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Ab initio molecular dynamics is an irreplaceable technique for the realistic simulation of complex molecular systems and processes
from irst principles. his paper proposes a comprehensive and self-contained review of ab initio molecular dynamics from a
computational perspective and from irst principles. Quantum mechanics is presented from a molecular dynamics perspective.
Various approximations and formulations are proposed, including the Ehrenfest, Born–Oppenheimer, andHartree–Fockmolecular
dynamics. Subsequently, the Kohn–Sham formulation ofmolecular dynamics is introduced as well as the aferent concept of density
functional. As a result, Car–Parrinello molecular dynamics is discussed, together with its extension to isothermal and isobaric
processes. Car–Parrinello molecular dynamics is then reformulated in terms of path integrals. Finally, some implementation issues
are analysed, namely, the pseudopotential, the orbital functional basis, and hybrid molecular dynamics.

1. Introduction

Ab initio molecular dynamics (AIMD) is an irreplaceable
technique for the realistic simulation of complex molecular
systems and processes associated with biological organisms
[1, 2] such as monoclonal antibodies as illustrated in Figure 1.
With ab initio molecular dynamics, it is possible to predict in
silico phenomena for which an in vivo experiment is either
too diicult or expensive, or even currently deemed infeasible
[3, 4]. Ab initio molecular dynamics essentially difers from
molecular dynamics (MD) in two ways. Firstly, AIMD is
based on the quantum Schrödinger equation while its clas-
sical counterpart relies on Newton’s equation. Secondly, MD
relies on semiempirical efective potentials which approxi-
mate quantum efects, while AIMD is based on the real physi-
cal potentials.

In this paper, we present a review of ab initio molecular
dynamics from a computational perspective and from irst
principles. Our main aim is to create a document which is
self-contained, coherent, and concise but still as complete
as possible. As the theoretical details are essential for real-
life implementation, we have provided the equations for the
relevant physical aspect and approximations presented. Most

important, we expose how these equations and concepts are
related to one another.

he paper is organised as follows. In Section 2, quantum
mechanics is reviewed from a molecular dynamics perspec-
tive. Two important approximations are introduced, namely,
the adiabatic and the Born–Oppenheimer approximations.
Subsequently, in Section 3, the Ehrenfest molecular dynamics
is presented, which allows for a semiclassical treatment of
the nuclei. his opens the door, in Section 4, to the Born–
Oppenheimer molecular dynamics formulation. his is fol-
lowed, in Section 5, by the Hartree–Fock formulation which
approximates the atomic antisymmetric wave function by a
single determinant of the orbitals. Sections 6 and 7 introduce
the Kohn–Sham formulation whose primary objective is to
replace the interacting electrons by a ictitious, but equiva-
lent, system of noninteracting particles. Electrons are reintro-
duced as dynamical quantities, in Section 8, through the Car–
Parrinello formulation. Isothermal and isobaric processes are
addressed in this section. In Section 9, a path integral for-
mulation of molecular dynamics is presented, which makes
allowance for a quantum treatment of the nuclear degrees
of freedom. Finally, in Section 10, some important compu-
tational issues are addressed such as a simpliication of the
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Figure 1: Monoclonal antibody 1F1 isolated from a 1918 inluenza
pandemic (Spanish Flu) survivor.

electronic interaction with the pseudopotential, the repre-
sentation of orbitals in terms of a functional basis, the use
of the Fourier and wavelet transform in order to reduce the
computational complexity, and the simulation of larger sys-
tems with hybrid molecular dynamics. his is followed by a
conclusion in Section 11.

2. Quantum Molecular Dynamics
and the Schrödinger Equation:
A Molecular Perspective

We review some important notions of quantum mechanics
from a molecular perspective. In quantum mechanics [5–
7], the Hamiltonian [5–7] is the operator corresponding to
the total energy of the molecular system associated with the
electrons and the nuclei. he total Hamiltonian is the sum
of the kinetic energies of all the particles plus the potential
energy of the constituent particles; in occurrence the elec-
trons and the nuclei

H (r,R) = −∑
�

ℏ22��
Δ � +H� (r,R) , (1)

where ℏ is the Planck constant and�� is the mass of a given
nucleus.he electronic and nuclear Cartesian coordinates for
a given particle are deined, respectively, as

r� Š [��,�, ��,�, ��,�]� ,
R� Š [��,�, ��,�, ��,�]� .

(2)

he ensemble of all electronic coordinates is represented by
r while the ensemble of all nuclear coordinates is denoted by
R. In addition, the gradient and the Laplacian operators for a
given electron � and nucleus � are deined, respectively, as

∇� Š
��r� ,

Δ � Š
��r� ⋅

��r� ,

∇� Š
��R�

,
Δ � Š

��R�
⋅ ��R�

.
(3)

he gradient operator, a vector, is related to the momentum
while the Laplacian operator, a scalar quantity, is associated
with the kinetic energy [5–7]. he electronic Hamiltonian is
deined as the sum of the kinetic energy of the electrons, the
potential energy associated with each pair of electrons, the
potential energy associated with each pair of electron-nu-
cleus, and the potential energy concomitant to each pair of
nuclei:

H� (r,R) Š −∑
�

ℏ22��
Δ � + 14��0∑�<�

�2�����r� − r�
�����

− 14��0∑�,�
�2�������R� − r�

����� + 14��0∑�<�
�2��������R� − R�

���� ,
(4)

where �� is the electronic mass, � is the electronic charge,� is the atomic number (the number of protons in a given
nucleus), and �0 is the vacuum permittivity. he quantum
molecular system is characterised by a wave function Φ(r,
R; �) whose evolution is determined by the time-dependent
Schrödinger equation [5–7]:

�ℏ ���Φ (r,R; �) = H (r,R) Φ (r,R; �) , (5)

where � = √−1.he Schrödinger equation admits a stationary
or time-independent solution:

H� (r,R) Ψ� (r,R) = �� (R) Ψ� (r,R) , (6)

where ��(R) is the energy associated with the electronic
wave functionΨ�(r,R) and � is a set of quantum numbers
that labelled the Eigenstates or wave functions as well as
the Eigenvalues or energies associated with the stationary
Schrödinger equation.he total wave functionΦ(r,R; �)may
be expended in terms of time-dependent nuclear wave
functions ��(R; �) and stationary electronic wave functionsΨ�(r,R):

