NRC Publications Archive
 Archives des publications du CNRC

Preliminary software implementation of cone in ice model Murrant, K.

For the publisher's version, please access the DOI link below./ Pour consulter la version de l'éditeur, utilisez le lien DOI ci-dessous.

Publisher's version / Version de l'éditeur: https://doi.org/10.4224/8895469 Student Report (National Research Council of Canada. Institute for Ocean Technology); no. SR-2006-17, 2006

NRC Publications Archive Record / Notice des Archives des publications du CNRC : https://nrc-publications.canada.ca/eng/view/object/?id=77b811f7-4578-4407-9de2-f73797aa46a5 https://publications-cnrc.canada.ca/fra/voir/objet/?id=77b811f7-4578-4407-9de2-f73797aa46a5

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at https://nrc-publications.canada.ca/eng/copyright
READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

L'accès à ce site Web et l'utilisation de son contenu sont assujettis aux conditions présentées dans le site https://publications-cnrc.canada.ca/fra/droits
LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D'UTILISER CE SITE WEB.
Questions? Contact the NRC Publications Archive team at
PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n'arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

DOCUMENTATION PAGE

REPORT NUMBERSR-2006-17	NRC REPORT NUMBER	DATE August 18 ${ }^{\text {th }}, 2006$		
REPORT SECURITY CLASSIFICATION		DISTRIBUTION		
Unclassified		Unlimited		
TITLE				
PRELIMINARY SOFTWARE IMPLEMENTATION OF CONE IN ICE MODEL				
AUTHOR(S)				
Kevin A. Murrant				
CORPORATE AUTHOR(S)/PERFORMING AGENCY(S)				
PUBLICATION				
Insitute for Ocean Technology				
SPONSORING AGENCY(S)				
Institute for Ocean Technology				
IMD PROJECT NUMBER PJ2019		NRC FILE NUMBER		
KEY WORDS cone model, ice model, software, numerical analysis		PAGES $11+$ app.	$\begin{aligned} & \hline \text { FIGS. } \\ & 2 \end{aligned}$	TABLES 8
SUMMARY A software implementation in Matlab of a previously developed mathematical model for calculation of the ice forces on a faceted cone due to the passage of a level ice field based on Dr. Michael Lau's thesis work. The software can be integrated with a Matlab graphical user interface to allow for simpler manipulation by the user.				
ADDRESS	Council Technology O. Box 12093 A1B 3T5 185, Fax: (709) 772-2462			

National Research Council	Conseil national de recherches
Canada	Canada
Institute for Ocean	Institut des technologies
Technology	océaniques

PRELIMINARY SOFTWARE IMPLEMENTATION OF CONE IN ICE MODEL

SR-2006-17

Kevin A. Murrant

August 2006

ACKNOWLEDGEMENTS

Acknowledgements go to my supervisor, Dr. Michael Lau, for his support and guidance throughout the project. Dr. Lau wrote the model that the work is based on, and has provided integral support with implementing it to software.

Lavina Barbour also provided a lot of assistance to the author in various aspects of preparing the model data, verifying the model, and documentation. A thanks goes to her as well.

Finally, the author expresses his appreciation for the Institute for Ocean Technology for allowing this project to be possible and the staff providing support for researchers.

Abstract

This document describes the Ships \& Structures in Ice software development project, specifically on the development of a model for a cone in ice. The actual development of the initial software model from the original documentation is outlined. The software layout, including details on each section, is recorded. Finally, the verification of the model and the conclusions are included, followed by an appendix detailing the use of the software and a list of functions.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS i
ABSTRACT ii
1.0 INTRODUCTION 1
1.1 Objectives 1
2.0 CONE MODEL 1
2.1 Requirements 1
2.2 Variations 2
3.0 SOFTWARE IMPLEMENTATION 2
3.1 Objectives 2
3.2 Specifications
3.3 Layout 3
3.3.1 Rubble height calculation. 4
3.3.2 Rubble load calculation 4
3.3.3 Ice load calculation 5
3.3.4 Total load on cone 5
3.4 Program Usage 6
4.0 VERIFICATION 6
4.1 Test Matrix 6
4.2 Test Comparison 8
4.3 Analysis of Results 9
5.0 FUTURE EXPANSION 10
5.1 Smooth Cone 10
5.2 Time-Domain Results 10
5.3 GUI Integration 11
6.0 RECOMMENDATIONS \& CONCLUSIONS 11
7.0 REFERENCES 11
LIST OF FIGURES
Figure 1. Program layout. 3
Figure 2. Diagram of rubble geometry dimensions. 4
LIST OF TABLES
Table 1. Test number to test ID and facility reference 6
Table 2. Test cases 1-3 properties 7
Table 3. Test cases 4-6 properties 8
Table 4. Test cases 7-9 properties 8
Table 5. Comparison of expected and calculated values, tests 1-3 9
Table 6. Comparison of expected and calculated values, tests 4-6. 9
Table 7. Comparison of expected and calculated values, tests 7-9 9
Table 8. Percentage agreement of expected and calculated values. 10
APPENDICES

Appendix A: Input Listing Appendix B: Function Listing Appendix C: Program Listing Appendix D: Debug Information

PRELIMINARY SOFTWARE IMPLEMENTATION OF CONE IN ICE MODEL

1.0 INTRODUCTION

This project is part of IOT's Ships \& Structures in Ice software development division. Software is being developed to facilitate numerical simulation of various oceanic phenomena. The goal of the project is to produce a software package capable of handling many simulations with an easy to use interface. This software package may eventually be commercially available.

The scope of this portion of the project covers the creation of a model for a cone in ice. The software version is based on a model developed by Dr. Michael Lau during his thesis work, entitled "Ice Forces on a Faceted Cone Due to The Passage of a Level Ice Field" (Lau, 1999). The model has been modified to suit a software environment, with the necessary coding to create an automatic simulation.

This project is a preliminary work and is not yet completely finished. Due to time constraints, the debugging of the program is not completed and there are still errors to be repaired. This is outlined further in the verification section as well as Appendix D .

1.1 Objectives

The objectives for this segment of the project are as follows:

- Based on Dr. Lau's thesis work, write a software version of the mathematical cone in ice model.
- The work must be done in Matlab, in order to facilitate integration into existing simulation software.
- Allow for future expansion to a time-domain based simulation, with force data being output at specified intervals.
- Allow for expansion from a faceted cone to a smooth cone.
- The software model must agree within 10% of the measured results.

2.0 CONE MODEL

The model developed by Dr. Lau is based on the problem of a faceted cone in a level ice field. Forces exerted on the cone by the ice are calculated based on a number of input criteria, which are outlined briefly below and in more detail in the following section. Currently, the model calculates the peak force on the cone under the given conditions.

2.1 Requirements

The model is based on a faceted cone, therefore data must be provided for both the centre facet (with respect to ice motion) and the side facets. The input is based on the following four groupings of parameters:

- Ice properties
- Rubble properties
- Structure dimensions
- Ice breaking pattern

These parameters are outlined in greater detail in section 3.0.

2.2 Variations

The model can include several variations. It is possible that the model can be modified to simulate a smooth cone. This requires some manipulation of the equations, including excluding extra equations. The model currently calculates the peak force on the cone, as stated, but can be changed such that it outputs data on a time-domain basis when joined with a motion solver. This modification would require ice sheet velocity data to be factored in when performing the calculations.

The model should also be integrable into other Matlab programs, such as OSIS (Ocean-Structure Interactions Simulator). This is essential for future distribution and presentation of the software, as well as to facilitate data analysis.

3.0 SOFTWARE IMPLEMENTATION

The software to be developed is a direct implementation of the faceted cone in ice model to calculate the peak loads on the cone from the ice. At the time of writing, the software will not take into account motion data. The output is currently the total force on the cone, although many other outputs are possible.

3.1 Objectives

The objectives for this software model are as follows:

- Convert all segments of a total ice load calculation to Matlab format.
- For each segment that requires an iterative process, create loops and logical statements to produce the same results.
- Document each function with equation references and input and output information for future references.
- Clearly comment the code to show each section of the calculation.
- The software model should produce results that agree with the original model.

3.2 Specifications

The specification for the software model is as follows:

- Written as a function, which can be called to facilitate easy integration into a GUI in the future.
- Clearly named and documented variables to help manage input and output.
- Results must agree within 10% of the measured values.
- Each equation used is referenced to in the thesis.
- The software model must require the same inputs as the documented model.

3.3 Layout

The software model is divided into four segments: rubble height calculation, rubble load calculation, ice load calculation, and total load on cone. These are described in greater detail below. Figure 1 shows the overall layout of the software.

Figure 1. Program layout.

This is the order in which the program calculates the required items. It is a straightforward flow without any looping at this scale. Each segment is outlined in more detail in the following sub-sections.

