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PREFACE

To design a structure safely against failure the designer - or

actually the code writer - needs to know not only the expected strength

of the structure and the expected load, including their respective vari­

ations, but also he must decide on what safety factor will be required to

make the structure sufficiently safe yet not uneconomical. A great deal

of research has been done in the past on the strength of structures and

some on the expected loads, but very little has been done about the safety

factors and their method of implementation. The latter is now receiving

serious attention.

This thesis, "Fundamentals of Safety for Structures ", by Franz

Knoll, studies the problem of structural safety in both its theoretical and

practical aspects and discusses especially the influence of gross "human

error". The author proposes a system of safety factors for reinforced

concrete structures somewhat similar to the one proposed by the British

Institute of Structural Engineers in 1955.

The Division is indebted to Mr. D. Sinclair for preparing this

translation.

Ottawa

1969

R. F. Legget

Director
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FOREWORD

In using statistical methods in the field of structural safety

it has been found that these methods are not sufficient to provide

final solutions. Although statistical results can be formulated, they

often do not agree with observations in actual practice.

The aim of the present thesis is to trace the results of

statistical methods for safety problems through to their application

in design practice. In addition, questions are analyzed which go

beyond the range of exact scientific theory. The purpose is to

determine, on the basis of the assumptions made, the limits of

application of statistical laws and to discuss them with the help of

some examples from the field of reinforced concrete.

Sincere thanks are expressed to Professor B. ThUrlimann

for his generous help. I am much obliged also to Professor

F. Kobold for his valuable suggestions and comments which have

been of great assistance. Appreciation is also expressed to my

colleagues at the Institute of Structural Engineering and the Institute

for Geodesy and Photogrammetry who assisted me in many fruitful

discussions.

The present study has been made possible by the financial

assistance of the Federal Fund for Economic Studies (Volkswirt­

schaftskredit). I am grateful to the members of the Board of this

Fund.

ETH, Zurich, Spring 1965 Franz Knoll



TABLE OF CONTENTS

Page

LIST OF SYMBOLS

1. INTRODUCTION................................................ 1

2. ASSUMPTIONS, STATEMENT OF THE PROBLEM................ 2

2. 1 Historical Background. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.2 Statement of Problem, Classification..................... 4

2.3 Assumptions, Limitations............................... 5

3. DEVELOPMENT OF CONCEPTS................................ 6

3.1 The Concept of Safety................................... 6

3.2 Definition of Safety, Concept of Damage. ..... .. ... ..... ... 7

3.3 The Load-Bearing Capacity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3. 4 Loading................................................ 9

3.5 The Structure. Types and Properties.. .. .. . .. . .. 10

3.6 Comparison between Bearing Capacity and Load. .. ... ..... 12

4. REPRESENTA TION AND CALCU LATION OF SAFETY 13

4.1 Deviations, Errors, Uncertainties........................ 13

4.2 Deviations and Safety 19

4.3 Safety as a Design Parameter. . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.4 Extreme Deviations, Empirical Values.. . .. 28

4. 5 Formulation of Safety Margins. . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5. THE VARIATION OF THE SAFETY FACTORS.................... 39

5. 1 Conditions............................................. 39

5.2 Compilation of Basic Variables. . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.3 Formal Considerations in Connection with the Variation of

Safety Margins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5. 4 Classification of Designs (Suggestion in Short Form). . . . . . . . 49

6. EXAMPLES FOR THE USE OF THE SAFETY FACTOR........... 52

6. 1 Reinforced Concrete Section under Eccentric Load. . . . . . . . . 52

6.2 Dimensioning of a Steel Reinforced Concrete Framework. . . . 52

7. SUMMARY, CONCLUSIONS 61

8. APPENDIX, SPECIAL PROBLEM................................ 66

8. 1 Observations on Building with Prefabricated Elements. . . . . . 66

8.2 Combined Stresses with Different Sign. . . . . . . . . . . . . . . . . . . . . 69

9. BIB LIOGRAPHY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75



LIST OF SYMBOLS

(In s ome cases the chapters in which the symbols are used are shown

in brackets)

E

E'

F(x)

Fe

M

Constant

Estimated value of A

Actual true value of A

Constant

Favourable event (3. 1)

Unfavourable event, damage (3.2, 3.3)

Probability function of x (4.2)

Steel section

Bending rnoment

M Plastic moment (4.2)
p

N Normal force

P

5

S'

S*

T

WeE)

Load (3.4)

Live load

Test load

Safety factor (2. I, 3.6)

Required safety factor, median of the safety factor distribution (4. 2, 4. 3)

Additional safety factor (5.4.5)

Auxiliary safety factor

Load-carrying capacity (3.3)

Probability of the event E



x., Y.
1 1

z

b

d, d'

e

f.
1

f (X)

g

g

h

L, j

k

1-.
1

rn

rn
1

n

p

q.
1

v
X

w

z

- 2 -

Parameters of safety (5.2 and following)

Safety zone (3.6)

Width of cross-section

Dimensions of cross-section

Eccentricity

Linear func tions

Distribution (probability density) of X (4.2)

Factor of the distribution function (4.3)

Dead weight

Effective depth

Indices

Reduction factor

Length

Obs ervations, measured values

Integer

Material factors

Integer

Distributed load

Individual loads

Coefficient of variation of x (4. 1)

Distributed wind load

Target function



1>

0..
1

B
D

E:

Y

A.
1

ｾ

ｾｇｲ

ｾｯｧ x

S

rs
F

ｾ

CJ
e

o
x

o
log x

CO ｾ

A 1\ B

A V B

X > Y

sign (K)

n
rr (x, )

1
i,

- 3 -

Auxiliary function

Param.eter of construction properties

Com.pressive strength of concrete

Deviation

Auxiliary function

Load factors (4.5.2)

Percentage of steel

Critical percentage of steel

Median of the log norm.al distribution of x

Ratio

Yield strength of steel

Concrete stress

Steel stress

Standard deviation of x (4. 1)

Logarithm.ic standard deviation of x

Angles

SOME SYMBOLS FROM MATHEMATICS

AND LOGIC ALGEBRA

All num.bers belonging to set A as well as set B

All num.bers belonging either to set A or to set B or to both sets

All num.bers described by the inequality given

Sign function of K, sign of K

Product of all x. for L s 1 s n
1



THE FUNDAMENTALS OF SAFETY FOR STRUCTURES

1. INTRODUCTION

In rnodern civil engineering safety occupies an important place among

the requirements of design. Owing to requirements of economy, dependability

and durability, we are c ornp e Iled to apply safety considerations in every project

as a criterion for the estimated value of the planned structures. Increasing de­

mands for ec onomy lead to smaller dimensions of the structural elements, thus

requiring better and clearer formulations of the safety concept and of the con­

clusions deriving therefrom. However, good formulations are only forthcoming

when we trace the concept in question back to its fundamental principles. From

these principles the tools of science - logic, mathematics and empirical methods ­

must be used to develop the relationship of the concept to the final structure. In

our case, we are concerned with load-bearing structures and everything that affects

them and their behaviour. As recent research has shown, the safety problern can

be regarded as a problem in statistics and the theory of probability. However,

we must always ask ourselves whether the solutions we obtain through these two

tools are actually practicable, i.e. whether the results can be used to generate

further conclusions, e. g. quantitative conclusions.