Φ (r,R; �) = ∞∑
�=0

�� (R; �) Ψ� (r,R) . (7)

It should be noticed that this expansion is exact and does
not involve any approximation.he electronicwave functions
are solution of the stationary Schrödinger equation, an Eigen
equation which involves the electronic Hamiltonian. If one
substitutes this expansion in the time-dependent Schrödinger
equation, one obtains a system of equations for the evolution
of the nuclear wave functions:

�ℏ����� = [−∑
�

ℏ22��
Δ � + �� (R)] �� +∑

�
C����. (8)
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As may be seen, the nuclear wave functions are coupled to
the electronic wave functions. he strength of the coupling is
determined by the coupling coeicients which form amatrix:

C�� = ∫�rΨ∗
� [−∑

�

ℏ22��
Δ �]Ψ�

+∑
�

1��
[∫�rΨ∗

� [−�ℏ∇�] Ψ�] [−�ℏ∇�] .
(9)

his system of equations is too complex to be solved directly.
Consequently, in the next subsection, we consider two impor-
tant approximations of the Schrödinger equation, namely,
the adiabatic and the Born–Oppenheimer approximations,
which aim to reduce such a complexity. hese approxima-
tions, as well as those that later follow, reduce substantially
the duration of the calculations allowing for larger molecular
systems to be simulated and longer time-scales to be explored
[8, 9].

2.1. Adiabatic and Born–Oppenheimer Approximations. he
above-mentioned system of diferential equations is too
complex to be solved directly. Some approximations must be
performed in order to reduce the computational complexity,
whilemaintaining the predictive accuracy of the calculations.
he irst approximation, which is called the adiabatic approx-
imation [5–7], assumes that the electronic wave functions
adapt quasi-instantaneously to a variation of the nuclear
coniguration. his approximation is justiied by the fact
that the electrons are much lighter than the nucleus. Conse-
quently, such an approximation is valid, unless the motion
of the electron becomes relativistic, which may happen if the
electrons are too close to the nucleus. Mathematically, this
approximation implies that

∇�Ψ� = 0. (10)

As a result, the coupling matrix becomes diagonal:

C�� = [−∑
�

ℏ22��
∫�rΨ∗

� Δ �Ψ�] ���, (11)

where ��� is the well-known Kronecker delta.
he second approximation, which is called the Born–

Oppenheimer approximation [6, 10, 11], assumes that the
electronic and the nuclear motions are separable as a result of
the diference between nuclear and electronic masses. As a
result, the expansion reduces to a single Eigen state:

Φ (r,R; �) ≈ Ψ� (r,R) �� (R; �) . (12)

In addition, as the energy associated with the wave function
is usually much larger than the corresponding coupling con-
stant:

C�� ≪ ��, (13)

the time-dependent nuclear Schrödinger further reduces to

�ℏ����� = [−∑
�

ℏ22��
Δ � + �� (R)] ��. (14)

Furthermore, it is assumed that the electronic wave function
is in its ground or nonexcited state:

� = 0 �⇒
H�Ψ0 = �0Ψ0. (15)

his occurs if the thermal energy is lower than the energy
diference between the ground state and the irst excited state,
that is, if the temperature is low.

In the next section, we introduce another approximation,
in which the motion of heavy nuclei is described by a semi-
classical equation.

3. Ehrenfest Molecular Dynamics

Another possible approximation is to assume that the nuclear
motion is semiclassical as it is the case when the nuclei
are relatively heavy. his implies that, instead of being
determined by the Schrödinger equation, the average nuclear
motion is determined by Newton’s equation. he right form
for this equation is given by the Ehrenfest theorem [6, 12–
14] which states that the potential, which governs the classical
motion of the nucleons, is equal to the expectation or average,
in the quantum sense, of the electronic Hamiltonian with
respect to the electronic wave function:

��R̈� (�) = −∇� ⟨Ψ ����H�
���� Ψ⟩ = −∇� ⟨H�⟩Ψ , (16)

where the bra–ket notation is to be understood as

⟨Ψ |O| Ψ⟩ ≡ ∫�rΨ∗ (r)OΨ (r) (17)

for any operator O and where R̈� ≡ �2
R�/��2. his

equation may be further simpliied if the adiabatic and the
Born–Oppenheimer approximations are enforced:

∇� ⟨Ψ ����H�
���� Ψ⟩ �⇒

∇� ⟨Ψ0
����H�

���� Ψ0⟩ �⇒
⟨Ψ0

����∇�H�
���� Ψ0⟩ .

(18)

In the speciic context of Ehrenfest molecular dynamics, the
electrons follow a time-dependent Schrödinger equation:

�ℏ ���Ψ = H�Ψ. (19)

he fact that this equation is time-dependent ensures that the
orthogonality of the orbitals is maintained at all times. he
motivation is to be found in the fact that the electronicHamil-
tonian is aHermitian operator [6]. As stated earlier, this is not
the case in the Born–Oppenheimer approximation in which
the electronic wave function is governed by the stationary
Schrödinger equationwhich does notmaintain the orthonor-
mality over time.

In the next section, we apply the adiabatic and Born–
Oppenheimer approximation in the context of ab initio mo-
lecular dynamics.
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4. Born–Oppenheimer Molecular Dynamics

In Born–Oppenheimer molecular dynamics [6, 10, 11], it
is assumed that the adiabatic and the Born–Oppenheimer
approximations are valid and that the nuclei follow a semi-
classical Newton equation whose potential is determined
by the Ehrenfest theorem. It is further assumed that the
electronic wave function is in its ground state (lowest energy).
Since the stationary Schrödinger equation is used for the elec-
tronic degrees of freedom, the orthogonality condition must
be enforcedwith a Lagrangemultiplier as this condition is not
preserved by the stationary Schrödinger equation over time.
he orthogonality of the orbitals �� is a physical requirement
which must be enforced at all time in order to be able to
compute real observable quantities. he Born–Oppenheimer
molecular dynamics is characterised by a Lagrangian [6]
which is deined as the diference between the kinetic and the
potential energy:

L
BO = 12∑� ��Ṙ

2
� − ⟨Ψ0

����H�
���� Ψ0⟩

+∑
�,�
Λ �� (⟨�� | ��⟩ − ���) .

