decades, shown in Figure 2, captures the scale of uncertainties inherent with the realization of the VPDB scale and our results for NBS22, shown with a black hollow circle, agree well with the latest data before the introduction of LSVEC as a second fixed point. Recently, USGS44 CaCO\(_3\) reference material has been proposed as a suitable replacement for LSVEC.\(^6\) The preferred value for this material using a single anchor (NBS19), \(-42.08(1)\%e\), agrees well with our measurements against the suite of four International Atomic Energy Agency (IAEA) reference materials, \(-42.07(2)\%e\), and instills further confidence of its isotopic composition relative to the VPDB. Together, these findings lend further confidence to adopt the VPDB scale realization based on IAEA reference materials 603–610–611–612. Questions in the realization of the VPDB scale still persist, most notably regarding the inhomogeneity of the NBS19 material itself, likely to be ±0.01 %e\(^12\) and not zero as defined.

Our results show a systematic bias in international carbon isotope reference materials, which have been characterized using the NBS19 and LSVEC normalization (VPDB2006). With the VPDB2020 scale realization,\(^12\) our measurements of international reference materials (black points in Figure 1) suggest the value of LSVEC is \(-46.40(3)\%e\), and not \(-46.6\%e\), relative to the VPDB. This finding confirms a similar hypothesis recently put forward based on discrepancies observed from measurements of USGS44.\(^6\) Thus, it is evident that the introduction of LSVEC as a second anchor in 2006 has led to a systematic bias in carbon isotope delta measurements, which can be reconciled retroactively, using a linear transformation \(\delta_{\text{VPDB2020}}(13C) = a + b \delta_{\text{VPDB2006}}(13C)\) with coefficients \(a = -0.003\) and \(b = -0.0043\) when results are expressed in permil, their standard uncertainties \(u(a) = 0.020\) and \(u(b) = 0.0009\) and correlation \(r(a, b) = 0.8\).

Table 1. Carbon Isotope Delta Values for Certified Reference Materials Analyzed in This Study

<table>
<thead>
<tr>
<th>reference material</th>
<th>measured value(^a), (\delta_{\text{VPDB2020}}(13C))</th>
<th>certified value(^b), (\delta_{\text{VPDB2006}}(13C))</th>
<th>bias-corrected certified value(^c), (\delta_{\text{VPDB2020}}(13C))</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSVEC</td>
<td>(-46.38(2))</td>
<td>(-46.6\text{(exact)})</td>
<td>(-46.40(3))</td>
</tr>
<tr>
<td>USGS44</td>
<td>(-42.07(2))</td>
<td>(-42.21(5))</td>
<td>(-42.03(6))</td>
</tr>
<tr>
<td>USGS64</td>
<td>(-40.71(4))</td>
<td>(-40.81(4))</td>
<td>(-40.64(5))</td>
</tr>
<tr>
<td>USGS61</td>
<td>(-34.84(2))</td>
<td>(-35.05(4))</td>
<td>(-34.90(4))</td>
</tr>
<tr>
<td>IAEA-CH-7</td>
<td>(-32.02(2))</td>
<td>(-32.15(5))</td>
<td>(-32.02(5))</td>
</tr>
<tr>
<td>USGS77</td>
<td>(-30.58(2))</td>
<td>(-30.71(4))</td>
<td>(-30.58(4))</td>
</tr>
<tr>
<td>NBS22</td>
<td>(-29.87(2))</td>
<td>(-30.03(5))</td>
<td>(-29.90(5))</td>
</tr>
<tr>
<td>IAEA-602</td>
<td>(-28.72(1))</td>
<td>(-28.85(4))</td>
<td>(-28.73(4))</td>
</tr>
<tr>
<td>IAEA-601</td>
<td>(-28.69(2))</td>
<td>(-28.81(4))</td>
<td>(-28.69(4))</td>
</tr>
<tr>
<td>USGS73</td>
<td>(-23.91(3))</td>
<td>(-24.03(4))</td>
<td>(-23.93(4))</td>
</tr>
<tr>
<td>USGS65</td>
<td>(-20.24(1))</td>
<td>(-20.29(4))</td>
<td>(-20.21(4))</td>
</tr>
<tr>
<td>USGS24</td>
<td>(-15.96(1))</td>
<td>(-16.05(4))</td>
<td>(-15.98(4))</td>
</tr>
<tr>
<td>USGS62</td>
<td>(-14.73(1))</td>
<td>(-14.79(4))</td>
<td>(-14.73(4))</td>
</tr>
<tr>
<td>IAEA-CH-6</td>
<td>(-10.36(2))</td>
<td>(-10.45(4))</td>
<td>(-10.41(4))</td>
</tr>
<tr>
<td>USGS74</td>
<td>(-9.32(3))</td>
<td>(-9.30(4))</td>
<td>(-9.26(4))</td>
</tr>
<tr>
<td>IAEA-CO-8</td>
<td>(-5.71(2))</td>
<td>(-5.764(32))</td>
<td>(-5.74(4))</td>
</tr>
<tr>
<td>NBS18</td>
<td>(-4.99(1))</td>
<td>(-5.014(35))</td>
<td>(-5.00(4))</td>
</tr>
<tr>
<td>USGS63</td>
<td>(-1.19(3))</td>
<td>(-1.17(4))</td>
<td>(-1.17(4))</td>
</tr>
<tr>
<td>USGS66</td>
<td>(-0.69(2))</td>
<td>(-0.67(4))</td>
<td>(-0.67(4))</td>
</tr>
<tr>
<td>USGS75</td>
<td>(+0.44(3))</td>
<td>(+0.49(7))</td>
<td>(+0.48(7))</td>
</tr>
<tr>
<td>NBS19</td>
<td>(+1.96(2))</td>
<td>(+1.95(\text{exact}))</td>
<td>\ (+1.95(\text{exact})+)</td>
</tr>
</tbody>
</table>