In many cases we find that this is indeed possible to the extent required

for the case in question. This applies particularly to the case of mass fabrication

(see 8.1. ) and where phenomena of nature and their effects are involved. The latter

can often be observed under the same, or very similar conditions, and accordingly

reliable results can be attained by applying the laws of statistics. 1£ data are then

analysed by statistical methods, we can arrive at an estimate of their accuracy which

can be used in turn for the determination of comparative weights. The weight of an

observation is a measure of its validity and thus plays a very important part in all

smoothing processes.

In the present study we shall discuss the application of these rnethods

to the properties of structures, and the application of the results obtained there­

from to the safety problem. For common cases of structures and the conditions

under which they are erected, it cannot be directly inferred that the laws and rules

of statistics remain valid. The structure is neither a product of a natural process

nor can it be considered as something that is produced many times under the same

conditions, like a factory-produced article. On the contrary, in almost all struc­

tures it is necessary to take into account to a greater or lesser extent the influenc e

of human action, which may involve the limited ability, and even of the arbitrariness

of individual people. Such effects cannot be considered random, and hence the most

important condition for applying the laws of statistics is absent. Moreover, rn o s t

load-bearing structures, with few exceptions, constitute individual cases. We must

therefore forego the "law of large numbers" which is another important condition

for the effectiveness of statistical operations. These arguments, of course, must

for the present be regarded as suppositions which, however, corne to rn ind spon­

taneous] y even in a rather superficial approach. Later we shall look into rh erri and
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discus s thern in fuller detail.

If safety is formulated as the result of a probability consideration, it

will have a form that is not directly applicable to design practice. We are there­

fore c ornp e l l ed to convert the concept of safety into comparative values which will

fit rno r e c omfortabl y into the framework of structural calculations. At the same

time different aspects which cannot be irnmediately reconciled must be taken into

account. Here again we have a problem which can be solved satisfactorily only

through an optimization proc es s. In addition to purely quantitative argwnents,

the problem. also contains, of course, formal and practical-procedural aspects, so

that it cannot be solved with arithmetical or algebraic methods. In general terms,

a tentative solution is to be worked out which will provide the safety coefficients

(cornparative values) for load-bearing structures in reinforced concrete. Most

of the argum.ents which will be applied in the present study are applicable, insofar

as they do not relate to specific reinforced concrete problems, but to other forms

of construction as well.

For a clearer understanding, the suggested solution will then be applied

to two typical examples for the dimensioning of reinforced concrete. In this way

we will be able to test the procedural suitability of the safety coefficients for

practical design purposes.

2. ａ ｓ ｓ ｕ Ｚ ｴ ｖ Ｑ Ｎ ｐ ｟ Ｑ ｾ ｉ ｏ ｎ ｓ Ｌ STATEMENT OF THE PROBLEM

2. 1 Historical Background (27)

In the course of time structures have evolved from a few basic forms

to the present-day rnultiplicity. Besides protecting lnan from external dangers ­

storms, high and low ternperatures, e n erri i e s - new purposes are continually being

assigned to thern: storage of goods, space for meetings and other occasions, the

facilitating of transportation, space for industrial production and exhibitions, es­

thetic and m onurn enta l effects, etc.

This development is paralleled by another: buildings become consum.ers'

goods, and are thus an irnportant factor in the economy. As already r erria r k ed

above, this finds its expression in the d ernarid for more economical construction

methods, but in turn entails a new type of danger. Although at fir s t buildings were

rnerely a rneans for the personal protection of people and because of their simplicity,

constituted no danger, nowadays, they are becoming more and more significant

sources of danger. This development can be traced back to the beginnings of history.

It is punctuated by a riurn be r of spectacular collapses, for example, the tower of

Babel.

E=ngineering has been confronted with this new risk ever since it began

operating at the limits of its performance. The safety problem consists in es­

tirnating the dangers arising out of the structures themselves and finding ways of

keeping the risk at an acceptable level.

When we look back over the history of safety in building we find that

ever since building "became dangerous" certain general rules have been applied.

Until the nineteenth century, of course, they could not be scientifically formulated,
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because no theoretical premises were available, and construction was carried on

by intuition and personal insight. Thus, the rules formed part of the traditional

art of building, but could not have been abstracted from it. Admittedly attempts

were made again and again to express the problem in terms of numerical com­

parisons. However, this could not produce the required results before the principles

of the theory of structures were known, and engineers had become aware of them.

English engineers of the eighteenth century were the first to test the safety of in­

dividual supporting members under load and to draw conclusions from the results

of this with regard to the safety of the completed structure. This applied to the

compressive strength of masonry and cast iron rods being used at that t ime, and

in which the direct transmission of vertical forces to the foundation was regarded

as essential. For the first time the value of safety had been formulated, for com­

parison purposes in the form of the safety factor. It is defined as the ratio of the

rnaximum test load (ultimate bearing capacity) to the working load of the structur e:

s =
T

= p ( 1)

After the introduction of structural statics and the theory of elasticity as the basis

of design, a further development in the safety factor took place. Allowable stresses

were formulated and structures were dimensioned in such a way that under the

working load no point of the structure exceeded the limit imposed by the allowable

stres ses.

During the first half of the twentieth century new ways of looking at things

have appeared. On the one hand, it became necessary to supplement the first order

elastic theory by one of second order and by the theory of stability. Eventually

the demand arose for a theory by which structures would no longer be studied merely

with regard to their elastic behaviour, but beyond their elastic limit to their break­

ing strength.lhis would make it possible, to introduce a collapse load criterion as

a design basis in lieu of the deformation criterion of the theory of elasticity used

hitherto. The elastic theory of strength of materials was now supplemented by a

plastic theory.

At the sam.e time, designers began to realize that the data, and hence

the results of structural calculations, were fraught with errors, sometimes very

considerable ones. This is an extremely important fact where appraisals of

safety are concerned, and now one tries to relate the safety concept to statistical

analysis on errors and deviations of the data on structure.

This brings about a new sort of formulation in construction engineering.

It is, indeed, much closer to the true meaning of the safety concept than the com­

parative values developed earlier, such as safety factors, allowable stresses, etc.

In contrast to these values, however, it requires a more accurate and complete

investigation of all the data and processes which have to do with safety in structures.

It cannot seek support in mere or partial "common sense", as was always done

previously in connection with safety considerations. However, a safety appraisal

based on statistical information is only possible in specific, exceptional cases.
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This situation will continue until we know a great deal more about the properties

and actual behaviour of structures.