The sections mentioned in the following descriptions of each step of the program can be found in both Appendix B, the function listing, and Appendix C, the program listing.

3.3.1 Rubble height calculation

The rubble height calculation essentially calculates the rubble geometry around the front and side facets. This geometry is required for the rubble load calculations. The calculations go in the following order:

1. Calculation of the width of the ride-up ice wall at the front facet, $w_{r u, c}$.
2. Finding the rubble height at the side of the front facet, $h_{r f}$.
3. Calculating the rubble height at the side of the cone, $h_{r s}$.
4. Finding the maximum rubble height at the front facet, $h_{r m}$.

Figure 2 shows a diagram illustrating each of these dimensions.

Figure 2. Diagram of rubble geometry dimensions.
Once these dimensions have been calculated, it is possible to perform the rubble load calculations. This is covered in section 1 of the software. The function listing is in the appendix.

3.3.2 Rubble load calculation

The rubble resulting from the breaking of the ice against the structure accounts for much of the total force. The rubble loads for the centre and side facets are calculated
separately for the respective equivalent rubble heights. The rubble load per unit width on the centre facet is first calculated using the following procedure:

1. Load per unit width is calculated for each section.
2. These loads are summed to give the total rubble load.
3. The rubble weight is also calculated.

A similar procedure is followed to calculate the rubble load per unit width on the side facet. This is covered in section 2 of the software.

3.3.3 Ice load calculation

The main load on the structure results from the level ice field breaking against the cone. As with the rubble load calculations, the ice loads for the centre and side facets are calculated separately. The ice load on the centre facet is calculated in the following manner:

1. The beam cracking length is calculating based on the ice cracking pattern.
2. The ride-up and rubble heights are found.
3. The weight on the individual sections is calculated and added to the weight of the ride-up ice and summed to give the total weight.
4. The force required to push the ice blocks up the slope through the ice rubble is calculated for each section.
5. Force components at the waterline are calculated using an iterative process which converges on the correct value.
6. The final results are then summed and saved for the total load calculations.

This process is similar for the side facet and is repeated again. One difference, however, is the force component of the total horizontal force is calculated as projected along the $X-Z$ Axes. This is covered in section 3 of the software.

3.3.4 Total load on cone

Once all the previous calculations have been completed, it is only a matter of summing the total vertical forces on the front facet and each of the side facets to get the total vertical force. To get the total horizontal force, the horizontal force on the front facet and the component of the horizontal force projected along the X -axis of each side is summed. This provides the output for the model at the current time. The summing calculations are located at the end of the software.

Note that these forces are peak forces and are not on a time-step basis. These values are what are expected given the ice structural characteristics and structure dimensions during a period of maximum ice load. i.e. having had ice breaking on the structure for some time and being well into the ice field.

3.4 Program Usage

Initialization of the program requires a very simple command line interface. The program must be launched from within Matlab. This is the format of a function call:

```
cone( thickness, flexStrength, eMod, isFric, wDensity, rAng, iFricAng,
wFricAng, repAng, bwDensity, porosity, watDensity, height, facetWater, angle,
sideAngle, avConeAng, rcAxis, measBrp )
```

Each of these input variables is documented in the appendix. The function will return two output variables:

- The total horizontal force on the cone, HtotT.
- The total vertical force on the cone, VtotT.

Additional outputs are possible, but require slight modification of the code.

4.0 VERIFICATION

In the development of Dr. Lau's thesis, the model was verified in two ways: comparison of measurement of rubble geometry and comparison of ice loads. The model itself has already been verified against experimental data. Tests were held in two separate ice tanks, ESSO and IOT. The results were compared with the predicted results from the model and showed very good agreement.

Therefore, since the model the software is based on has already been verified, it is only necessary to compare the software model to the results obtained previously.

4.1 Test Matrix

The test cases used for the verification of the model were obtained from model tests based on physical testing done in two separate ice tanks. The first five tests were carried out at the ESSO ice tank, while the remaining four tests were carried out at the IOT ice tank. The test numbers and their corresponding test names are as follows:

Test	Test ID	Facility
1	1.1	ESSO
2	2.1	ESSO
3	2.2	ESSO
4	3.1	ESSO
5	4.1	ESSO
6	3.1	IOT
7	4.1	IOT
8	5.1	IOT
9	6.3	IOT

Table 1. Test number to test ID and facility reference.

Preliminary Software Implementation of Cone in Ice Model

The following test matrix has been developed for the purposes of verifying the model:

Test	1	2	3
thickness (m)	0.25	0.32	0.36
flexStrength (Pa)	50000	35000	141000
eMod (Pa)	203000000	288000000	1154000000
isFric ()	0.085	0.085	0.085
wDensity ($\mathrm{N} / \mathrm{m}^{\wedge} 3$)	917	910	910
rAng	35	35	35
iFricAng	35	35	35
wFricAng	11.3	11.3	11.3
repAng	35	35	35
bwDensity	6290	6290	6290
porosity	0.3	0.3	0.3
watDensity	1032	1032	1032
height	[0.084, 0.384]	[0.084, 0.384]	[0.084, 0.384]
facetWater	0.999621257	1.041491927	1.137221969
angle	$\begin{array}{r} {[39.80557109} \\ 63.43494882,90] \end{array}$	$\begin{array}{r} {[39.80557109,} \\ 63.43494882,90] \\ \hline \end{array}$	$\begin{array}{r} {[39.80557109,} \\ 63.43494882,90] \\ \hline \end{array}$
sideAngle	$\begin{array}{r} {[35.8175256444436,} \\ 60,90] \\ \hline \end{array}$	$\begin{array}{\|r} \hline[35.8175256444436 \\ , 60,90] \\ \hline \end{array}$	$\begin{array}{\|r\|} \hline[35.8175256444436 \\ , 60,90] \\ \hline \end{array}$
avConeAng	56.9	56.9	56.9
rcAxis	30	30	30
measBrp	0.143511259	0.149374262	0.206613083

Table 2. Test cases 1-3 properties.

Test	4	5	6
thickness (m)	0.385	0.41	0.1583
flexStrength (Pa)	125000	141000	44380
eMod (Pa)	569000000	853000000	362240000
isFric ()	0.085	0.085	0.1125
wDensity ($\mathrm{N} / \mathrm{m}^{\wedge} 3$)	930	930	916
rAng	35	35	35
iFricAng	35	35	35
wFricAng	11.3	11.3	11.3
repAng	35	35	35
bwDensity	6290	6290	6290
porosity	0.3	0.3	0.3
watDensity	1032	1032	1003
height	[0.084, 0.384]	[0.084, 0.384]	[0.233, 0.473]
facetWater	1.105012245	1.143250085	0.780222415
angle	$\begin{array}{r} {[39.80557109,} \\ 63.43494882,90] \\ \hline \end{array}$	$\begin{array}{r} {[39.80557109} \\ 63.43494882,90] \\ \hline \end{array}$	$\begin{array}{r} {[39.80557109,} \\ 63.43494882,90] \\ \hline \end{array}$
sideAngle	$\begin{array}{r} {[35.8175256444436,} \\ 60,90] \end{array}$	$\begin{array}{r} {[35.8175256444436,} \\ 60,90] \end{array}$	$\begin{array}{r} {[35.817525644443} \\ 6,60,90] \end{array}$

Preliminary Software Implementation of Cone in Ice Model

avConeAng	56.9	56.9	49.8
rcAxis	30	30	30
measBrp	0.170917311	0.186852625	0.182372731

Table 3. Test cases 4-6 properties.

Test	7	8	9
thickness (m)	0.1598	0.0945	0.1235
flexStrength (Pa)	41070	30720	22500
eMod (Pa)	364060000	126530000	111850000
isFric ()	0.0925	0.088	0.08
wDensity ($\mathrm{N} / \mathrm{m}^{\wedge} 3$)	914	928	919
rAng	35	35	35
iFricAng	35	35	35
wFricAng	11.3	11.3	11.3
repAng	35	35	35
bwDensity	6290	6290	6290
porosity	0.3	0.3	0.3
watDensity	1003	1003	1003
height	[0.067, 0.307]	[0.067, 0.307]	[0.067, 0.307]
facetWater	0.788856199	0.755372151	0.766649398
angle	$\begin{array}{r} {[39.80557109,} \\ 63.43494882,90] \end{array}$	$\begin{array}{r} {[39.80557109,} \\ 63.43494882,90] \end{array}$	$\begin{array}{r} {[39.80557109,} \\ 63.43494882,90] \end{array}$
sideAngle	$[35.8175256444436$, $60,90]$	$[35.8175256444436$, $60,90]$	$[35.8175256444436$ $, 60,90]$
avConeAng	56.9	56.9	56.9
rcAxis	30	30	30
measBrp	0.182271026	0.154802014	0.142583765

Table 4. Test cases 7-9 properties.