\(^a\)Measured average values and their standard uncertainties, using VPDB2020 scale realization.\(^b\)Certified values currently assigned to the reference materials, using VPDB2006 scale realization.\(^c\)Bias-corrected certified values calculated using the bias function shown in Figure 1, \(\delta_{\text{VPDB2006}}(13C) = a + (1 + b)\delta_{\text{VPDB2006}}(13C)\) with coefficients \(a = -0.003\) and \(b = -0.0043\) when results are expressed in permil, their standard uncertainties \(u(a) = 0.020\) and \(u(b) = 0.0009\) and correlation \(r(a, b) = 0.8\).
Figure 2. Historic overview of carbon isotope delta measurements for the NBS22 reference oil\(^{\text{19,21}}\). The black hollow circle is our measurement result obtained using IAEA 603 squares). The black hollow circle is our measurement result obtained using IAEA 603 (NBS19, solid diamonds) or two fixed points (NBS19 + LSVEC, solid squares). The magnitude of errors inherent in realizing the VPDB scale, whether specifying a single (NBS19, solid diamonds) or two fixed points (NBS19 + LSVEC, solid squares). Error bars represent standard uncertainties.

measurements\(^{\text{22}}\) and bring the carbon isotope measurement science within the reach of the 0.01–0.02 ‰ WMO data quality targets.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.analchem.1c02458.

Materials and methods with a description of the combustion efficiency assessment and statistical analysis method (PDF)

Excel file containing all raw data measured during this study with calculated uncertainties, Table 1, R code used to produce Figure 1 and Table 1, and data used to produce Figure 2 (XLSX)

AUTHOR INFORMATION

Corresponding Author

Jean-François Hélie – Département des sciences de la Terre et de l’atmosphère, Université du Québec à Montréal, Montréal QC H3C 3P8, Canada; Geotop Research Centre on the Dynamics of the Earth System, Montréal QC H3C 3P8, Canada; orcid.org/0000-0002-0994-5620; Email: helie.jean-francois@uqam.ca

Authors

Agnieszka Adamowicz-Walczak – Geotop Research Centre on the Dynamics of the Earth System, Montréal QC H3C 3P8, Canada

Paul Middlestead – University of Ottawa, Earth and Environmental Sciences Department, Ottawa ON K1N 6NS, Canada

Michelle M.G. Chartrand – National Research Council Canada, Metrology, Ottawa ON K1A 0R6, Canada; orcid.org/0000-0003-3398-7246

Zoltán Mester – National Research Council Canada, Metrology, Ottawa ON K1A 0R6, Canada; orcid.org/0000-0002-2377-2615

Juris Meija – National Research Council Canada, Metrology, Ottawa ON K1A 0R6, Canada; orcid.org/0000-0002-3349-5535

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.analchem.1c02458

Author Contributions

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The stable isotopes laboratory of the Geotop research center is partly supported by the Fonds de recherche du Québec—Nature et technologies (FRQNT), Grant No. 2018-RS-203300.

REFERENCES