At the same time,as already rnentioned above,there are other

important objections to the adoption of safety concepts based on purely statis­

tical considerations. It will be the main task of the present study to deterrnine

to what extent knowledge of the statistical properties of structures can presently

be applied in construction engineering for the determination of safety.

2.2 Statement of Problenl, Classification

Before we can deal explicitly with the matter of safety, we must first

be able to describe it clearly. This involves especially conceptual, and as far

as possible, rnathematical formulation with all the terms relating thereto. Since

this formulation deals only partially with physical objects that can be perceived

by the senses, considerable space will have to be devoted to the development of

concepts. This will be attempted in the third part of the investigation.

Once the various concepts have been assembled and their relationships

established, we can then turn to the mathematical representation and the derivation

of formulae. These must be discussed and analysed together with the methods of

structural theory and statistics. More specifically, this will involve the study of

the degree by which the data used in design depart, randomly and non-randomly,

from the quantities actually represented. This will be taken up in Section 4:

representation and calculation of safety.

As was indicated above in connection with the historical and introductory

remarks, safety is one of the most important properties of structures. It is ofboth

economic and social significance. Since structures are planned for the future, the

required degree of safety must be an integral part of design. It involves the ap­

praisal of all possible errors and deviations which may occur during the design stage;

it must take into account all flaws which may be expected in the execution of the

structure and estimate the consequence of these "sins". This of course does not

mean that all these deviations must be accepted by the safety appraisal, since we do

consider their frequency and take account of their consequences. On the contrary,

the safety verification must also contain the provisions that have been taken or are

foreseen for the avoidance of errors and their consequences; for it is primarily

these provisions which constitute a counterweight to the deviations and uncertainties

which cannot be avoided.

Safety, accordingly, becomes a very complex concept and a number of

terms will have to be explained in (3.2).

The ultimate purpose of a consideration of the safety problem is to

present the concept in a form in which it b e c orn.e s a usable instrument for the di­

mensioning of structures. The complexity of structures and the conditions to which

they are subjected mean that no generally applicable formulae and rules can be

found for n urn.e r i c a l safety values. From the formal, procedural and practical
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points of view, special r e qui r ement.s for c ornpar a tive values arise in many cases

which cannot all be satisfied simultaneously. As a consequence we are compelled

to look for a system of safety margins which will satisfy the different requirements

as far as possible. The procedure by which this is achieved is discussed m con­

nection with s orne examples frorn reinforced concrete construction. In the limited

space at our disposal it is not possible to take up special cases and deal with them

exhaustively. Hence, the application of the safety coefficients is shown in two

simple examples as far as their numerical application in the dimensioning of s tr uc "

tures (6).

2. 3 As sumptions, Limitations

(a) All the types of construction dealt with in this investigation are bodies

at rest. Their structural behaviour is not influenced by any motion, and no dynamic

fore es occur.

(b) Similar restrictions have been made for the loads. Pulsating, or

momentarily applied loads, or loads which can produce long-term effects (creep,

shrinkage, fatigue) are not considered. In this connection the reader is referred

to the works of Freudenthal (21,22, 223).

(c) Only stress problems of first order are considered. In s irnpl e caSE:S,

especially in the case of statically determinate systems, the results of the investi­

gation, i. e. the safety coefficients, can also be applied to stability cases. However,

if it is necessary to study these in conjunction with statically indeterminate systems,

the calculation will be correspondingly more complex on account of the non-linear

relationship between the load and stress. It must then be conducted similarly to the

calculation for the case of a plastic design by the mechanism method, as explained

III Example 6.2.

(d) It is assumed that plane sections remain plane, wherever it simplifies

the calculation. The elastic and plastic theories of the strength of rna te r ia l s are

as s umed to be such good approximations that their us e entails no error that is not

negligible c orripa r ed with other deviations.

(e) Special structures such as dams and rn i l i tar y engineering structures,

cannot be taken into consideration, since entirely different considerations apply to

them.

(f) If a load on a structure comprises several different forces simultane­

ously, it is assumed that the position of the point of application of the forces, as

well as their direction and the ratio between them does not change with an increase

of load. This assumption is dropped in Example 6.2. In the appendix (8.2) special

problems deriving from this assumption and others related to it are taken up.

(g) It is assumed that the expressions and laws derived from statistics

and the theory of probability are always applied to independent variables. This is

not everywhere demonstrably the case. Thus the structural results for this

reason are approximations. Since, however, we have no information on possible

correlations in the statistical data of structures, then by taking into account the
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relationship between certain data we would only be introducing new unknowns - the

correlation coefficients - into the investigation, without possessing the means for

their deterrnination.

(1:1) The data and numerical values used in the examples and in the dis­

cussion, are derived, as far as possible, from the literature on corresponding

investigations. However, since we are far from having information available about

all quantities, the gap must be bridged by estimates (lleducated guesses"), which

we base on practice and building materials common in Switzerland at the present

time(41 - 45).

3. DEVELOPMENT OF CONCEPTS

3. 1 The Concept of Safety *

The confidence level* is a term borrowed from the theory of probability.

It was already appropriately recognized before this mathematical discipline made it

possible to interpret it quantitatively. Safety signifies a high probability that a well­

defined event (E) will occur (i. e. that the structure will not fail. rransl.). The

confidence level is smaller than or equal to unity. If it is exactly one (100%), it is

equivalent to absolute certainty. However, this is never the case in the field of

structures; there is always the possibility of an alternative event (E') the probability

of which doe s not wholly vanish.

We shall use the term safety, or confidence level, hereinafter to mean

the probability of occurrence of the event E, which for the present we shall refer

to s irrrp l v as "favourable event". This is contrasted with the event Et, which can

be generally described by the word Itfailure". We shall have more to say below

(3.2) concerning the specific importance of the two events.

The following logical relations exist between the two events:

E I\. E' = 0

EVE' = 1 (2)

In plain language this can be expressed as follows: E and E' are alternatives,

i . e. they are mutually exclusive and there are no pos sible events except E and E'.

To prove that this assumption is correct in its application to the safety of structures

can be a problem in logic. Presumably, this would only lead to a further assumption,

which could not be confirmed, in turn, except with errip i r ic a l considerations. How­

ever, since it is plausible that either "something" or "nothing" happens to a building,

we may dispense with further discussion of this purely fo rrrraLrnatte r ,

By analogy with logic, we rn.a.y write in terms of probability calculus:

W(E) + W(E') = 1 (3)

* In GerITlan one employs the word "Sicherheit" both for safety and confidence level

(Trans!. )
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where W (E) is the probability of E, i , e. the safety, and W (E') is the probability

of damage E'.

For the concept of safety to represent something concrete, a description

of one of the two events is necessary. In most discussions, this is omitted, since it

is assumed to be obvious. Often, however, clarity concerning the event in question

is only apparent and therefore, in what follows, the event will be defined wherever

necessary.