(20)

he irst term of the Lagrangian corresponds to the kinetic
energy of the nuclei, the second term corresponds to the
nuclear potential as obtained from the Ehrenfest theorem,
and the last term is a Lagrange function which ensures that
the orbitals remain orthonormal at all time. he Lagrange
multipliers are denoted by Λ ��. Since the electrons follow
a Fermi–Dirac statistics [6], they obey the Pauli Exclusion
Principle (two electrons cannot be in the same quantum
state) which means that the electronic wave function must be
an antisymmetric function of its orbitals, namely, the wave
functions associated with the individual electrons.

he equations of motion associated with this Lagrangian
are obtained from the Euler–Lagrange equations [6]. here
is one system of Euler–Lagrange equations for the nuclear
degrees of freedom:

��� �L�Ṙ�
− �L�R�

= 0, (21)

and one system of Euler–Lagrange equations for their elec-
tronic counterpart:

��� �L� ⟨�̇�
���� −

�L� ⟨��
���� = 0 �⇒

��� �L��̇∗
� (r) −

�L��∗
� (r) = 0.

(22)

From the Euler–Lagrange equations, one obtains

��R̈� (�) = −∇�min
�

⟨Ψ0
����H�

���� Ψ0⟩ (23)

for the nuclear equations of motion, and

H��� (r) = ∑
�
Λ ���� (r) (24)

for the electronic equations of motion. One should notice the
presence of the Lagrange multiplier in the electronic equa-
tions of motion which ensures that the orbital remains ortho-
normal at all time.

In the next section, we introduce another approximation
in order to further reduce the complexity of the electronic
Hamiltonian.

5. Hartree–Fock Molecular Dynamics

From now on, we shall adopt the atomic unit system:

�� = � = ℏ = 14��0 = 1 (25)

in order to alleviate the notation. In Hartree–Fock molecular
dynamics [15], the antisymmetric electronic wave function
is approximated by a single determinant of the electronic
orbitals ��(r�):

Ψ = 1√�! det
[[[[[[
[

�1 (r1) �1 (r2) ⋅ ⋅ ⋅ �1 (r�)�2 (r1) �2 (r2) ⋅ ⋅ ⋅ �2 (r�)... ... d
...

�� (r1) �� (r�) ⋅ ⋅ ⋅ �� (r�)

]]]]]]
]
. (26)

Two operators are associated with the electronic interaction.
he irst one, the Coulomb operator, corresponds to the
electrostatic interaction between the orbitals:

J� (r) �� (r) ≡ [∫�r��∗
� (r�) 1����r − r������� (r�)]�� (r) . (27)

he second operator, the exchange operator [6, 15], is associ-
ated with the exchange energy, a quantum mechanical efect
that occurs as a result of the Pauli Exclusion Principle:

K� (r) �� (r) ≡ [∫�r��∗
� (r�) 1����r − r������� (r�)]�� (r) . (28)

From the Coulomb and the exchange operators, an electronic
Hamiltonian may be inferred:

H
HF

� = −12Δ + �ext (r) + 2∑
�
J� (r) − ∑

�
K� (r)

≡ 12Δ + �HF (r) ,
(29)

where the external potential is deined as

�ext (r) Š −∑
�

������R� − r
���� + ∑

�<�

��������R� − R�
���� . (30)

his Hamiltonian determines, in turn, the electronic
Lagrangian:

L
HF

� = −⟨Ψ0
�����HHF

�
����� Ψ0⟩ +∑

�,�
Λ �� (⟨�� | ��⟩ − ���) . (31)



Advances in Chemistry 5

A Lagrange multiplier term is added to the Lagrangian in
order to ensure that the orbitals remain orthonormal at all
time: a quantummechanical requirement [6].From theEuler–
Lagrange equations, one obtains the equations of motion for
the electrons:

H
HF

� �� = ∑
�
Λ ���� (32)

which difer from (24) by the Hamiltonian.
In the next subsection, we seek to replace the interacting

electrons by a ictitious but equivalent system of noninter-
acting particles in order to further reduce the computational
complexity.

6. Kohn–Sham Molecular Dynamics

he Kohn–Sham formulation [16, 17] aims to replace the
interacting electrons by a ictitious system of noninteracting
particles that generate the same electronic density as the
physical systemof interacting particles.he electronic density
is deined as

� Š ∑
�
�� ⟨�� | ��⟩ , (33)

where �� is the occupation number of a given orbital.
In this formulation of AIMD, the Ehrenfest term is

replaced by the Kohn–Sham energy:

min
Ψ0

⟨Ψ0
����H�

���� Ψ0⟩ = min
�

�KS [�] . (34)

he latter is deine as

�KS [�] Š − 12
�∑
�=1

�� ⟨�� |Δ| ��⟩ + ∫�r�ext (r) � (r)
+ 12 ∫�r�� (r) � (r) + �XC [�] ,

(35)

where the irst term is the total electronic kinetic energy asso-
ciated with the electrons, the second term is the electrostatics
interaction energy between the electronic density and the
external potential, and the third term is the self-electrostatic
interaction energy associated with the electronic density.he
latter involves the interaction of the electronic density with it
self-created electrostatic potential. his potential, called the
Hartree potential, is obtained by solving the Poisson equation
[18]:

Δ�� = −4�� �⇒
�� (r) = ∫�r� � (r�)����r − r����� .

(36)

he last term is the celebrated exchange-correlation energy
or density functional [16, 19–21] which takes into account the
residual electronic interaction, that is, the self-interaction of
the electrons. Unfortunately, the density functional has no
closed-form solution but many approximations are known.

Some of these approximations are considered in the next sec-
tion.

From the exchange-correlation energy, one may deine
the exchange-correlation potential:

�XC (r) Š
��XC [�]�� (r) (37)

which is the functional derivative [22] of the exchange-corre-
lation energy with respect to the electronic density. In addi-
tion, one may deine the Kohn–Sham potential:

�KS Š �� + �ext + �XC. (38)

As for the other approaches, a Lagrangian is deined in which
the orthonormality conditions are enforced with Lagrange
multipliers. he electronic equations of motion, which are
determined by the Euler–Lagrange equations are

H
KS

� �� = ∑
�
Λ ����, (39)

where the ictitious one-particle Hamiltonian is given by

H
KS

� ≡ −12Δ + �KS. (40)

A canonical formmay be obtained if a unitary transformation
is applied to the previous equation:

H
KS

� �� = ����. (41)

In the next section, we introduce some density functionals in
order to replace the interacting electrons by an equivalent but
yet simpler system of noninteracting particles.