These test cases can be used to perform a comparison of the calculated and expected values. This is covered in the following section.

4.2 Test Comparison

This is a comparison of the values calculated using the new software model and the expected values from previous work with the model.

Test	$\mathbf{1}$	2	$\mathbf{3}$
hrf (expected)	0.510	0.586	0.648
hrf (calculated)	0.524	0.599	0.659
hrs (expected)	0.559	0.630	0.687
hrs (calculated)	0.652	0.742	0.833
hrm (expected)	0.974	1.049	1.142
hrm (calculated)	1.001	1.143	1.258
Total Horizontal Force (expected)	10000	19000	20000

Total Horizontal Force (calculated)	10143	13668	23982
Total Vertical Force (expected)	11000	22000	20000
Total Vertical Force (calculated)	12341	16161	21025

Table 5. Comparison of expected and calculated values, tests 1-3.

Test	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
hrf (expected)	0.660	0.692	0.380
hrf (calculated)	0.672	0.703	0.434
hrs (expected)	0.699	0.730	0.495
hrs (calculated)	0.849	0.891	0.509
hrm (expected)	1.110	1.147	0.713
hrm (calculated)	1.282	1.342	0.813
Total Horizontal Force (expected)	30000	30000	4287
Total Horizontal Force (calculated)	20657	23985	4328
Total Vertical Force (expected)	38000	35000	5300
Total Vertical Force (calculated)	24247	27561	5579

Table 6. Comparison of expected and calculated values, tests 4-6.

Test	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$
hrf (expected)	0.365	0.278	0.319
hrf (calculated)	0.377	0.296	0.333
hrs (expected)	0.408	0.335	0.368
hrs (calculated)	0.465	0.352	0.404
hrm (expected)	0.696	0.530	0.608
hrm (calculated)	0.720	0.565	0.636
Total Horizontal Force (expected)	5005	1953	2810
Total Horizontal Force (calculated)	3825	2159	2639
Total Vertical Force (expected)	4717	1982	3055
Total Vertical Force (calculated)	5091	2878	3669

Table 7. Comparison of expected and calculated values, tests 7-9.

From this comparison, we can see that there is a general correlation, but the results are not as accurate as they should be. This is probably due to an error in the software model.

Due to time constraints, it may not be possible for the current author to identify these errors. However, given the documentation and test cases, a solution should not be difficult to find given some time.

4.3 Analysis of Results

Further analysis of these results is necessary to help isolate the problem. Below is a table showing the percent error of each calculation. These percentages are calculated using the following formula:

$$
\% \text { Error }=\frac{(\text { Calculated }- \text { Expected })}{\text { Expected }} * 100 \%
$$

Test	hrf (\%)	hrs (\%)	hrm (\%)	Total Horizontal Force (\%)	Total Vertical Force (\%)
$\mathbf{1}$	2.7	16.6	2.8	1.4	12.2
$\mathbf{2}$	2.2	17.8	9.0	-28.1	-26.5
$\mathbf{3}$	1.7	21.3	10.2	19.9	5.1
$\mathbf{4}$	1.7	21.4	15.5	-31.1	-36.2
$\mathbf{5}$	1.5	22.1	17.0	-20.1	-21.3
$\mathbf{6}$	14.1	2.9	14.1	1.0	5.3
$\mathbf{7}$	3.5	13.8	3.5	-23.6	7.9
$\mathbf{8}$	6.5	5.2	6.5	10.5	45.2
$\mathbf{9}$	4.6	9.8	4.6	-6.1	20.1

Table 8. Percentage agreement of expected and calculated values.

These percentages should all be below 1%. We can see that the agreement of the rubble height at side facet is very far off, and this is one of the preliminary calculations in the program.

Further analysis of these results can be found in Appendix D.

5.0 FUTURE EXPANSION

Currently, this model is being developed only for a faceted cone as specified in Dr. Lau's thesis and calculates only the peak loads on the structure.

Future expansion may require that the model be updated with various features. The following are some of the features that may be developed.

5.1 Smooth Cone

While this model currently is only for a faceted cone, the calculation for a smooth cone is very similar. A smooth cone would actually require fewer equations and would be easier to calculate than a faceted cone. The modification for a smooth cone was intended from the beginning of this software project, and requires only a few modifications to the current model.

5.2 Time-Domain Results

The model eventually should be expanded to output data on a time-domain basis. This would require modification of the model to take into account velocity and acceleration information as it came upon the ice field. This would be required to join the model with a motion-solver, which could provide motion data based on the force output, creating a feedback loop of data that could be recorded. Right now the model does not take into
account velocity information and this would require extensive modifications of the models.

5.3 GUI Integration

Integration into a GUI (Graphical User Interface) is ultimately intended for this model. This would allow for greater user interaction with the model and more extensive analysis and output options. Currently, a GUI has been developed called OSIS (OceanStructure Interactions Simulator), which is a demonstration of a software package that will allow for numerical analysis using a number of input models. Eventually, the software will be available as an ocean testing toolkit and feature many models.

6.0 RECOMMENDATIONS \& CONCLUSIONS

The software developed meets the initial specifications well, although expansion to time-domain may not be possible without greater modification than anticipated. Integration into a GUI such as OSIS is very straight forward, as the model was developed in Matlab with a command line interface. The model could be called from a GUI, provided with the proper inputs, and return the total force.

This model should prove to be very valuable in the development of further software in the Ships \& Structures in Ice software division. Expansion on the model is very likely to be required and will hopefully be easy to complete.

7.0 REFERENCES

Lau, M., 1999. "Ice Forces on a Faceted Cone Due to the Passage of a Level Ice Field" Faculty of Engineering and Applied Science, Memorial University of Newfoundland. St. John's, NL, May 1999.

Appendix A
Input Listing

Appendix A: Input Listing

This appendix has a listing of all the inputs required for the program, in the order which they are to be input. Note that units are specified for each input. These units are consistent in all equations. All angles are input in degrees.

A-1.0 INPUT LISTING

A-1.1 Ice Properties

thickness (m)	t	- Ice thickness
flexStrength (Pa)	σ_{f}	- Flexural Strength
eMod (Pa)	E	- Elastic Modulus
isFric ()	μ_{s}	- Ice-structure friction coefficient
wDensity $\left(\mathrm{N} / \mathrm{m}^{\wedge} 3\right)$	γ	- Weight Density

A-1.2 Rubble Properties

rAng (deg)	l	- Rubble angle
iFricAng (deg)	Φ	- Internal friction angle
wFricAng (deg)	Φ_{w}	- Wall friction angle
repAng (deg)	Φ_{r}	- Angle of repose
bwDensity ($\left.\mathrm{N} / \mathrm{m}^{\wedge} 3\right)$	γ_{b}	- Bulk weight density
porosity ()	p	- porosity

A-1.3 Water Foundation

watDensity $\left(\mathrm{N} / \mathrm{m}^{\wedge} 3\right) \gamma_{w} \quad-$ Water Density

A-1.4 Structure Dimensions

height (m)	h	- Array containing the height for each section
facetWater (m)	w_{f}	- Facet width at waterline
angle (deg)	α	- Array containing the angle for each section
sideAngle (deg)	α_{s}	- Array containing side cone angles
avConeAng (deg)	$\alpha_{\text {ave }}$	- Average cone angle
diameter (m)	D	- Array containing diameter for each section

A-1.5 Ice Breaking Pattern

rcAxis (deg)	$\theta_{c r}$	- Angle between radial crack and x-axis
measBrp (m)	L_{L}	- Measured broken piece size

Appendix B

Function Listing

Appendix B: Function Listing

This appendix has a listing of all the equations used in each function, divided by sections. Please refer to appendix C for information on the code for each section.

The equation references indexed here refer to "lce Forces on a Faceted Cone Due to the Passage of a Level Ice Field" (Lau, 1999). The first number refers to the chapter, the second number refers to the equation.