Safety (confidence) is usually only slightly less than one. It is simpler,

therefore, to consider the complementary probability W (E t) of failure, which is a

small quantity and can therefore be dealt with without loss of accuracy. Further­

more, we have a distinct equivalent between the probability and the frequency of

failures. Moreover, the term failure can be positively and more simply described

than would be pos sible for the event E of safety itself, whose definition would always

have to include a list of all pos sible unfavourable events that must not occur.

Here it should be emphasized that safety (confidence level) can only be

represented logically by an expression of theoretical probability. Dangerously false

conclusions may result by designating some comparative value such as the safety

factor, as "safety". Safety can have values only between zero and one:

o <W(E)<l

3.2 Definition of Safety, Concept of Damage

(4 )

So far we have been speaking generally about failure, i , e. an unfavour­

able event that may happen to a structure with a probability W (E I), and should there­

fore be avoided. Since its occurrence can never be completely eliminated, we have

to be satisfied with the reduction of its probability to a satisfactory level.

The content of the term "failure" requires explanation, because it may

have widely differing interpretations.

From the history of construction engineering and from daily observations

it is well known that failures can occur anywhere in many different forms and degrees.

The essential criterion is usually the effect of the failure on the continued existence

of the structure and its serviceability. Failure is said to have occurred whenever the

structure is impaired in anyone of its functions. Moreover, one sort of damage does

not exclude others. In what follows we shall include under events E t only those which

change the load-carrying capacity of the structure. All other effects such as aesthetic

flaws or the reduction of insulating or impermeability properties, are not considered

in this investigation. We shall have more to say concerning deformations in this con­

nection. However, since no general statements can be made about it, this matter

must be deferred for treatment with reference to specific examples.

Only the action of forces are to be regarded as causes of failure. Cor­

rosion, chemical decomposition, wear, etc. are generally long-term influences,
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and thus do not fall within the scope of the present investigation. Several kinds of

failure rria y occur to the s arri e structure. These are to be distinguished by the

subscript i., which can aSSUITle any number designating failure against which one

wants to guard. E' then bec ome s the SUTIl total of all events E I. , or in the

n ornenc Iatur e of s yrrib ol i.c logic: 1

E'.CE'
1

1 ::; 1, 2, (5)

Besides the different types of failure, the location of the damag e shall also be eITl­

braced by the subscript i.

Now, if we represent the safety with respect to a single case of failure

E'.:
1

W( E.) ::; 1 - W( E' . )
1 1

( Sa)

this is only a significant s ta.ternen t if i describes the single failure which is of iITl­

portance in this case. Often this is not so, and one would like to know the proba­

bility (confidence) that none of the several types of failure E'. will occur, i , e.

that "nothing" will happen to the structure. This is the ｬ ｯ ｧ ｩ ｣ ｾ ｬ rnearring of "safety",

and it is in this sense that we understand it, unless otherwise noted. It can be repre­

sented by the f'o r m ul.a

W( E) ::; II. [1 - W( E ' .) ]
1 1

( 6)

which holds true, of course, only as long as the various E'. are mutually exclusive,

or, in statistical terms as long as there is no correlation bJtween their probabilities.

This condition, generally speaking, is not satisfied, and if one nevertheless pro­

ceeds as if it were, one arrives eventually at an underestimate of the safety, as may

easily be verified. A better p r errri s e is to consider the sequence in time of the dif­

ferent instances of failure. That is to say, once the first failure has occurred, then,

by definition, the structure is already impaired with respect to its bearing behaviour,

and is thus changed. It rrius t now be subj ect to a further investigation on the basis

of its new characteristics. We consider load-bearing structures, therefore, only

until the first failure of an essential nature, as far as the bearing behaviour is con­

cerned, has occurred. In general, therefore, we may write:

W(E) ::; 1 - W(E')

where E' is the first failure occurring.

(6a)

For the discussion of the safety problem still another application of the

term failure is necessary for the sake of the statistical treatment. It must enable

one to describe the failure event E' in technical t e r rns , For this purpose a nurnb e r

of additional concepts are needed, which we shall discuss briefly.

3. 3 The Load-Bearing Capacity

As a rneasur e of the strength of a load-bearing structure we take the

rnagni.tude of applied forces which will produce the first failure. This is generally

called the bearing capacity and denoted by the symbol T, regardless of the form

in which it is written.
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The theory of elasticity uses, as a criterion for the bearing capacity

attained, a state of deformation such that whenever this state is reached at any

point, the investigation of the structure is terminated. Such a criterion does not

usually correspond to significant d arriag e and does not necessarily modify the

structure in such a way as to alter its bearing behaviour. However, it does, as

a rule, define the limits of validity of the theory of elasticity, beyond which its

application leads to incorrect results. In this sense, therefore, the elaslic

l i.rn i t must be used in all elastic calculations rather than a true instance of failure.

In the theory of plasticity on the other hand the criterion of bearing

capacity is generally a so-called failure or collapse, the oc c ur r enc e of which,

as a rule, signifies the collapse of the load-bearing structure, i , e. a structure that

has suffered such a failure is for all practical purposes unserviceable. Collapse

occurs whenever the deformation at any point in the structure increases still

further without any finite increase of load being applied. Since this can happen

without exceeding the limit according to the theory of elasticity (stability problems,

etc. ) such a definition is not sufficiently accurate. A better description of the

collapse event is found in an energy consideration: failure occurs when the total

work performed by external forces is dissipated in the structure, i. e. is con­

verted into non-mechanical energy (principle of virtual displacements).

The bearing capacity can be expressed in various forms: in terms of

the external forces (supported load); in the form of cross-sectional forces (e. g.

plastic moment); as a stress or even a strain, as is customary in the theory of

elasticity. If statically indeterminate systems are investigated for their collapse

load, then properly speaking the form of supported load must be used. because

c r o s s e s e c t i ona l forces and stresses can no longer be definitely verified. If we

did use cross-sectional forces, this always means that the calculation is only an

approximation of the theory of plasticity.

The description of the specific collapse process (mechanism) is ex­

ceedingly important for the determination of the bearing capacity. The conse­

quence of this will be evident in a single simple case from example 6.2. That is,

as soon as the load-bearing structure data are regarded as static quantities it

cannot be verified in what way the limit of the strength is reached. i. e. various

forms of damage may occur before collapse.

3.4. Loading

The load on a structure generally means a group of forces which are

imposed on it externally. As a rule. stresses and strains are produced which

in some cases bear a simple relationship to the size of the load. In that case, it

is logical to represent the load and the bearing capacity in the same form. In an

elastic calculation this usually takes the form of stresses, whereas in statically

determinate systems the form of the cross-sectional forces may be used to calculate

the collapse load, or, for all cases, as a proportion of the ultimate load. In the

latter case, however, the loading configuration (location and relative magnitude of

individual forces) must be known, so that in going from zero up to the ultimate load
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only a single value, the absolute value of the load, need be changed. If the in­

dividual load components are not proportional, or if their locations and directions

change, then instead of the system of safety coefficients dealt with in this investi­

gation, a somewhat more general method must be applied, which, however, can

easily be derived from what is shown here. An example will be found in (226).