7. Exchange-Correlation Energy

he detailed analysis of density functionals, also known as
exchange-correlation energies [23], is beyond the scope of
this review. We refer the interested reader to [21] for an
exhaustive analysis. In this section, we briely introduce a few
commondensity functionals. Asmentioned earlier, the aimof
the density functional is to express the electronic interaction
in terms of the sole electronic density.

In the simplest case, the exchange-correlation energy is a
functional of the electronic density alone for which the most
important representative is the local density approximation:

�LDA

XC [�] = −34 ( 3�)
1/3 ∫�r �4/3. (42)

Onemay take into consideration, in addition to the electronic
density, the gradient of the electronic density, in which case
the approach is called the generalised gradient approxima-
tion:

�GGA

XC [�] = ∫�r �4/3�XC (�) , (43)

where the dimensionless reduced gradient is deined as

� Š
‖∇�‖�4/3 ≡ 2 (3�2)1/3 �. (44)
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Among these approximations is the B88 approximation:

�B88
XC (�) = 34 ( 6�)

1/3 + ��2�1 + 6���sinh−1�� , (45)

where � refers to the spin and the Perdew, Burke, and Ernzer-
hof (PBE) approximation:

�PBE

XC (�) = 34 ( 3�)
1/3 + ��21 + ��2�−1 . (46)

he exchange energy, which is associated with the Pauli
Exclusion Principle, may be characterised by the Hartree–
Fock energy:

�HF

XC = −12∑�,� ∫�r �r��∗
� (r) �� (r) �∗

� (r�) �� (r�)����r − r����� (47)

which was introduced earlier. hese density functionals may
be linearly combined in order to increase their precision such
as in the case of the B3 approximation:

�B3
XC = ��HF

XC + (1 − �) �LDA

XC + �Δ�B88
XC + ��GGA

XC

+ (1 − �) �LDA

XC , (48)

where �, �, and � are empirical parameters. Obviously, these
parameters are application dependent.

Recently, it has been proposed to evaluate the functional
density with machine learning techniques. he functional
density is learned by examples instead of directly solving the
Kohn–Sham equations [17, 24, 25]. As a result, substantially
less time is required to complete the calculations allowing for
larger system to be simulated and longer time-scales to be
explored.

In the next section, we further improve the precision
of the calculations by reintroducing the dynamic electronic
degrees of freedom which, until now, have been absent from
the equations of motion.

8. Car–Parrinello Molecular Dynamics

8.1. Equations of Motion. he Kohn–Sham dynamics, as for-
mulated in the previous sections, does not take the dynamics
of the electrons into account despite the fact that it is present:
an unattractive unphysical feature. Indeed, one obtains from
the Lagrangian and the Euler–Lagrange equations

��� �L��̇∗
� (r) ≡ 0 (49)

which means the orbitals are not dynamical ields of the
molecular system. Nevertheless, the Lagrangian may be
modiied in order to also include the dynamic nature of
electronic degrees of freedom through the introduction of
a ictitious electronic kinetic energy term. he extended

Lagrangian, which is called the Car–Parrinello Lagrangian
[11, 26, 27]

L
CP = 12∑� ��Ṙ

2
� +∑

�
� ⟨�̇� | �̇�⟩ + ⟨Ψ0

�����HKS

�
����� Ψ0⟩

+∑
�,�
Λ �� (⟨�� | ��⟩ − ���)

(50)

difers from the original Kohn–Sham Lagrangian by the
second termwhich associates a ictitious kinetic energy to the
electronic orbitals. he parameter � acts as a ictitious elec-
tronicmass or inertia. As in the previous sections, the nuclear
equations of motion

��R̈� = −∇� ⟨Ψ0
�����HKS

�
����� Ψ0⟩ +∑

�,�
Λ ��∇� ⟨�� | ��⟩ (51)

and the electronic equations of motion

��̈� (�) = −HKS

� �� (�) + ∑
�
Λ ���� (�) (52)

may be inferred from the Euler–Lagrange equations. hese
equations involve a second order time derivative of the
orbitalswhichmeans that the latter are nowproper dynamical
quantities.

In the next two subsections, we consider ab initio
molecular dynamics at constant temperature and at constant
pressure.

8.2. Massive hermostating and Isothermal Processes. In the
previous sections, we have implicitly assumed that themolec-
ular system under consideration was isolated. Of course, this
is not compatible withmost experimental conditions [27–29]
in which the system is either kept at constant temperature
(isothermal) in a heat bath or at constant pressure (isobaric)
as a consequence, for instance, of the atmospheric pressure.
In this subsection and in the next, we explain how to address
these important issues.

As we have recently explained in a computational review
onmolecular dynamics [30], an isothermal process cannot be
obtained by adding an extra term to the Lagrangian. Rather,
the equations of motionsmust bemodiied directly as a result
of the non-Hamiltonian nature of the isothermal process [31].
In order to obtain an isothermal molecular system, a friction
term must be recursively added to each degree of freedom
[28, 29]. herefore, the electronic equations of motion must
be modiied as follows:

� ���� �̈�⟩ = −HKS

�
������⟩ +∑

�
Λ ��

�������⟩ − � ̇�1 ���� �̇�⟩ ,

�1
� ̈�1 = 2[�∑

�
⟨�̇� | �̇�⟩ − ��2��

] − �1
� ̇�1 ̇�2,

��
� ̈�� = [��−1

� ̇�2�−1 − 1��
] − ��

� ̇�� ̇��+1 (1 − ���) ,
� = 2, . . . , �

(53)
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while the nuclear equations of motion must take a similar
form:

��R̈� = −∇��KS −��
̇�1Ṙ�,

�1
�
̈�1 = [∑

�
��Ṙ

2
� − ��] − �1

�
̇�1 ̇�2,

��
�
̈�� = [��−1

�
̇�2�−1 − 1�] − ��

�
̇�� ̇��+1 (1 − ���)

� = 2, . . . , �,

(54)

where � ≡ 1/���, � is the temperature of the heat bath,�� is the Boltzmann constant, the �� are frictional electronic
degrees of freedom, the ��

� are the friction coeicients
associated with the electronic orbitals, the �� are frictional

nuclear degrees of freedom, the��
� are the friction coeicients

associated with the nuclei, and � denotes the number of
dynamical degrees of freedom to which the nuclear thermo-
stat chain is coupled. he friction terms are proportional to
the velocity of the corresponding degrees of freedom as it
is customary. Not only must friction terms be added to the
physical degrees of freedom, but each nonphysical friction
term, in turn, must be thermalised by another nonphysical
friction term until an isothermal state is properly achieved.

he terms ̇�1 and ̇�1 may be considered as dynamical friction
coeicients for the physical degrees of freedom.