B-1.0 Rubble Height Calculation

Calculate the width of the ride-up ice wall at the front facet.

$$
\begin{equation*}
w_{r u, c}=\frac{1}{2}\left(d_{c r}+w_{f}\right)=w_{f}+L_{L} \tan \theta_{c r} \tag{8-12}
\end{equation*}
$$

Inputs:

facetWater (m) $\quad w_{f} \quad$ - Facet width at waterline
rcAxis (deg) $\quad \theta_{c r} \quad$ - Angle between radial crack and x-axis
measBrp (m) $\quad L_{L} \quad$ - Measured broken piece size
Outputs:
wruc (m) $\quad w_{r u, c} \quad$ - Width of ride-up ice wall at front facet

B-1.1 Rubble Height at Side of Front Facet

a) Calculate the cross-section of rubble at both sides of the cone.

$$
\begin{equation*}
A=\frac{w_{f} t}{2(1-p)} \tag{6-5}
\end{equation*}
$$

Inputs:

facetWater (m) $\quad w_{f} \quad$ - Facet width at waterline
thickness (m) $\quad t \quad$ - Ice thickness
porosity p - Porosity
Outputs:
A $\left(m^{\wedge} 2\right) \quad A \quad$ - Cross-section of rubble at both sides of cone
b) Find rubble height at side of front facet:

Using trial and error procedure, find $h_{r f}$ and n such that $h_{r f}<h_{n}$. (i.e. find the highest section the rubble reaches) Assume first $n=1$ and $h_{r f}=h_{1}$.

$$
\begin{align*}
& B_{o b}=\left(\frac{h_{r f}-h_{n-1}}{\tan \alpha_{s, n}}+\sum_{i=1, n-1} \frac{h_{i}-h_{i-1}}{\tan \alpha_{s, i}}\right) \sin 30^{\circ} \tag{6-12}\\
& h_{r f}=\sqrt{\left[\frac{w_{f} t}{(1-p)}+B_{o b}^{2} \tan \alpha_{s, 1}\right] \tan \phi_{r}} \tag{6-16}
\end{align*}
$$

Inputs:

height (m) $\quad h \quad$ - Array containing the height for each section
sideAngle (deg) $\quad \alpha_{s} \quad$ - Array containing side cone angles
facetWater (m) $\quad w_{f} \quad$ - Facet width at waterline
thickness (m) $\quad t \quad$ - Ice thickness
porosity p - Porosity
repAng (deg) $\quad \Phi_{r} \quad$ - Angle of repose

Outputs:

hrf (m) $\quad h_{r f} \quad$ - Rubble height at front facet

B-1.2 Rubble Height at Side of Cone

Calculate the rubble height at the side of the cone.
This calculation uses a similar trial and error procedure as the preceding section.

$$
\begin{equation*}
h_{r s}=\sqrt{\frac{\frac{w_{f} t}{(1-p)}+\sum_{i=1, n-1} h_{i}^{2}\left(\frac{1}{\tan \alpha_{s, i}}-\frac{1}{\tan \alpha_{s, i+1}}\right)}{\frac{1}{\tan \phi_{r}}-\frac{1}{\tan \alpha_{s, n}}}} \tag{6-22}
\end{equation*}
$$

Inputs:

facetWater (m) $\quad w_{f} \quad$ - Facet width at waterline
thickness (m) t - Ice thickness
porosity
height (m)
p - Porosity
sideAngle (deg) $\quad \alpha_{s} \quad$ - Array containing side cone angles
repAng (deg) $\quad \Phi_{r} \quad$ - Angle of repose

Outputs:

hrs (m) $\quad h_{r s} \quad$ - Rubble height at side of cone

B-1.3 Maximum Rubble Height at Front Facet

$$
\begin{align*}
& B_{1}=\sqrt{\frac{w_{f} t}{(1-p) \sin \phi_{r}} \cos \left[\sin ^{-1}\left(\frac{\sin \phi}{\sin \alpha_{a v}}\right)\right]} \tag{6-30}\\
& \alpha_{r}=\cos ^{-1}\left(\frac{\tan \phi_{r}}{\tan \alpha_{a v}}\right) \tag{6-33}\\
& A_{3}=\frac{r^{2}}{2} \sin \alpha_{r}\left(1-\cos \alpha_{r}\right) \tag{6-31}\\
& A_{4}=\frac{\pi r^{2} \alpha_{r}}{360}-r^{2} \sin \left(\frac{\alpha_{r}}{2}\right) \cos \left(\frac{\alpha_{r}}{2}\right) \tag{6-32}\\
& w=\frac{1}{2} B_{1}\left(\frac{A_{3}+A_{4}}{A_{3}}\right) \tag{6-34}\\
& h_{r m}=\frac{h_{r f}}{1-\frac{1}{3}\left(\frac{A_{3}+A_{4}}{A_{3}}\right)} \tag{6-35}
\end{align*}
$$

Inputs:
facetWater (m) $\quad w_{f} \quad$ - Facet width at waterline
thickness (m) $\quad t \quad$ - Ice thickness
porosity ()
sideAngle (deg) $\quad \alpha_{s} \quad$ - Array containing side cone angles
repAng (deg)
iFricAng (deg)
hrf (m)
$\Phi_{r} \quad$ - Angle of repose
$\Phi \quad$ - Internal friction angle
$h_{r f} \quad-$ Rubble height at front facet (section 1.1)

Outputs:

hrm (m) $\quad h_{r m} \quad$ - Maximum rubble height at front facet
width (m) $\quad w \quad$ - Equivalent rubble width

B-2.0 Rubble Load Calculation

B-2.1 Rubble Load per Unit Width on Centre Facet

$$
\begin{equation*}
h_{r, c}=h_{r f}+\left(h_{r m}-h_{r f}\right)\left(1-\frac{w}{w_{r u, c}}\right) \tag{8-13}
\end{equation*}
$$

Inputs:

hrf (m)
hrm (m)
width (m)
wruc (m)
$h_{r f} \quad-$ Rubble height at front facet (section 1.1)
$h_{r m} \quad$ - Maximum rubble height at front facet (section 1.3)
w - Equivalent rubble width (section 1.3)
$w_{r u, c}$ - Width of ride-up ice wall at front facet (section 1.0)

Outputs:

hrc $(\mathrm{m}) \quad h_{r, c} \quad$ - Equivalent rubble height at centre facet

i) Load per unit width on individual sections:

This process is performed on all sections of the cone and summed.

$$
\begin{align*}
& \phi_{w}^{\prime}=-0.2561 \alpha+24.758 \tag{7-28}\\
& \phi_{w}^{\prime}=-0.3407 \alpha+39.339 \tag{7-29}\\
& P_{w h}=\frac{1}{2} \gamma_{b}\left(1-\frac{2 l}{180^{0}}\right) \sum_{i=1, k}\left(h_{b, i}^{2}-h_{t, i}^{2}\right)(1-\sin \phi)\left(\frac{180^{0}-\alpha-2 \phi}{90^{0}-2 \phi}\right)^{\frac{1}{3}} \cos \left(90^{0}-\left(\alpha_{i}-\phi_{w, i}^{\prime}\right)\right) \tag{7-37}\\
& P_{w v}=\frac{1}{2} \gamma_{b}\left(1-\frac{2 l}{180^{0}}\right) \sum_{i=1, k}\left(h_{b, i}^{2}-h_{t, i}^{2}\right)(1-\sin \phi)\left(\frac{180^{0}-\alpha-2 \phi}{90^{0}-2 \phi}\right)^{\frac{1}{3}} \sin \left(90^{0}-\left(\alpha_{i}-\phi_{w, i}^{\prime}\right)\right) \tag{7-38}
\end{align*}
$$

Inputs:

angle (deg) $\quad \alpha \quad$ - Array containing the angle for each section
bwDensity ($\mathrm{N} / \mathrm{m}^{\wedge} 3$) $\mathrm{Y}_{\mathrm{b}} \quad$ - Bulk weight density
rAng (deg)
height (m)
I - Rubble angle
iFricAng (deg) $\quad \Phi \quad$ - Internal friction angle

Outputs:

w FricAngCen (deg) $\Phi^{\prime}{ }_{w} \quad$ - Effective wall friction angle at centre facet
PwhCen (N/m) $\quad P_{w h} \quad$ - Horizontal pressure load on wall at centre facet
PwvCen (N/m) $\quad P_{w v} \quad$ - Vertical pressure load on wall at centre facet

ii) Total load:

The pressure results from the previous section are summed.

$$
\begin{align*}
W_{r, c} & =\frac{1}{2} \gamma_{b} w_{r, c}\left[h_{r, c}^{2}\left(\frac{1}{\tan \phi}-\frac{1}{\tan \alpha_{k}}\right)-\sum_{i=1, k-1} h_{i}^{2}\left(\frac{1}{\tan \alpha_{i}}-\frac{1}{\tan \alpha_{i+1}}\right)\right] \tag{8-14}\\
P_{b h} & =P_{w h} \tag{7-32}\\
P_{b v} & =W_{r}-P_{w v} \tag{7-33}
\end{align*}
$$

Inputs:

bwDensity ($\mathrm{N} / \mathrm{m}^{\wedge} 3$) Y_{b} - Bulk weight density wruc (m)
hrc (m)
$W_{r u, c}$

- Width of ride-up ice wall at front facet (section 1.0)
iFricAng (deg)
$h_{r, c} \quad$ - Equivalent rubble height at centre facet (section 2.1)
angle (deg) $\quad \alpha \quad$ - Array containing the angle for each section
height (m)
PwhCen (N / m)
$h \quad$ - Array containing the height for each section
PwvCen (N/m)
$P_{w h} \quad$ - Horizontal pressure load on wall at centre facet
$P_{w v} \quad$ - Vertical pressure load on wall at centre facet