In the design stage, which, of course, must include a safety consideration,

the load cannot be predicted. Nevertheless values must be assumed. Under these

circumstanc es estimates are employed derived by analogy from loads on already

existing structures, or which have been codified in standards for typical cases.

These values are merely for calculation purposes. However, their

relationships to actual loads is of decisive importance for the safety problem.

We shall return to this question again (5.2.13). For the present when we speak

of loading or design load we are referring to such a calculation value, which is

generally denoted by the symbol P.

3.5 The Structure. Types and Properties

Structures are solid bodies which transmit forces applied to them to a

foundation. One of these forces (loads) is always the weight of the structure itself.

Both the structure and its foundation may be movable, but according to 2.3, no

additional forces are assumed to arise as a result of such motions. Similarly, the

relative speeds of any two points of an individual element are assumed to be negli­

gible (no shocks, vibrations, e tc , ] .

For purposes of structural calculation a structure may be divided into

separate parts, each of which is thereafter treated as an individual element. This

is not always an advantage, as we shall see; however, the concept of structure

should contain this possibility.

Structures possess an important structural property, which we may

call "circuitry" by analogy with electrical systems. In both cases there are re­

sistances;ior both cases there are two possible kinds of elementary circuit, i. e.

connection in series and connection in parallel. In the theory of structures this

determines how the forces are transmitted, i. e. the "play of f o r c e s " in the struc­

ture; in the electrical circuit the kind of connection determines the distribution of

the cur rents.

Two small examples may illustrate the meaning of the circuit concept as

applied to load-bearing structures: connection in series corresponds to a chain,

while connection in parallel corresponds to a cable (bundle of wires). One cannot,

of course, derive quantitative physical results directly from the electrical analogy.

Therefore we shall refrain from any further statement about the similarity, and

the consequences of the type of structural connection itself will be considered.

The difference between the two kinds of connection is very important

with reference to the safety problem. It can be very easily understood from the

two examples already mentioned.
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A chain is as strong as its weakest link (Fig. 1). A rope yields only

when the last fibre yields (Fig. 2). In the second case, of course, an additional

condition IT1USt be satisfied, namely that the material from which the rope is made

possesses an adequate plastic range.

All load-bearing structures can be represented as circuit diagrams,

where, on detailed consideration, a combination of the two possibilities is always

involved: each load-bearing part can be divided lengthwise (main bearing direction)

into elements which are connected to each other in series. At the same time each

cross-section can be divided into individual fibres providing connection in parallel.

However, this possibility will be of no further interest here. Instead we shall con­

sider the load-bearing structure as a whole, i. e. as a circuit made up of various

elements (rods, plates, slabs, etc.). We then find that there are both series and

parallel circuits, as well as combinations of the two. A number of simple examples

are represented in Figures 1 to 5. For the case of connection in parallel the load­

bearing structure can be divided into individual paths (lines of force), where the

same bars are participating in the transmission of the force but in different ways.

In terms of structural theory connection in series means a statically

determinate system, i , e. one where there is only one distinct path over which forces

can be transmitted. Structures connected in parallel are statically indeterminate,

and the number of (statically determinate) paths is greater by one than the degree

of static indeterminacy. Connection in parallel applies, of course, only if the dif­

ferent paths are not reunited (Example 5).

Now, if we again consider the rules governing chains and ropes, it

becomes generally clear how important the kind of connection is in relation to the

safety: in the case of connection in series only, the failure of anyone member re­

sults in the collaps e of the entire system (here, of course, care is required in the

d erna r c a tion of the system). There are cases such as the cantilever bridge, where

not all members are necessarily affected by a failure. However, the section to

which the force is applied, at least, will move.

In the case of connection in parallel, on the other hand, all paths must

be exhausted at at least one place before the structure yields (Example 6.2.). A

general theory of structure circuitry cannot be given here, since owing to the many

simplifications of structural systems it would be rather confusing. As a rule,

however, these simplifications mean a reduction in the labour involved in the struc­

tural calculation, but then the true characteristics of the general case are no longer

recognizable, and only from such a general case can generally valid theorems be

simply formulated. We shall therefore restrict ourselves to the basic properties

of the two kinds of circuitry.

The importance of the circuitry properties of the structure as a whole

only becomes meaningful when we use as a criterion of the bearing capacity,

a kinematic mechanism. In the theory of elasticity this is not the case. Here the

criterion, more simply, is as follows: the load-bearing structure has failed when­

ever the yield limit has been surpassed at any point, i , e. if Hooke's law ceases to

operate in any fibre. On the other hand, this states nothing about the "real
"

bearing
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capacity, i e. the maximum load that can be transmitted to the foundation.

For the sake of the subsequent discussion it is also necessary to establish

the concept of the "structural properties". For this, we consider the structure as

the sum of all those conditions or circumstances which affect its bearing behaviour.

Besides the intrinsic properties such as circuit paths, geometry, strength, etc. this

includes also certain external circumstances, such as load, behaviour of the found­

ation and indirectly the end use of the structure. This does not conform to ordinary

linguistic usage, but is equivalent to an expansion of the concept "property". However,

it will help to avoid many complications.

3.6 Comparison between Bearing Capacity and Load

Safety verification

If we know the internal properties of the structure and the load applied,

the inequality of the confidence level can be set up. It will contain the resistance

(T) present in the structure and the load (P) to be represented in the same units,

so as to examine its bearing safety. Generally speaking, there are three possible

inequalities:

T> P (9 )

This means that the strength exceeds the load and the structure will therefore sup­

port it.

T = P (9a)

If the bearing capacity is exactly equal to the load, then the limit of safety has been

reached. This will be explained more fully below.

T<P (10)

If the bearing capacity is less than the load, then under the given circumstances

the structure will fail, i. e. it will become damaged. The inequality of the confidence

level is a physical formulation of the events E and E I, as discussed in 3. 1 and 3.2.

The probability expressions derived therefrom will thus be as follows:

and

W(E) + W(E') = W( T > P) + W( T < P) = 1

1- W( T > P) - W( T < P) = W( T = P) = 0

(11)

(12)

This is easy to understand if we as sign to the indefinite state T = P an infinitesimal

change of one side

P----;)<.P + dP

to the unfavourable event E', as is customary in statistic s .

(13 )

Nevertheless, it is helpful to use the limiting event T=P, because in a

single expression it points to the two possibilities E and E I. It describes exactly
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the safety criterion, even though its occurrence possesses a probability of zero.