In the next section, we present an alternative approach
based on the generalised Langevin equation.

8.3. Generalised Langevin Equation and Isothermal Processes.
Massive thermostating is not the sole approach to simulate
an isothermal process. Indeed, the latter may be achieved by
means of the generalised Langevin equation [32–34]. In this
subsection, we restrict ourselves to one generalised coordi-
nate in order not to clutter the notation. he generalisation
to more than one coordinate is immediate. he generalised
Langevin equation, which is a diferential stochastic equation,
may be written as

̇� = � [�̇
ṗ
] = [−�� (�)

0
] − A� [�

p
] + B� [�] , (55)

where A� is the drit matrix:

A� Š [��� a
�
�

a� A
] , (56)

B� is the difusion matrix, � is a generalised coordinate
associatedwith an atomor a nucleus (position),� is the corre-
sponding generalised momentum, and p is a set of �p hidden
nonphysical momenta. he structure of the difusion matrix
B� is similar to the one of the corresponding dritmatrix.he
random process is characterised by an uncorrelated Gaussian
noise:

⟨�� (�) �� (0)⟩ = ���� (�) . (57)

he hidden momenta, associated with the generalised Lan-
gevin equation, may be marginalised because the evolution

of the variables [�,p]�, in the free particle limit, is described
by a linear Markovian stochastic diferential equation. As a
result, the generalised Langevin equation becomes equivalent
to a Langevin equation with memory kernel and noise corre-
lation [32–34]:

̇� = �,
�̇ = −�� (�) − ∫�

−∞
� (� − �) � (�) �� + �. (58)

he memory kernel, which is a dissipative term associated
with friction, is given by the expression

� (�) = 2���� (�) − a
�
�exp [− |�|A] a� (59)

whereas the noise correlation, which characterised the luc-
tuations associated with the random noise, is provided by

�(�) Š ⟨� (�) � (0)⟩
= ���� (�) + a

�
� exp [− |�|A] (Za� − d�) , (60)

where the matrixes Z andD� are deined as

Z Š ∫∞

0
�−A�

D�−A����, (61)

D� Š B�B
�
� , (62)

respectively. he canonical, isothermal ensemble is obtained
by applying the luctuation-dissipation theorem [35]. he
luctuation-dissipation theorem states that the Fourier trans-
formsF of the noise correlation and thememory kernelmust
be related by

(F ∘ �) (�) = ��� (F ∘ �) (�) . (63)

he luctuation-dissipation theorem implies in turn that

D� = B�B
�
� = ��� (A� + A

�
�) . (64)

herefore, the luctuation-dissipation theorem ixes the dif-
fusionmatrix once the dritmatrix is determined. As a result,
an isothermal process follows immediately.

In the next subsection, we address isobaric molecular
processes, which are very common as most experiments are
performed at atmospheric pressure.

8.4. Isobaric Processes. As opposed to the isothermal process,
the isobaric process is a Hamiltonian process which means
that it may be obtained by adding extra terms to the Lagran-
gian [28, 36].

In order to model an isobaric molecular process, the
volume occupied by the molecular system is divided into
congruent parallelepipeds called Bravais cells. hese cells are
characterised by three oriented vectors which correspond to
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the three primitive edges spanning their volume. hese vec-
tors are concatenated in order to form a Bravais matrix:

h = [a1 | a2 | a3] . (65)

he Bravais cell is characterised by its volume and by a local
metric:

Ω = det h,
G = h

T
h. (66)

In order to introduce the volume as a dynamic quantity into
the Lagrangian, the nuclear and the electronic coordinates are
reformulated in terms of the Bravais matrix and of the scaled
coordinates:

R� = hS�,
r� = hs�. (67)

he Bravais matrix and the scale coordinates constitute
distinct degrees of freedom. In order to obtain an isobaric sys-
tem, the Car–Parrinello Lagrangian must be supplemented
with three additional terms which appear on the third line of
the Lagrangian:

L = ∑
�
� ⟨�̇� (hs) | �̇� (hs)⟩ + �KS [�, hS]

+∑
�,�
Λ �� (⟨�� (hs) | �� (hs)⟩ − ���)

+ 12∑� �� (Ṡ��GṠ�) + 12� tr (ḣ�
ḣ) − �Ω.

(68)

he irst term represents the kinetic energy associated with
the scale coordinates. One should notice the presence of the
metric or quadratic form in the inner product. he second
term represents the kinetic energy associated with the Bravais
matrix.hematrix norm is the square of the Frobenius norm
while� is a ictitiousmass or inertia attributed to the Bravais
cells. he last term is associated with the pressure pof the
barostat (ambient pressure). he equations of motion are
obtained, as usual, from the Euler–Lagrange equations. In
particular, the Euler–Lagrange equations for the Bravais cells
take the form:

��� �L
� (ḣ)�V − �L� (h)�V = 0. (69)

In the next section, we present a path integral formulation
of ab initio molecular dynamics which allows a quantum
formulation of both the electronic and nuclear degrees of
freedom.

9. Path Integral Molecular Dynamics:
Toward a Quantum Formulation of Nuclei

he ab initio path integral technique is based on the formula-
tion of quantum statistical mechanics in terms of Feynman

path integrals. Contrarily to the previous approaches, the
path integral method allows for a quantum formulation
which includes, in addition to the electronic degrees of
freedom, their nuclear counterpart. Such a formulation is
essential for systems containing light nuclei [37, 38].