Outputs:

PbhCen $(\mathrm{N} / \mathrm{m}) \quad P_{b h} \quad$ - Horizontal load per unit width on centre facet
PbvCen (N/m) $\quad P_{b v} \quad$ - Vertical load per unit width on centre facet
weightrc $(\mathrm{N} / \mathrm{m}) \quad W_{r, c} \quad$ - Rubble weight per unit width on centre facet
iii) Equivalent rubble width:

$$
\begin{equation*}
w_{r c, c}=\frac{1}{2}\left(d_{c r}+w_{f}\right)=w_{f}+L_{L} \tan \theta_{c r} \tag{8-12}
\end{equation*}
$$

Inputs:

facetWater (m) $\quad w_{f} \quad$ - Facet width at waterline
measBrp (m) $\quad L_{L} \quad$ - Measured broken piece size
rcAxis (deg) $\quad \theta_{c r} \quad$ - Angle between radial crack and x-axis

Outputs:

wrcc (m) $\quad w_{r c, c} \quad$ - Equivalent rubble width at centre facet

B-2.2 Rubble Load per Unit Width on Side Facet

i) Load per unit width on individual sections:

This method is the same as the previous section for this calculation.

ii) Total load:

As with the previous, the load on each section is summed.

$$
\begin{align*}
& V_{I}=\frac{1}{12} \pi\left[h_{r, c}^{3}\left(\frac{1}{\tan ^{2} \phi}-\frac{1}{\tan ^{2} \alpha_{k}}\right)-\sum_{i=1, k-1} h_{i}^{3}\left(\frac{1}{\tan ^{2} \alpha_{i}}-\frac{1}{\tan ^{2} \alpha_{i+1}}\right)\right] \tag{8-19}\\
& V_{I I}=A_{r s} d_{I I}=\left(\frac{w_{r u, c} t}{2(1-p)}\right)\left(\frac{1}{2} D_{k+1} \cos \left(30^{\circ}\right)+\frac{h_{k}-h_{r f}}{\tan \left(\alpha_{k}\right)}\right) \tag{8-21}\\
& W_{r, s}=\left(V_{I}+V_{I I}\right) \gamma_{b} \tag{8-22}
\end{align*}
$$

Inputs:

hrc (m)
iFricAng (deg)
angle (deg)
height (m)
wruc (m)
thickness (m)
porosity ()
diameter (m)
hrf (m)
bwDensity ($\mathrm{N} / \mathrm{m}^{\wedge} 3$) Y
$h_{r, c} \quad$ - Equivalent rubble height at centre facet (section 2.1)
$\Phi \quad$ - Internal friction angle
$\alpha \quad$ - Array containing the angle for each section
$h \quad$ - Array containing the height for each section
$w_{r u, c}$ - Width of ride-up ice wall at front facet (section 1.0)
t - Ice thickness
p - Porosity
D - Array containing the diameter of each section
$h_{r f} \quad$ - Rubble height at front facet (section 1.1)

- Bulk weight density

Outputs:

PbhSide (N / m)
PbvSide (N / m)
VI ($\mathrm{m}^{\wedge} 3$)
$P_{b h} \quad$ - Horizontal load per unit width on side facet

VII ($\mathrm{m}^{\wedge} 3$)
$V_{1} \quad$ - Volume of first rubble section
weightrs $(\mathrm{N} / \mathrm{m}) \quad W_{r, s} \quad$ - Rubble weight per unit width at side facet
iii) Equivalent rubble width:

$$
\begin{equation*}
w_{r, s}=\frac{V_{I}+V_{I I}}{\frac{1}{2}\left[h_{r, s}^{2}\left(\frac{1}{\tan \imath}-\frac{1}{\tan \alpha_{k}}\right)-\sum_{i=1, k-1} h_{i}^{2}\left(\frac{1}{\tan \alpha_{i}}-\frac{1}{\tan \alpha_{i+1}}\right)\right]} \tag{8-23}
\end{equation*}
$$

Inputs:

$\mathrm{VI}\left(\mathrm{m}^{\wedge} 3\right) \quad V_{I} \quad$ - Volume of first rubble section
VII $\left(m^{\wedge} 3\right) \quad V_{I I} \quad$ - Volume of second rubble section
hrs (m) $\quad h_{r s} \quad$ - Rubble height at side of cone
rAng (deg)
angle (deg)
height (m)
I - Rubble angle
$\alpha \quad$ - Array containing the angle for each section
$h \quad$ - Array containing the height for each section

Outputs:

wrs (m) $\quad w_{r, s} \quad$ - Average rubble width at side facet

B-3.0 Ice Load Calculation

Ice loads for the centre and the side facets are calculated separately.

B-3.1 Ice Load on Centre Facet

i) Beam cracking length:

This was previous calculated by equation 8.11.
ii) Ride-up and rubble heights, $h_{r u, c}$ and $h_{r, c}$:
$h_{r, c}$ was previously calculated in section 2.1.

$$
\begin{equation*}
h_{r u, c}=5 L_{L}+h_{r, c} \tag{8-15}
\end{equation*}
$$

or

$$
\begin{equation*}
h_{r u, c}=5 L_{L}+h_{n} \tag{8-16}
\end{equation*}
$$

Whichever is greater. h_{n} is the height of the neck section from the waterline.
Inputs:
measBrp (m) $\quad L_{L} \quad$ - Measured broken piece size
Outputs:
hruc (m) $\quad h_{r u, c}$ - Ice Sheet Ride-up height on front facet.
iii) Weight of ride-up ice, $W_{r u, c, l}$:
a) Weight on individual sections:

$$
\begin{equation*}
W_{r u, c, i}=\gamma w_{r u, c} \frac{h_{L, i}}{\sin \alpha_{i}} \tag{8-17}
\end{equation*}
$$

Inputs:

wDensity $\left(\mathrm{N} / \mathrm{m}^{\wedge} 3\right)$	Y	- Weight Density
thickness (m)	t	- Ice thickness
wruc (m)	$w_{r u, c}$	- Width of ride-up ice wall at front facet (section 1.0)
height (m)	h	- Array containing the height for each section
angle (deg)	α	- Array containing the angle for each section

Outputs:

weightrucTotal (N) $W_{r u, c, i}-$ Weight of ride-up ice at centre facet
iv) Forces required to push ice blocks through rubble:

$$
\begin{align*}
& P_{o}=\frac{1}{2} \gamma_{b} h^{2}(1-\sin \phi)\left(1-\frac{2 l}{180^{0}}\right)\left(\frac{180^{0}-\alpha-2 \phi}{90^{0}-2 \phi}\right)^{\frac{1}{3}} \tag{7-26}\\
& P_{i}=W_{r u, i}\left(\sin \alpha_{i}+\mu_{s} \cos \alpha_{i}\right)+P_{o, i} w_{r}\left(\sin \phi_{w, i}^{\prime}+\mu_{s} \cos \phi_{w, i}^{\prime}\right) \tag{8-47}\\
& \quad+P_{i+1}\left[\cos \left(\alpha_{i+1}-\alpha_{i}\right)+\mu_{s} \sin \left(\alpha_{i+1}-\alpha_{i}\right)\right]
\end{align*}
$$

Inputs:

bwDensity ($\mathrm{N} / \mathrm{m}^{\wedge} 3$) Y_{b} - Bulk weight density
height (m)
h

- Array containing the height for each section
iFricAng (deg) $\quad \Phi \quad$ - Internal friction angle
rAng (deg)
I - Rubble angle
angle (deg) $\quad \alpha \quad$ - Array containing the angle for each section
isFric ()
wFricAngCen (deg) $\Phi^{\prime}{ }_{w}$
wruc (m) $\quad w_{r u, c}$
- Ice-structure friction coefficient
- Effective wall friction angle centre facet (section 2.1)
- Width of ride-up ice wall at front facet (section 1.0)

Outputs:

$P(N) \quad P \quad$ - Load tangential to cone surface.

v) Force components at waterline:

This segment of the calculation requires an iterative process that will cause the effective flexural strength of the ice to converge. Please note comments in code for more information.