If in place of the bare inequality, which of course contains only quali­

tative i nf'or-ma ti on, we use an arithmetical expression, the numerical results of

this will be a C ornpa r a tiv e value for the safety, e. g. the safety factor

S = 1:-
P (14)

or the safety zone

Z = T - P (15)

These quantities make quantitative assertions about safety, but must not be confused

with the true safety concept (3. 1.). It is indeed true for a specific, well-defined

structure in general, that the safety factor increases proportionally with the safety:

and

. Ｈ､ｓｾ . (dWI E))
slgnldT) z: SIgn ､ ｾ Ｍ

. (dS)· . (dW(E))
slgn\dP = slgn\ dP

( 16)

(17 )

For two different structures, however, a larger safety factor does not necessarily

mean greater safety. Furthermore, for the above relations to hold certain conditions

must be satisfied:

dT ｾ dP (18)

dcr. da.

i . e. for a change of bearing capacity due to a change in anyone parameter a. of the

properties of the structure the bearing capacity must be increased by a greater

amount than the dead load, or conversely, for a reduction of bearing capacity with

a. the dead load must be decreased to a greater extent. This is especially important

in the case of long spans, where a strengthening of the main structural elements en­

tails a considerable increase of dead weight. Similarly, this point must be taken into

account for the cases of partial stresses of different sign (8.2.).

4. REPRESENTATION AND CALCULATIO!'J OF SAFETY.

4.1 Deviations, Errors, Uncertainties

Classical statics applied to structural engineering disregards the fact

that the actual properties of constructions projected for the future are not known

at the time of the safety verification. For the calculation estimates (assumptions)

are employed which are as similar as possible to the values expected in practice.

Once these assumptions are made, then the calculation no longer takes

into account deviations of the "actual" from the design values, but relegates thern
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to the category of "error S", which must be compensated by suitable safety margins.

This summary treatment of the deviations results from two facts, namely that de­

viations or "errors" can never be wholly avoided, and that no information is avail­

able concerning their specific size. Otherwise, the assumptions could have been

improved.

The relationship between errors and safety margins means that the de­

viations and their properties have to be used as a basis for the determination of

safety measures. In order to discuss the procedure for this, we shall first review

the errors and their statistical laws as well as the kinds of information which we

possess for this purpose.

In the classical theory of errors, one

during the rne a s u r ernerrt of geometric quantities.

three classes: coarse, systematic and random.

studies errors of observation made

These errors are first divided into

Thereafter the theory of errors is concerned only with the properties of

the random errors, on the assumption that the other two classes have already been

eliminated by the application of suitable measures.

Such a classification is favourable under the assumptions that apply in

surveying: the errors are srrral l compared with the size of the quantities measured,

so that their frequency distribution is independent of the size of the quantity being

measured. Moreover, the size and distribution of the errors can be determined

directly, since large series of m easur ernents of similar quantities made with the

same instrument are available. At the same time the quantities measured are always

simple geometrical values which can be reduced to clear, physical concepts.

Nevertheless, this classification is a purely practical one, that is its

foundations are wholly empirical. Modern statistic s, in which the theory of the small

errors of observation constitutes a special case, assumes no such distinction a priori.

It strives, instead, to determine not only the frequency and size of the errors, but

also their causes.

For further discussion it is better to introduce the concept of deviations

in place of errors. As in the theory of errors, deviations are defined as the dif­

ference between design and observed (measured) value of a given magnitude:

8 = A - A
t g

All we can learn concerning the unknown deviations with ｾ are facts of a sta­

tistical nature: rn easur em.errts of actual properties can be carried out on existing

or ruined buildings, or on specimen structures. These are usually much more ac­

curate than any later as sumptions (statistical estimates) will be, but they are not

referred to the same object, i , e. to the structure projected for the future. The

results of such rne a s u r ern en t s are incorporated in frequency diagrams {his tog r arn s ],

which can be approximated by suitable analytical functions (distribution functions).



- 15 -

If statistical methods are applied to the construction as a whole, there

a r e three reasons why it is im.possib1e to obtain satisfactory, and in rnany cases even

usable results.

1. There are properties of a construction which cannot be observed at

all before the construction exists (behaviour of the foundation, effects of neighbouring

buildings, e tc . }. Nevertheless these, too, h a ve to be represented by estirnates

in any calculation of the eventual bearing behaviour. The deviations thus introduced

further impair the accuracy and reliability of the results of the structural calculation.

However, they do not always arise, and for the present will be disregarded.

2. The usual construction is a function of a great n""lany properties of

different kinds (pararneters). Al.rn o s t always there is only a single, or at best a few

s irni.la r structures available for observation. However, if we want to get results

with statistical rn e thods which are reliable enough to permit drawing of conclusions

for future constructions on the basis of analogy, one must have recourse to the "law

of large numbers", 1. e. the number of observations must be as large a rnultiple as

possible of the number of parameters to be determined.

Individual properties can be observed singly. In such cases a measure­

ment usually leads to a useful result. This holds true for certain strength pro­

perties of the building materials, and for climatic quantities.

Other structural properties, however, are so closely intertwined that

the expenditure necessary for the many observations is practically no longer

rnanageablc. Furthermore, various quantities, for example the behaviour of the strue­

t u r e in the failure region which is so important from a safety point of view, can only

be observed in conjunction with the destruction of c ornp Let ed buildings. Buildings

are always being demolished, of course, but generally speaking these have been

erected by earlier building techniques, and thus, in a time of rapid change in the

technology of construction, do not yield a great deal of information. Attempts have

been made to overcome this difficulty - 1. e. the lack of i terns for statistical ob­

servations, by the application of test procedures to specimens. However, since

the latter are produced and tested under conditions very different from the real ones

occurring in the structure, the results of such tests cannot be accepted imn""lediately

as reliable (e. g. strength of concrete specimens).

3. Amorig the deviations occurring in the construction properties, there

are almost always some which are caused not by "standard" influences, but which

occur just at one specific place in one specific structure. Generally speaking such

deviations must be ascribed to the direct human influence. As stated in the in­

troduction, statistical methods fail wherever the human will comes directly into

play, and this holds true for almost all properties of structures. The exceptions

are few and structures in which everything can be regarded as ramdom are still fewer

As long as we do not possess as complete information on the principles of hurna.n be-

haviour as we do about certain fabrication processes or natural occurrences, this
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objection to the application of statistics to safety problems for structures must

stand. We shall return to this extremely important point in subsequent sections

(4.4; 5.2.15).

In the classical theory of errors, errors are distinguished according

to size (coarse errors) and according to sign (systematic errors) for the practical

requirements of calculating errors and corrections. This must be supplemented

by another problem, namely the question of the cause of the errors, which to a

certain extent, of course, is implicit in the theoretical classification. Where safety

is concerned, however, this aspect takes on great importance, so that closer attention

must be given to it.

We distinguish between:

1. Deviations not affected directly by human beings. These are to some

extent unavoidable, and we shall refer to them hereinafter as random.

2. Deviations due directly to human failure - in the form of negligence,

ignorance, whim. These can largely be e l irninated by suitable measures, which, of

course, entail a corresponding expense. These will all be lumped together as coarse

errors.