9.1. Path Integral Formulation. he quantum path integral
formulation [36, 39–42] is based on the partition function of
the quantum statistical canonical ensemble which is deined
as the trace of the exponential of the Hamiltonian operator:

Z = tr exp [−�H] . (70)

he partition function describes the statistical properties of
the molecular system. Since the operators associated with the
electrons and the nuclei do not commute, the exponential of
the Hamiltonian operator must be evaluated with the Trotter
factorization:

exp[−�(−∑
�

ℏ22��
Δ � +H�)]

= lim
�→∞

(exp[��∑
�

ℏ22��
Δ �] exp [−��H�])

� .
(71)

If the completeness relation

∫�R∑
�

����Ψ� (R) ,R⟩ ⟨R, Ψ� (R)���� = I, (72)

which is an identity operator, is recursively inserted into the
Trotter formula and if the adiabatic approximation is per-
formed:

∇�Ψ� = 0 �⇒
⟨Ψ�(�+1) (R(�+1)) | Ψ�(�) (R(�))⟩ ≈ ��(�+1)�(�) , (73)

the partition function becomes

Z = ∑
�
lim
�→∞

�∏
�=1

[ �∏
�=1

∫]

× exp[−� �∑
�=1

{ �∑
�=1

12���2
� (R(�)

� − R
(�+1)
� )2 + 1��� (R(�))}]

× �∏
�=1

�∏
�=1

���R(�)
� .

(74)

he quantities

�� ≡ ( ���2��ℏ2)
3/2 ,

�2
� = �ℏ2�2

(75)

are the amplitude and the angular frequency associated with
the quantum harmonic oscillators.he latter appear as a con-
sequence of the path integral formulation.he computational
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time � is a discrete evolution parameter associated with the
evolution of the molecular system. As such, it represents a
particular time-slice. he path integral associated with the
partition function is a weighted sum over all possible nuclear
trajectories. he nuclear coniguration at a particular time-
slice � is provided by the ensemble of all the individual nuclear

conigurations R
(�)
� at this speciic instant. he weighting

function corresponds to the exponential factorwhich consists
of two terms: the irst one is related to the harmonic potential
energy associated with the nuclei while the second is the
energy associated with the electrons.

As in the previous sections, the Born–Oppenheimer
approximation is legitimate if the thermal energy is much
smaller than the diference between the electronic ground
state and the excited states:

�� − �0 ≫ ���. (76)

It follows that the partition function becomes

Z = lim
�→∞

�∏
�=1

[ �∏
�=1

∫]

× exp[−� �∑
�=1

{ �∑
�=1

12���2
� (R(�)

� − R
(�+1)
� )2 + 1��0 (R(�))}]

× �∏
�=1

�∏
�=1

���R(�)
� .

(77)

From this partition function, an extended Lagrangianmay be
deined:

L
PI

= �∑
�=1

{ �∑
�=1

( 12��
�
(P(�)

� )2 − 12���2
� (R(�)

� − R
(�+1)
� )2)

− 1��0 (R�)} ,
(78)

where��
� are ictitiousmasses or unphysical auxiliary param-

eters associated with the nuclei whereas their physical masses
are identiied by ��. One should notice that � × � icti-

tious momenta P(�)
� = ��

�Ṙ
(�)
� have been formally introduced.

hese momenta are required in order to evaluate numerically
the path integral with Monte Carlo techniques [30, 43]. he
reader should notice that the momenta afect neither the
partition function (up to an irrelevant normalisation factor)
nor the physical observables. he ground state energy �0(R�)
must be evaluated concurrently with the nuclear energy for
each time-slice.

he nuclear coordinates are not linearly independent.
Nevertheless, they may become linearly independent if they
are expressed in terms of their normal modes. he normal
decomposition [39, 41, 44] is obtained by representing each
coordinate in terms of complex Fourier series:

R
(�)
� �→ �∑

�=1
a
(�)
� �2��(�−1)(�−1)/�. (79)

he complex Fourier coeicients are further expanded in
terms of their real and imaginary parts:

u
(1)
� = a

(1)
� ,

u
(�)
� = a

((�+2)/2)
� ,

u
(2�−2)
� = Re (a(�)� ) ,

u
(2�−1)
� = Im (a(�)� ) .

(80)

As for the electronic structure, it may be obtained from
one of the previously introduced approaches. For instance,
for a Car–Parrinello technique formulated in terms of a
Kohn–Sham Hamiltonian, the path integral Lagrangian in
normal coordinates becomes

L
PICP = 1�

�∑
�=1

{∑
�
� ⟨�̇(�)

� | �̇(�)
� ⟩

− �KS [�(�), (R (u))(�)]
+∑

�,�
Λ(�)

�� (⟨�(�)
� | �(�)

� ⟩ − ���)

+ �∑
�=1

{12∑� �
�
�
(�) (u̇(�)

� )2 − 12∑� �
(�)
� �2

� (u(�)
� )2} ,

(81)

where the normal mode masses are deined as

�(1)
� = 0,

�(�)
� = 2�(1 − cos

2� (� − 1)� )��, � = 2, . . . , � (82)

to which the ictitious normal mode masses are closely re-
lated:

��
�
(1) = ��,

��
�
(�) = ��(�)

� , � = 2, . . . , �, (83)

where the centroid adiabaticity parameter � belongs to the
interval 0 < � ≤ 1.hese masses are functions of the compu-
tational time. All the other quantities were deined earlier.

In the next subsection, we address the calculation of
physical observables in the path integral framework.

9.2. Physical Observables. An observable [6, 7, 45] is a dy-
namic quantity that may be measured experimentally such as
the average energy or the heat capacity. Numerous observ-
ables may be obtained directly from the partition func-
tion, for instance,

(i) the expectation of the energy (average energy):

⟨�⟩ = −� lnZ�� (84)

(ii) the variance of the energy or energy luctuation:

⟨(Δ�)2⟩ = �2Z��2 (85)
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(iii) the heat or thermal capacity:

�V = 1��� ⟨(Δ�)2⟩ (86)

(iv) the entropy:

� = ��� (��� lnZ) (87)

(v) the Helmholtz free energy:

� = −��� lnZ (88)

among others. In addition, if a small perturbation is applied to
a molecular system, the expectation of the energy associated
with this perturbation is

� = �0 + �� �⇒
⟨�⟩ = − 1� ��� lnZ, (89)

where � is a small running parameter.
In the next subsection, we present an isothermal formu-

lation of path integrals.