$$
\begin{align*}
& V_{b}^{1}=0.68 \sigma_{f}^{1}\left(\frac{\gamma_{w} t^{5}}{E}\right)^{\frac{1}{4}} \tag{8-5}\\
& H_{T}=P_{1} \cos \alpha_{1}+P_{b h} w_{r} \tag{8-48}\\
& V_{T}=P_{1} \sin \alpha_{1}+P_{b v} w_{r} \tag{8-49}\\
& V_{W}=V_{T}+V_{b}^{\prime} d_{c r}=P_{1} \sin \alpha_{1}+P_{b v} w_{r}+0.68 \sigma_{f}^{\prime}\left(\frac{\gamma_{w} t^{5}}{E}\right)^{\frac{1}{4}} d_{c r} \tag{8-50}
\end{align*}
$$

$$
\begin{align*}
& H_{W}=V_{W} \varepsilon=\left[P_{1} \sin \alpha_{1}+P_{b v} w_{r}+0.68 \sigma_{f}^{\prime}\left(\frac{\gamma_{w} t^{5}}{E}\right)^{\frac{1}{4}} d_{c r}\right] \varepsilon \tag{8-51}\\
& H_{\text {TOT }}=H_{S}+H_{W}=H_{T}+H_{W} \tag{8-43}\\
& V_{\text {TOT }}=V_{s}+V_{W}=V_{b}^{\prime} d_{c r}+W_{r}+W_{r u} \tag{8-44}
\end{align*}
$$

These are calculated assuming the effective flexural strength is equal to the original. The updated effective flexural strength is then calculated until it converges:

$$
\begin{equation*}
\sigma_{f}^{\prime}=+\frac{\left(V_{b}^{\prime}+V_{T}\right) \xi+H_{T}}{t}-\frac{3\left[H_{T}-\left(V_{b}^{\prime}+V_{T}\right) \xi\right]}{t}+\sigma_{f} \tag{8-53}
\end{equation*}
$$

B-3.2 Ice Load on Side Facet

i) Beam cracking length:

This is identical to the previous section.

ii) Rubble height:

Previously calculated.
iii) Weight of ride-up ice:

$$
\begin{equation*}
W_{r u, s}=\gamma\left(\frac{1}{8}\right)\left(\frac{t}{\tan 30^{\circ}}\right)\left(D-w_{r u, c}\right)^{2} \tag{8-24}
\end{equation*}
$$

Inputs:

wDensity ($\mathrm{N} / \mathrm{m}^{\wedge} 3$) Y - Weight Density
diameter (m) D - Array containing the diameter of each section
wruc (m) $\quad w_{r u, c} \quad$ - Width of ride-up ice wall at front facet (section 1.0)

Outputs:

weightRuiSide (N) $W_{r u, s}$ - Weight of ride up ice at side facet.
iv) Forces along $X^{\prime}-Z$ axes required to push ice blocks up the slope through ice rubble:

This is the same as the previous section.
v) Force components along $X^{\prime}-Z$ axes at waterline:

This is the same as the previous section.
vi) Force component of $H_{\text {тот }}$ along $X-Z$ axes:

$$
\begin{equation*}
F_{x}=\frac{F_{x^{\prime}}}{\xi}\left(\frac{\sin \alpha \cos \theta+\mu_{s} \cos \psi}{\cos \alpha-\mu_{s} \sin \psi}\right) \tag{8-36}
\end{equation*}
$$

B-3.3 Total Ice Load on Cone:

For this section, the forces are simply summed along each axis:

$$
\begin{aligned}
& V_{T O T \text { (total) }}=V_{T O T(\text { front })}+2 V_{T O T \text { (side) }} \\
& H_{T O T(\text { total) })}=H_{T O T \text { (front) }}+H_{T O T \text { (side, along } \mathrm{X} \text { axis) }}
\end{aligned}
$$

Appendix C
Program Listing

Appendix C: Program Listing

APPENDIX C: PROGRAM LISTING

This appendix has a complete listing of the program code, including comments. Please refer to the comments for section labeling.

```
function [ VtotT, HtotT ] = cone( thickness, flexStrength, eMod, isFric,
wDensity, rAng, iFricAng, wFricAng, bwDensity, porosity, watDensity, height,
facetWater, angle, sideAngle, avConeAng, rcAxis, measBrp, repAng)
%==============================================================================
% Software Implementation of Dr. Michael Lau's Ice Force on a faceted cone
% model.
% Program written by Kevin Murrant in August 2006.
%
% Last updated: Aug 7th, 2006
% Additional information available in separate documentation.
%
%===============================================================================
%
% Section 1 - Rubble Height Calculation -------------------------------------------
%
% Calculate the width of the ride-up ice wall at the front facet:
wruc = facetWater+measBrp*tan(rcAxis*pi/180); % Equation 8.12
%
% Section 1.1 - Rubble Height at Side of Front Facet -------------------------
%
% Calculate the cross-section of rubble at both sides of cone:
A = (facetWater*thickness)/(2*(1-porosity)); % Equation 6.5
%
% Find rubble height at side of front facet:
%
BobSum = 0;
hrf = 0;
found = 0;
k = 1;
for n=1:1:size(height,2)
    if found == 0
        hrf = height(n); % Assumption
        if n==1
                            Bob = sin(30*pi/180)*(hrf/tan(sideAngle(1)*pi/180)); % Equation 6.12
with n=1
        else
            for i=1:1:n-1
                if i==1
                            BobSum = BobSum + height(1)/tan(sideAngle(1)*pi/180);
                else
                BobSum = BobSum + (height(i)-height(i-
1))/tan(sideAngle(i)*pi/180);
                end
                end
                Bob = sin(30*pi/180)*((hrf-height(n-
1))/tan(sideAngle(n)*pi/180)+BobSum); % Equation 6.12
        end
        hrf = sqrt((2*A+Bob^2*tan(sideAngle(n)*pi/180))*tan(repAng*pi/180)); %
Equation 6.16
        if hrf < height(n)
            found = 1;
        else
            if n == size(height,2)
                found = 1;
            end
        end
        kFront = n; % Highest section at front facet
```


Appendix C: Program Listing

end
end
\%

```
% Section 1.2 - Rubble Height at Side of Cone
```

\%
HrsSum $=0$;
found $=0$;
kSide $=1$;
for $n=1: 1: s i z e(h e i g h t, 2)$
if found $==0$
hrs = height(n); \% Assumption
if $\mathrm{n} \sim=1$
for $\mathrm{i}=1: 1: \mathrm{n}-1$
HrsSum $=$ HrsSum + height(i)^2*(1/tan(sideAngle(i)*pi/180)-
1/tan(sideAngle(i+1)*pi/180));
end
end
hrs $=\operatorname{sqrt}((2 * A+H r s S u m) /(1 / \tan (r e p A n g * p i / 180)-$
1/tan(sideAngle(n)*pi/180))); \% Equation 6.22
if hrs < height (n)
found $=1$;
else
if $\mathrm{n}==$ size(height, 2)
found $=1$;
end
end
end
kSide $=n$; $\%$ Highest section at side facet
end
\%

\%
B1 = sqrt((facetWater*thickness)/((1-
porosity) *sin(repAng*pi/180)) *cos(asin(sin(iFricAng*pi/180)/sin(avConeAng*pi/180
)))) ; \% Equation 6.30
alphaR $=\operatorname{acos}(\tan (r e p A n g * p i / 180) / \tan (\operatorname{avConeAng*pi/180))*180/pi;~\% ~Equation~} 6.33$
A3pA40A3 $=\left(0.5^{*} \sin (a l p h a R * p i / 180) *(1-\cos (a l p h a R * p i / 180))+a l p h a R / 2 * p i / 180-\right.$
$\sin (a l p h a R * p i / 360) * \cos (a l p h a R * p i / 360)) /((0.5 * \sin (a l p h a R * p i / 180) *(1-$
$\cos (a l p h a R * p i / 180)))$) ; Equations $6.31 \& 6.32$, A3pA4oA3 = A3 plus A4 over A3
width $=0.5 * B 1 * A 3 p A 40 A 3 ; \%$ Equation 6.34
hrm $=$ hrf/(1-1/3*A3pA40A3); \% Equation 6.35
\%
\%

\%
\% Section 2.1 - Rubble Load per Unit Width on Centre Facet -------------------
\%
hrc $=$ hrf $+($ hrm - hrf)*(1-width/wruc); \% Equation 8.13
\%
\% i) Load per unit width on individual sections:
\%
wFricAngCen $=0$;
for $i=1: 1: k F r o n t$ \% For every section that the rubble reaches
if wFricAng <16.5 \% If the angle is closer to 11.32, use this equation:
wFricAngCen(i) $=-0.2561 * a n g l e(i)+24.758$; Equation 7.28
else \% This equation is if the angle is closer to 22.8:
wFricAngCen(i) $=-0.3407 * a n g l e(i)+39.339 ; ~$ Equation 7.29
end
HbCen(i) $=$ hrc - height(i); \% This is the distance from the maximum rubble
height to the bottom of the section
if i==size(height,2)
HtCen(i) $=$ hrc - height(i);
else
HtCen(i) $=$ hrc - height(i+1); \% This is the distance from the maximum
rubble height to the top of the section
end
PwhCen(i) $=0$;