We shall not undertake any subdivision of systematic errors here. This

can be justified qualitatively as follows. Systematic deviations affect each item in a

series of observations in the s a rn e manner. Hence, they do not properly belong

among the deviations at all but are actually properties of the items in question. They

generally s tern from the method of measurement or the rneans of measurement em­

ployed, and since they do playa quantitative role, they must be eliminated by the im­

provement of both methods and means. An example would be the testing of specimens

of concrete. The means of measurement are probably good enough; the strength of

the specimen can be measured VAry accurately. Systematic errors arise in the ap­

plication of the data obtained to the actual structure. Basically, they can be attri­

buted to a defective analogy, and the result is that the testing of the specimens for

their strength is often of little value.

The classification of errors with respect to their causes can probably

not be carried out more sharply than is done with the assumptions of the theory of

error. Nevertheless it will be more suitable for further discussion.

We shall also try to determine the mathematical properties of the two

classes of errors (end of this Section). For the present we shall consider the cause

of a coarse or avoidable error as being s irnply a departure from a rule, or care­

lessness in the erection and use of the structure.

For random deviations distribution functions can as a rule be determined.

For coarse errors we rnus t assume that they can acquire arbitrary values within

wide limits.

This is very evident in all construction accidents. In almost every case

the effect of human unreliability has ultimately been found to be at the root of a

coarse error, which then leads to the failure of the structure. The investigations

arising out of this are carried out on the initiative of the judicial authorities who
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determine the responsibility, and only in the rarest of cases do they find the cause

of a disaster to be anything other than hurrian action and negligence.

However, we are not concerned here wifh the legal aspects of such oc­

cur rences, but rather how to avoid thern , The judicial interpretation of an accident

can only take place after it happens. It is a matter of hindsight. The purpose of the

safety verification, however, is to formulate a prejudgment for any structure that

will provide a picture of its future behaviour and give grounds for the prediction that

it will carry its load. For this purpose we must devise methods that provide infor­

mation on the occurrence of deviations and prevent these from becoming so large as

to cause accidents.

The question of the nature of such methods can be answered quite clearly

and simply for the two classes of deviations separately:

Against unavoidable random deviations, safety margins offer protection.

Against the consequences of human incapacity or coarse errors, in­

spection measures are used.

Since no exact criterion is known by which the two

be separated, this brief recipe is correspondingly vague.

shown to be more or less logical to follow this plan.

classes of deviations could

Nevertheless, it can be

As a measure of the random deviations we use the "mean square d ev ra ti on"

[rrie a n error) which can be estimated from a series of observations by the formula:

_I L: (X - .ei)
2

ax-\) n-1 (19)

where X is the median of the distribution function, L, the individual observation,

n the number of observations. Where a forecast for \he future is required we put

in place of it an expectation value which is extrapolated from observations analogous

to the future construction. This method of error estimation has proved very effective

in the calculation of adjustments by the method of least squares (Gauss) and in sta­

tistics, because it leads to simple calculations and has certain additional advantages

over other methods. The median of a distribution is given by the rule that half of

all measured values rnus t be smaller, and the other half larger. For s yrnme tr ic al

distributions it coincides with the mean value, and for distributions which appear

similar to the Gaussian standard distribution, it coincides with the mode(maximum

frequency).

In many cases one relates the mean error to the rnea s ur ed value (median),

and obtains the coefficient of variation.

v =
x

o
x
-
X

(20)

This is suitable for certain operations, and for quantitative discus s i ons it is better
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than the mean error itself.

Most structures have rnany different properties which appear in turn as

pa r arn e te r s of the structural calculation or dimensioning. In order to avoid getting

lost in the consideration of these pa r a.rn e te r s and their deviations, it is necessary

to arrange the parameters into categories according to certain principles. For the

following four groups of parameters we shall aSSUDle that their distributions are

mutually independent, i , e. there is no correlation between any two groups. The

four basic parameters are:

1. Strength properties of the structural materials;

2. Geometry of the structure, structural system and dimensions of the cross­

sections;

3. Loads;

4. Behaviour of the foundation.

These influence the bearing behaviour of the structure directly, and large enough

deviations can occur in each of the four groups to affect the safety.

From recent investigations of individual parameters (especially strength

properties and loads) certain conclusions with respect to their statistical properties

can be reached{41 -45).

(21 )=

Since the deviations which have a bearing on the safety are always of

considerable size (coefficient of variation of 5% and more), the assumption of

symmetry of the distribution functions which is applicable in the theory of small

observation errors cannot be accepted here. This is to be expected, since for

most construction properties the value zero signifies a boundary on one side, whereas

symm.etrical distributions are generally unbounded in either direction. As a rule,

then, skewed distributions are introduced, the third moment of which

L (X _ .e.) 3
1

n

does not vanish. The fact that certain quantities in construction (strength of materials,

loads, etc.) lTIUSt have a skewed distribution is also c onf i.r m ed by corresponding

histograms. An exaITlple of an a s yrnrnetr ic a l distribution function is the loga-

r ithrnic -normal distribution of the form:

f( ) - 1
X - (J log X•X • ,j2TT

. .eXP (_ i (lOg X - M log X)2)
a log X

(22)

which is transformed into a Gaus sian n o r rria l distribution by taking the logarithm

of the X- axis.

Before we come to the discussion of safety on the basis of error dis­

tribution, we rrius t recapitulate what little is available about those deviations which

are caused by hurna.n carelessness, etc. Since these "coarse" errors occur every­

where and in many forms, no one has yet succeeded in collecting sufficient data to
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p e r rn i t the drawing of conclusions that would go beyond purely quantitative,

CODlnlOn- sense explanations.

If it be a s s umed that the coarse errors have a distribution, then at

any rate certain s ta t.erri e n t s nlay be rna d e ,

As in the case of the r arid orn deviations, large coarse deviations rnus t

be less frequent than srna l l ones. This is obvious. The greater an oversight. the

sooner it is perceived and corrected.

The distribution of coarse errors rnus t also converge towards zero on

both sides. This fact, of course, is really i rrrpl i ad in what was stated previously,

but it can be rno r e specifically supported. Generally speaking, it can be shown

that the pa.r arn e te r s of the structure, as physical phenornena, are Iirrii.ted in their

quantitative value, because it is technically irnpo s s ibLe to go beyond certain l irrri t s ,

For exampl e, where the zero point is a reasonable boundary, this is obviously

true also for the coarse error. All strength values are in this category. S'irni Ia r

boundaries can also be f or rriula t ed for loads: a bridge cannot be crossed by vehicles

heavier than those already found on the roads of the country; one cannot put anything

rn o r e into a full container. Sirni la r s taternents can also be rnade directly, for exarnpl e,

about the bearing capacity of a structure with a loading test: the structure which

withstands the test will not break under a srnal l e r load, disregarding l ong e te r m effects.

of course.

Further inf o r m a tion about the coarse errors could be obtained f r orn

r and orn s arnpl e s, which can be observed with and without the influence of coarse errors.

The difference between the two distributions is then the effect of the coarse errors.