9.3. Car–Parrinello Path Integral Molecular Dynamics and
Massivehermostating. Isothermal processes are essential for
two reasons. he irst one, which is rather evident, is that the
simulation of realistic physical conditions oten involves their
simulation [34].he second reason must be found in a rather
subtle shortcoming of the formalism.

he massive thermostating of the path integral [34] is
a “sine qua non” condition in order to obtain physically
realistic results. Indeed, the harmonic potential leads to
ineicient and nonergodic dynamics when microcanonical
trajectories are used to generate ensemble averages.

In contrast, the thermostats generate ergodic, canonical
averages at the expense of introducing sets of auxiliary chain
variables which add to the complexity of the calculation, but
which are nevertheless required for its precision and physical
trustworthiness.

As we saw in Section 8.2, it is not possible to generate an
isothermal process simply by adding extra terms to the La-
grangian. Rather, the equations ofmotion,which are obtained
from the Euler–Lagrange equations, must be modiied
accordingly. herefore, friction terms must be added recur-
sively to the various degrees of freedom. As a result, the
electronic equations of motion become

� ����� �̈(�)
� ⟩ = −��KS [�(�),R(�)]

� (�(�)
� )∗ +∑

�
Λ(�)

��
������(�)

� ⟩
− � ̇�(�)1

������(�)
� ⟩

�1
� ̈�(�)1 = 2[�∑

�
⟨�(�)

� | �(�)
� ⟩ − ��2��

] − �1
� ̇�(�)1 ̇�(�)2 ,

��
� ̈�(�)� = [��−1

� ( ̇�(�)�−1)2 − 1��
]

− ��
� ̇�(�)� ̇�(�)�+1 (1 − �2�) ,

� = 2, . . . , �; � = 1, . . . , �
(90)

whereas the nuclear equations of motion transform into

��R̈
(�)
� = − 1�

��KS [�(�),R(�)]
�R(�)

�

−���2
� (2R(�)

� − R
(�+1)
� − R

(�−1)
� )

−��
�
̇�(�)1 Ṙ

(�)
� ,

�1
�
̈�(�)1 = [∑

�
��

� (Ṙ(�)
� )2 − ��] − �1

�
̇�(�)1

̇�(�)2 ,
��

�
̈�(�)� = [��−1

� ( ̇�(�)�−1)2 − 1�] − ��
�
̇�(�)�

̇�(�)�+1 (1 − ���) ,
� = 2, . . . , �; � = 1, . . . , �.

(91)

he quantities appearing in these equations are all deined in
Section 8.2. One should notice that number of equations is
quite large due to the evolution parameter swhich is absent
from the standard Car–Parrinello formulation as reported in
Section 9.3.

In the next section, we address some important imple-
mentational issues.

10. Computational Implementation

In this section, we present some important implementational
considerations. In particular, we approximate the electronic
interaction with an efective pseudopotential. In addition,
we demonstrate that the computational complexity may be
reduced if the orbitals are expressed in terms of a suitable
functional basis. While ab initio molecular dynamics is
restricted to small molecules, because of its computational
complexity, the method may be extended to larger systems if
a hybrid approach is followed. he latter is introduced in the
last subsection.

10.1. Pseudopotential. For many calculations, the complete
knowledge of the electronic interaction is not essential for
the required precision. Consequently, for the sake of com-
putational eiciency, the exact electronic potential may be
approximated by means of an efective potential, called the
pseudopotential [46–48]. Moreover, the relativistic efects
associated with the core electrons may be implicitly incorpo-
rated into the pseudopotential, without recourse to explicit
and intricate approaches.
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A commonly employed pseudopotential, the dual-space
Gaussian pseudopotential [46, 47], is composed of two parts,
a local potential and a nonlocal potential:

�PP (r, r�) = �� (�) + �NL (r, r�) . (92)

he local potential, which described the local interaction, is
deined as

�� (�) Š − �ion� erf ( �√2��) + exp(−12 ( ���)
2)

× (�1 + �2 ( ���)
2 + �3 ( ���)

4 + �4 ( ���)
6) ,

(93)

where erf is the error function while ��, �1, �2, �3, and �4
are adjustable empirical parameters. he nonlocal potential

VNL (r, r�)
= ∑

�
∑
ℓ

ℓ∑
�=−ℓ

��
ℓ (�, �) �ℓ

� (�) �ℓ
� �ℓ

� (�) (��
ℓ )∗ (��, ��) (94)

that describes the nonlocal interaction is deined in terms of
the complex spherical harmonics functions ��

ℓ (�, �) and of
the Gaussian projectors:

�ℓ
� (�) = √2�ℓ+2(�−1) × �−(1/2)(�/�ℓ)2

�ℓ+4�−1/2ℓ √Γ (ℓ + (4� − 1) /2) . (95)

In these equations, ℓ is the azimuthal quantumnumber and�
is the magnetic quantum number while Γ is the well-known
gamma function.

In the next subsection, we explore the advantages of
projecting the orbitals on a functional basis.

10.2. Orbitals and Basis Functions. Any continuous function,
such as an orbital, may be represented as a linear combination
of basis functions:

������⟩ = ∑
�
��� �������⟩ , (96)

where ��� are the projection coeicients and |��⟩ are the
basis functions. Such decompositionmay be either physically
motivated, computationally motivated, or both. For instance,
if physical solutions of the Schrödinger equation are known,
it is possible to project the orbitals on these solutions [49–
51]. he most common Schrödinger basis functions are the
Slater-type basis functions [49]:

��
m
(r) = ��

m
���� ���� ���� exp [−�m ‖r‖] (97)

and the Gaussian-type basis functions [10, 50]:

��
m
(r) = ��

m
���� ���� ���� exp [−�m ‖r‖2] . (98)

where ��
m

and ��
m

are normalisation constants while m

represents themagnetic quantumnumbers. Once an orbital is

projected on a basis, it is entirely determined by its projection
coeicients. hus, the resulting representation is parametric.
As a result, the determination of the projection coeicients is
equivalent to the determination of the orbitals: the closer the
basis functions are to the real solution, the more eicient the
calculation is. his is due to the fact that fewer coeicients
are required to adequately represent the underlying orbital.
An even more realistic representation may be obtained if the
basis functions are centred upon their respective nuclei [13]:

�� (r) = ∑
�,�
������ (r − R�) , (99)

where �� is an atomic basis function and R� is the location of
a given nucleus.

he orbitals may also be represented by plane waves [14]:

�PW

k
(r) = 1√Ω exp [�k ⋅ r] , (100)

whereΩ is the volume of the cell associated with the underly-
ing discrete grid and k is the wave vector associated with the
plane wave. From a physical point of view, plane waves form
an appropriate basis when the orbitals are smooth functions.
Otherwise, a large number of plane waves are required for
an accurate reconstruction of the orbitals. Consequently, the
computational burden associated with the parametric rep-
resentation becomes rapidly prohibitive. Nevertheless, if the
orbitals are smooth functions, one may take advantage of the
Fourier transform in order to reduce the complexity involved
in the calculations of the derivatives. For instance, the Lapla-
cian of a Fourier transformed function is obtained by multi-
plying this function by the square of the module of the wave
vector:

Δ F��⇒ �2,
�2 F

−1���⇒ Δ,
(101)

whereF is the Fourier transform. If the Fourier transform is
calculated with the Fast Fourier Transform algorithm, the
complexity of such a calculation, for a � × � × � discrete,
grid, reduces to

�(�6)�����FT �⇒ �((� log�)3)�����FFT , (102)

which explains why plane wave basis and the Fourier
transforms are prevalent in ab initio molecular dynamics
simulations. he computational eiciency may be further
improved if the Fourier transformations are evaluated with
graphics processing units (GPU), as their architecture makes
them particularly suited for these calculations, especially
regarding speed [12].

he orbital functions are not always smooth as a result of
the strength of the electronic interaction. In this particular
case, the plane wave basis constitutes an inappropriate choice
as a very large number of basis elements are required in
order to describe the quasi-discontinuities. Nevertheless, one
would be inclined to retain the low computational complexity
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associated with plane waves and the Fourier transform while
being able to eiciently describe the rougher parts of the
orbitals. his may be achieved with a wavelet basis and the
wavelet transforms [20, 48, 52–54]. As opposed to the plane
wave functions, which span the whole space, the wavelets are
spatially localised. herefore, they are particularly suited for
the description of discontinuities and fast-varying functions.
In addition, the wavelet basis provides a multiresolution rep-
resentation of the orbitals which means that the calculations
may be performed eiciently at the required resolution level.
he wavelet functions are ilter banks [55]. In one dimension,
they involve two functions:

(i) the scaling function:

� (�) = √2 �∑
�=1−�

ℎ�� (2� − �) (103)

which is a high-pass ilter responsible for the multiresolution
aspect of the transform;

(ii) the mother wavelet:

� (�) = √2 �∑
�=1−�

��� (2� − �) (104)

which is a band-pass ilter responsible for the basis localisa-
tion. he coeicients of the scaling and the mother wavelet
function are related by

�� = −1�ℎ−�+1. (105)

In three dimensions, at the lowest resolution, the scaling
function is given by

���� (r) = � (�� − �) � (�� − �) � (�� − �) (106)

while the mother wavelets become

�1��� (r) = � (�� − �) � (�� − �) � (�� − �) ,
�2��� (r) = � (�� − �) � (�� − �) � (�� − �) ,
�3��� (r) = � (�� − �) � (�� − �) � (�� − �) ,
�4��� (r) = � (�� − �) � (�� − �) � (�� − �) ,
�5��� (r) = � (�� − �) � (�� − �) � (�� − �) ,
�6��� (r) = � (�� − �) � (�� − �) � (�� − �) ,
�7��� (r) = � (�� − �) � (�� − �) � (�� − �) ,

(107)

where � is the resolution of the underlying computational
grid. As a result, any orbital function may be approximated
by a truncated expansion:

� (r) = ∑
�,�,�

�������� (r) + ∑
�,�,�

7∑
]=1

�]����]��� (r) , (108)

where ���� and �]��� are the wavelet coeicients. Naturally,

higher resolutionsmay be achieved; themaximum resolution
is determined by the resolution of the computational grid.
As for the Fourier transform, the wavelet transform admits
Fast Wavelet Transform implementation which has the same
complexity as its Fourier counterpart.

In the next subsection, we briely present a hybrid ap-
proachwhich involves both ab initiomolecular dynamics and
molecular dynamics.

10.3. Hybrid QuantumMechanics–Molecular DynamicsMeth-
ods. Because of its inherent complexity, the applicability of
ab initio molecular dynamics is essentially limited to small
molecular domains. Molecular dynamics, which we recently
reviewed in [30], is suitable for larger molecular system.
A drawback is that it is not adapted for the simulation of
chemical complexes, since it is not based on irst principles
as its quantummechanics counterpart. Rather, molecular dy-
namics relies on empirical potentials [56] and classical
mechanics which allow for the simulation ofmuch largermo-
lecular complexes.

herefore, in order to simulate larger systems, hybrid
approaches [12, 57–59] must be followed. In such a method, a
small region of interest is simulated with ab initio molecular
dynamics, while the rest of the molecular system is approxi-
mated with molecular mechanics:

L
QM/MM = L

QM

CP +L
MM +L

QM-MM. (109)

An extra Lagrangian term is required in order to ensure a
proper coupling between the quantum degrees of freedom
and the classical degrees of freedom.his Lagrangian consists
of a bounded and an unbounded part.he bounded part con-
sists of the stretching, bending, and torsional terms which are
characterised by their distances, angles, and dihedral angles,
respectively. he unbounded part contains the electrostatic
interaction between the molecular mechanics atoms and the
quantum density as well as the steric interaction which may
be approximated, for instance, by a van der Waals potential.

11. Conclusions

In this paper, we have presented a comprehensive, but yet
concise, review of ab initio molecular dynamics from a com-
putational perspective and from irst principles. Although
it is always hazardous to speculate about the future, we
foresee two important breakthroughs. Fourier transforms,
which constitute an essential part of many molecular simula-
tions, may be evaluated with high performance on graphical
processing units or GPU [54]. he same remark applies to
the wavelet transform whose role is essential in describing
discontinuous orbitals [52]. his opens the door to high per-
formance simulations, while tempering the limitations asso-
ciated with computational complexity.

For decades, one of the main bottlenecks of molecular
simulations has been the calculation of the density func-
tionals. As in numerous ields, machine learning constitutes
a promising avenue for the fast and eicient evaluation of
these functionals without recourse to explicit calculations
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[17, 24, 25, 60]. Here, the density functional is simply learned
from existing examples with machine learning techniques.
his paves the way for the simulation for larger and more
complex molecular systems. We plan to review machine
learning-based approaches in a future publication.
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