Appendix C: Program Listing

```
    PwvCen(i) = 0;
    for m=1:1:i % This loop is used for the sum function in the equations.
            PwhCen(i) = PwhCen(i) + 0.5*bwDensity*(1-sin(iFricAng*pi/180))*(1-
2*rAng/180)* (HbCen (m)^2-HtCen(m)^2)*((180-angle(m)-2*iFricAng)/(90-
2*iFricAng))^(1/3)*cos((90-(angle(m)-wFricAngCen(m)))*pi/180); % Equation 7.37
            PwvCen(i) = PwvCen(i) + 0.5*bwDensity*(1-sin(iFricAng*pi/180))*(1-
2*rAng/180)*(HtCen(m)^2-HbCen(m)^2)*((180-angle(m)-2*iFricAng)/(90-
2*iFricAng) )^(1/3)* cos((90-(angle(m)-wFricAngCen(m)))*pi/180); % Equation 7.38
    end
end
%
% ii) Total rubble load:
%
PwhCen = sum(PwhCen); % Sum the loads in the horizontal direction
PwvCen = sum(PwvCen); % Sum the loads in the vertical direction
weightSum = 0;
for n=1:1:kFront-1
    weightSum = weightSum + height(n)^2*(1/tan(angle(n)*pi/180)-
1/tan(angle(n+1)*pi/180));
end
weightrc = 0.5*bwDensity*wruc*(hrc^2*(1/tan(iFricAng*pi/180)-
1/tan(angle(kFront)*pi/180))-weightSum); % Equation 8.14
PbhCen = PwhCen; % Equation 7.32
PbvCen = weightrc - PwvCen; % Equation 7.33
%
% iii) Equivalent rubble width:
%
dcr = facetWater + 2*measBrp*tan(rcAxis*pi/180); % Equation 8.11
wrcc = 0.5*(dcr + facetWater); % Equation 8.12
%
% Section 2.2 - Rubble Load per Unit Width on Side Facet
erhs = 0.5*(hrs + hrf); % Equation 8.18
%
% i) Load per unit width on individual sections:
%
for i=1:1:kSide % For every section that the rubble reaches
    if angle(i) < 16.5 % If the angle is closer to 11.32, use this equation:
            wFricAngSide(i) = -0.2561*angle(i)+24.758; % Equation 7.28
    else % This equation is if the angle is closer to 22.8:
        wFricAngSide(i) = -0.3407*angle(i)+39.339; % Equation 7.29
    end
    HbSide(i) = erhs - height(i); % This is the distance from the maximum rubble
height to the bottom of the section
    if i==size(height,2)
        HtSide(i) = hrc - height(i);
    else
        HtSide(i) = hrc - height(i+1); % This is the distance from the maximum
rubble height to the top of the section
        end
        PwhSide(i) = 0;
        PwvSide(i) = 0;
        for m=1:1:kSide % This loop is used for the sum function in the equations.
            PwhSide(i) = PwhSide(i) + 0.5*bwDensity*(1-sin(iFricAng*pi/180))*(1-
2*rAng/180)*(HbSide(i)^2-HtSide(i)^2)*((180-angle(i)-2*iFricAng)/(90-
2*iFricAng))^(1/3)* cos((90-(angle(i)-wFricAngSide(i)))*pi/180); % Equation 7. 37
                PwvSide(i) = PwvSide(i) + 0.5*bwDensity*(1-sin(iFricAng*pi/180))*(1-
2*rAng/180)*(HtSide(i)^2-HbSide(i)^2)*((180-angle(i)-2*iFricAng)/(90-
2*iFricAng) )^(1/3)* cos((90-(angle(i)-wFricAngSide(i)))*pi/180); % Equation 7.38
        end
end
%
% ii) Total rubble load:
%
PwhSide = sum(PwhSide); % Sum the loads in the horizontal direction
PwvSide = sum(PwvSide); % Sum the loads in the vertical direction
```


Appendix C: Program Listing

```
weightSum = 0;
volumeSum = 0;
% The volumes VI and VII are required for the weight calculation for the
% sides.
for n=1:1:kSide-1
    weightSum = weightSum + height(n)^2*(1/tan(angle(n)*pi/180)-
1/tan(angle(n+1)*pi/180));
    volumeSum = volumeSum + height(n)^3*(1/tan(angle(n)*pi/180)^2-
1/tan(angle(n+1)*pi/180)^2);
end
%
% Diameter Calculation: ---------------------------------------------------------
```



```
diameter(1) = facetWater*2; % Diameter of bottom facet.
for i=2:1:size(height,2)-1
    diameter(i) = diameter(i-1) - (height(i+1)-height(i))/tan(angle(i)*pi/180);
% Calculate the diameter of each following section.
end
diameter(size(height,2)) = diameter(size(height,2)-1);
%
% End diameter calculation -------------------------------------------------------
%
if kFront == size(diameter,2)
    diameter(kSide+1) = diameter(kSide); % Make sure there is an extra spot for
the neck diameter
    % in the case that the rubble reaches the neck.
end
VI = 1/12*pi*(hrf^3*(1/tan(iFricAng*pi/180)^2-1/tan(angle(kSide)*pi/180)^2)-
volumeSum); % Equation 8.19
VII = (wruc*thickness/(2*(1-
porosity)))*(1/2*diameter(kSide+1)*cos(30*pi/180) +(height(kSide) -
hrf)/tan(angle(kSide)*pi/180)); % Equation 8.21
weightrs = (VI + VII)*bwDensity; % Equation 8.22
PbhSide = PwhSide; % Equation 7.32
PbvSide = weightrs - PwvSide; % Equation 7.33
%
% iii) Equivalent rubble width:
%
wrs = 2*(VI + VII)/(erhs^2*(1/tan(rAng*pi/180)-1/tan(angle(kSide)*pi/180))-
weightSum); % Equation 8.23
%
%
% Section 3 - Ice Load Calculation -----------------------------------------------
%
% Section 3.1 - Ice Load on Centre Facet ---------------------------------------
% i) Beam cracking length: (previously calculated by equation 8.11)
% ii) Ride-up and rubble heights, hruc, and hrc:
% hrc calculated in Section 2.1 by equation 8.13
%
hn = height(size(height,2)); % Find the height of the neck section.
if hn > hrc
    hruc = 5*measBrp+hn; % Equation 8.16
else
    hruc = 5*measBrp+hrc; % Equation 8.15
end
%
% iii) Weight of ride-up ice, Wruci:
for i=1:1:size(height,2)-1
    weightruc(i) = wDensity*thickness*wruc*(height(i+1)-
height(i))/sin(angle(i)*pi/180); % Equation 8.17
end
weightruc(size(height, 2)) = wDensity*thickness*wruc*(hruc-
hn)/sin(angle(size(height,2))*pi/180); % Equation 8.17
```


Appendix C: Program Listing

```
weightrucTotal = sum(weightruc); % Sum to get the total weight.
%
% iv) Forces required to push ice blocks up the slope through ice rubble:
%
% Find all Po values:
for i=1:1:kFront
        Po(i) = 0.5*bwDensity*height(i)^2*(1-sin(iFricAng*pi/180))*(1-
2*rAng/180)*((180-angle(i)-2*iFricAng)/(90-2*iFricAng))^(1/3); % Equation 7.26
end
%
% Assume P(k+1) = 0 N and angle(k+1) = angle(k) = 90 deg
%
P(kFront) =
weightruc(kFront)*(sin(angle(kFront)*pi/180)+isFric*cos(angle(kFront)*pi/180))+P
o(kFront)*wruc*(sin(wFricAngCen(kFront)*pi/180)+isFric*cos(wFricAngCen(kFront)*p
i/180)); % Equation 8.47
for i=kFront-1:-1:1
    P(i) =
weightruc(i)*(sin(angle(i)*pi/180)+isFric*cos(angle(i)*pi/180))+Po(i)*wruc*(sin(
wFricAngCen(i)*pi/180)+isFric*cos(wFricAngCen(i)*pi/180))+P(i+1)*(cos((angle(i+1
)-angle(i))*pi/180)+isFric*sin((angle(i+1)-angle(i))*pi/180)); % Equation 8.47
end
%
% v) Force components at waterline:
%
flexStrengthEffec = flexStrength; % Assume for initial value.
closeEnough = 0;
while closeEnough == 0;
    eBreakLoad = 0.68*flexStrengthEffec*(watDensity*thickness^5/eMod)^(1/4); %
Equation 8.5
    hForceT = P(1)*cos(angle(1)*pi/180)+PbhCen*wruc; % Equation 8.48
    vForceT = P(1)*sin(angle(1)*pi/180)+PbvCen*wruc; % Equation 8.49
    Vw = vForceT + eBreakLoad*dcr; % Equation 8.50
    Hw = Vw*tan(angle(1)*pi/180+atan(isFric)); % Equation 8.51
    Htot = hForceT + Hw; % Equation 8.43
    Vtot = eBreakLoad*dcr+weightrc+weightrucTotal; % Equation 8.44
    flexStrengthEffecOld = flexStrengthEffec; % Update old value
    flexStrengthEffec =
(((eBreakLoad+Vtot)*tan(angle(1)*pi/180+atan(isFric)))+Htot)/thickness-(3*(Htot-
(eBreakLoad+Vtot)*tan(angle(1)*pi/180+atan(isFric))))/thickness+flexStrength; %
Equation 8.53
        if flexStrengthEffecOld < flexStrengthEffec*1.01
                if flexStrengthEffecOld > flexStrengthEffec*0.99
                        closeEnough = 1;
            end
    end
end
%
%
% Section 3.2 - Ice Load on Side Facet --------------------------------------
i) Beam cracking length: (Assume already calculated)
ii) Rubble height: (Previously calculated in section 2.2 as erhs)
iii) Weight of ride-up ice:
%
weightRuiSide = wDensity*(1/8)*(thickness/tan(30*pi/180))*(diameter(1)-wruc)^2;
% Equation 8.24
% Assume that weight is distributed only on the lowest section
% iv) Forces required to push blocks up the slope through the ice rubble:
%
% Assume P(k+1) = 0 N and angle(k+1) = angle(k) = 90 deg
```


Appendix C: Program Listing

```
P(kSide) =
Po(kSide)*wruc*(sin(wFricAngCen(kSide)*pi/180)+isFric*cos(wFricAngCen(kSide)*pi/
180)); % Equation 8.47
for i=kSide-1:-1:2
        P(i) =
Po(i)*wruc*(sin(wFricAngCen(i)*pi/180)+isFric*cos(wFricAngCen(i)*pi/180))+P(i+1)
*(cos((angle(i+1) -angle(i))*pi/180)+isFric*sin((angle(i+1)-angle(i))*pi/180)); %
Equation 8.47
end
P(1) =
weightRuiSide*(sin(angle(1)*pi/180)+isFric*cos(angle(1)*pi/180))+Po(1)*wruc*(sin
(wFricAngCen(1)*pi/180) +isFric*cos(wFricAngCen(1)*pi/180))+P(2)*(cos((angle(2)-
angle(1))*pi/180)+isFric*sin((angle(2)-angle(1))*pi/180)); % Equation 8.47
%
% v) Force components at waterline:
%
flexStrengthEffecSide = flexStrength; % Assume for initial value.
closeEnough = 0;
while closeEnough == 0
    eBreakLoadSide =
0.68*flexStrengthEffecSide*(watDensity*thickness^5/eMod)^(1/4); % Equation 8.5
    hForceTSide = P(1)*cos(angle(1)*pi/180)+PbhSide*wruc; % Equation 8.48
    vForceTSide = P(1)*sin(angle(1)*pi/180)+PbvSide*wruc; % Equation 8.49
    VwSide = P(1)*sin(angle(1)*pi/180)+PbvSide*wruc+eBreakLoadSide; % Equation
8.50
    HwSide = VwSide*tan(angle(1)*pi/180+atan(isFric)); % Equation 8.51
    HtotSide = hForceTSide + HwSide; % Equation 8.43
    VtotSide = eBreakLoadSide*dcr+weightrs+weightRuiSide; % Equation 8.44
    flexStrengthEffecSideOld = flexStrengthEffecSide; % Update old value
    flexStrengthEffecSide =
((eBreakLoadSide+vForceTSide)*tan(angle(1)*pi/180+atan(isFric)))/thickness-
3* (hForceTSide-
(eBreakLoadSide+vForceTSide)*tan(angle(1)*pi/180+atan(isFric)))/thickness+flexSt
rength; % Equation 8.53
    if flexStrengthEffecSideOld < flexStrengthEffecSide*1.10
            if flexStrengthEffecSideOld > flexStrengthEffecSide*0.90
                closeEnough = 1;
            end
        end
end
%
% vi) Force component of Htot along X-Z Axes:
%
phi = atan(tan(angle(1)*pi/180)*cos(60*pi/180));
HtotSideXaxis =
HtotSide/tan(angle(1)*pi/180+atan(isFric))*((sin(angle(1)*pi/180)*cos(60*pi/180)
+isFric*cos(phi))/(cos(angle(1)*pi/180)-isFric*sin(phi))); % Equation 8.36
%
%
% Section 3.3 - Total Ice Load on Cone ------------------------------------------
%
VtotT = Vtot + 2*VtotSide
HtotT = Htot + 2*HtotSideXaxis
```

Appendix D
Debug Information

Appendix D: Debug Information

As stated earlier in this document, the program is not yet complete and further debugging must be performed in order to improve the results found in the verification section.

This appendix serves as a record of the work done in locating the source of the errors in the results of the program.

The test comparison done in the verification section showed fairly good results for the rubble height at front facet, h_{rf}. However, the agreement was not good for the rubble height at the side facet. This is one of the early sections in the code, and could lead to many later problems.

Running one of the test cases with a stop at the end of the document will provide a listing in the Matlab workspace of all values used in the calculations. These values can be compared with the intermediate values found in the Excel sheets regarding the testing.

Outlined below are two issues that could be causing the errors:

Array of heights

The 'height' input is assumed to be an array of heights. The array is input with the first value being the height to the top of the first section from the waterline, the second being the height to the top of the second section from the waterline. This may not be what each equation expects.

In the calculations, a reference to the array height before section 1 is zero. However, some of the calculations may assume that the height referenced for a section is the height from the waterline to the base of the section. When inserting a zero at the beginning of the height array, however, the results are not satisfactory at all.

Diameter calculation

The diameter of the bottom section is found by doubling the facet width. Each additional diameter is calculated based on this, and the height array. If these calculations were incorrect, the diameters could be inaccurate.

Since the diameter calculation is dependent upon the array of heights, perhaps the array of heights should be looked at in more detail first.

Intermediate Value Comparison

The following table shows a comparison of some intermediate values from between previous model calculations and new software model calculations. These comparisons give an idea of where the problem lies.

	TEST	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$		$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
\mathbf{A}	Expect	0.179	0.238	0.292	0.304	0.335	0.088	0.090	0.051	0.068
	Calc	0.179	0.238	0.292	0.304	0.335	0.088	0.090	0.051	0.068
$\mathbf{B}_{\text {ob }}$	Expect	0.145	0.145	0.145	0.145	0.145	0.204	0.116	0.107	0.116
	Calc	0.145	0.145	0.145	0.145	0.145	0.231	0.116	0.116	0.116
$\mathbf{h}_{\text {rf }}$	Expect	0.510	0.586	0.648	0.660	0.692	0.380	0.365	0.278	0.319
	Calc	0.525	0.599	0.660	0.672	0.703	0.434	0.377	0.296	0.333
$\mathbf{h}_{\text {rs }}$	Expect	0.560	0.630	0.688	0.699	0.730	0.495	0.408	0.335	0.368
	Calc	0.653	0.753	0.833	0.849	0.891	0.509	0.465	0.352	0.404
$\mathbf{B 1}$	Expect	0.674	0.778	0.862	0.879	0.922	0.451	0.478	0.360	0.415
	Calc	0.674	0.778	0.862	0.879	0.922	0.451	0.478	0.360	0.415
\mathbf{w}	Expect	0.481	0.555	0.616	0.628	0.659	0.315	0.342	0.257	0.296
	Calc	0.481	0.555	0.616	0.628	0.659	0.315	0.342	0.257	0.296
$\mathbf{(a 3 + a 4) / a 3}$	Expect	1.428	1.428	1.428	1.428	1.428	1.399	1.428	1.428	1.428
	Calc	1.428	1.428	1.428	1.428	1.428	1.399	1.428	1.428	1.428
$\mathbf{h r m}$	Expect	0.974	1.049	1.143	1.110	1.147	0.713	0.696	0.530	0.608
	Calc	1.002	1.143	1.259	1.282	1.342	0.813	0.720	0.565	0.636
$\mathbf{P}_{\text {bh }}$ Centre	Expect	458	540	648	647	699	233	246	160	199
	Calc	354	409	466	465	492	166	205	151	175
$\mathbf{P}_{\text {bv }}$ Centre	Expect	1961	2376	2924	2910	3174	727	1023	599	789
	Calc	2308	2913	3863	3709	4165	1248	1102	718	863
$\mathbf{P}_{\text {bh }}$ Side	Expect	229	295	358	379	415	126	118	74	93
	Calc	-136	-177	-260	-229	-262	-56	-76	-27	-47
$\mathbf{P}_{\text {bv }}$ Side	Expect	836	1161	1468	1566	1746	249	400	191	280
	Calc	1256	1743	2306	2356	2675	597	498	286	368

While many agree, many do not. There is a definite problem with the force calculations.

As for the height values being off, yet their sum components being correct (Bob), it may have to do with the angle of repose.

However, a comparison of all values that are incorrect and determining a connection between which values are correct and which are not is essential in determining the problem with the model.