This procedure has already been applied, e. g. to the distribution of

strength of concrete cube s p e c irnens (42) which were rriad e with carefully inspected

and poorly inspected concrete. F'r orn the two his tog r ams very basic differences

appear, especially in the width of scatter of the s p ac irnen strength. This indicates

that the following conclusion is correct: the rnaj or i.ty of large (coarse) errors are

avoidable and s t ern f r om lack of care on the part of human beings. We shall COITle

to the s a rne conclusions when we consider structures as a whole (4.4).

4.2 Deviations and Safety

In what follows we shall dete rrnine the relationship between r andom 1. e.

statistically represented errors and safety. As a working hypothesis the coarse

deviations will be regarded as non-existent up to and including Section 4.3.

The content of the safety inequality

T>P

can be written in te r m s of a single quantity, for exarnpl e the safety factor:

S> 1

(23 )

(24 )
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The darna g e E' or

IS then present, if

T<P

S < 1

(25 )

(26)

Thus, from the value of the safety factor conclusions may be drawn

concerning the safety of the structure. If the actual safety factor is known, then it

will be evident whether the structure to which it applies will suffer damage or not.

However, the safety factor with

S
T

P
(27)

is also a function of the properties of the structure, and the question now arises

whether we can draw conclusions concerning the distribution of the safety factor

from the distribution of the properties. For the present this will be assumed, s o

that, before proving it, we can first determine its consequences.

That is, if the distribution f (S) of the safety factor is known, then by

a s irnp Ie integration:

S '··",

F(S*) = \ f(S)dS

the probability function, can be determined which for every value of S* gives the

probability that S will be less than the value of S*:

F(S*) = W(S ｾ S*)

Putting the critical value one for S*, we obtain the safety from:

1 - F(l) ::: 1 - W(SS: 1) = W(S >1) = W(E)

(28)

(29)

(30)

It can therefore be derived from the distribution function of the safety

factor (Fig. 6).

Now, writing the safety factor as a function of the parameters of the

properties of the structure:

(30a)

the distributions

the safety factor

S = S (a 1' . . . a.. . . . a )
1 n

f (a.) which are assumed to be known, the probability function of

can then be ca1culat ed by the formula:

F(S*)
r [' [' }

= ｾ J•... I [II (f(a.)da.)l G
' I 1 1 1

(31)
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where the region G in the n-dimensional space of a. i is bounded by the inequality:

*sc l' ..... a.n ) ｾ S (32)

Differentiating with respect to S*, we get from this the distribution function of the

safety factor

f(SlI) = ｾ (F(S*»
dS

(33 )

Thus, for each structure it is possible to calculate the degree of safety at which the

distributions of the properties of the structure and their relationships to the safety

factor are given (Formula 30a). A simple example may be used to illustrate the basic

mathematical procedure:

Example: A statically-determinate reinforced concrete beam is subjected

to a bending moment from a uniformly distributed load. At mid-span it amounts to

M = (34)

The strength of a cross-section at mid-span is given by the plastic moment (collapse

criterion):

(35 )

Fe

][

CYF

Fe . h 1 - 0.6 -b=-'--­
h'Sn

From this the safety factor can be calculated:

[

CYF Fe I

Fe' h 1 - O. 6 J'
b·h·S n

S

p . 1, 2 •
1

8

(36)

Let its numerical value be

S = 2.0

Let all quantities be introduced by their medians (design value). Thus the design

safety factor is equal to the median of the distribution. It will be referred to here­

inafter as "nominal value ". The elements of S with the most scatter are:

- the effective depth h

- the yield stress of the steel CYF
- the assumed load p
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Deviations of the other values are either unimportant ( Fe, J, ) or for

formal reasons have little effect (b, SD)' They are neglected. Similarly, the

scatter of the second term inside the bracket is disregarded, because it is small

compared with unity and therefore has a small effect on the errors.

The variable elements can be s urnrria r i z ed as follows:

o . h
F

cp =

and similarly the invariable part:

8 . Fe
A = .e z

p

/

.\ (l - O. 6·
\

(37)

(38)

In order to avoid confusion, the variable quantities are renamed:

OF = 0.
1

h = a
2

p = 0.
3

and we can now write the safety factor:

Let the distributions of the three variables be:

A (39)

1

= o:» Jtn. 0
1 log 0.

1

• exp
,
\

1

2

loga
1

- IJ.

a log ｾ fJ
log 0.

1
I

(40)

a ｾ｡ ｾ｡
2 min 2 2max

1
bi"'.20.

3
• "./ rr , 0

log a
3

with parameter values:

( 1
• exp rZ

log a - IJ.
! 3 log 0.

3
\ \ 2

\ a J
log 0.

3
I /

(41 )

(42)

IJ. = log 3. 6
log 0.

1

a = 30-2,,/'3
2min

IJ. = log O. 1
log 0.

3

0 log
i 20 \

= \ 19)log 0.
1

a = 30 + 2.;3 (43)
2max

0 ,. 12 \
log 0.

3 = log \0 )
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The distributions of 0.1 and 0.3 are logarithmic -normal. From histograms of this

quantity this appears reasonable for the yield stress of the steel. For the load,

the l06arithmic-normal distribution can be proposed as approximating the distri­

bution of the extreme value in the absence of more accurate information. The

effective depth is distributed rectangularly, corresponding more or less to the

case of a tolerance check with limits of ± 2 crn , The nominal values of the three

variable quantities, with

= G = log3. 6 =
F e

-
0.

2
= Ii = 30 ern

3.6 [t/cm2J (44)

a
3

-= p = e l og O. 1 = O. 1 [timIJ

correspond more or less to the usual conditions, as do the coefficients of

variation

= e Glog 0.1 ｾ ± 5%vI

v = ± 6.7% (45 )
2

v = e Gl og0.3 ± 8%
3

Here u l og 0.1 is the logarithm of the median of 0.
1

' Gl og 0.1 the mean quad­

ratic deviation of the logarithtn from the median.

We now get the probability function of the safety factor from the formula
S*

F(S*) ｾ Ｈ ｸ ｊ JJf(A· 0.1) . f(0.2) . f(a.3) . da. l • d0.2• d0.3 (46)

Since this calculation cannot be carried out by analytical methods, it was solved

by a numerical procedure on a computer. The result is represented in Figure 7.

For comparison, the normal distribution and the Chebyshev inequality for the

same parameters (median, coefficient of variation) are also shown. A logarithmic

scale is chosen for F(S) so that the value of the function remains clear even for

small values of S.

The two comparison curves bear different relationships to the "actual"

distribution of S:

The Chebyshev inequality constitutes an absolute upper limit for all

distributions. However, it is unusable for this discussion, because it is still very

high even for small values of S.

The Gaussian normal distribution is a better approximation. However,
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as will become evident in the exarnple of Section 4.3., it also leads to impossible

conclusions conccrning the necessary rna r gin of safety. Nevertheless, as Fig. 7

shows, it provides an upper bound for srria l l values of S. Moreover, since it re­

sults in s irripl e calculations we shall em.ploy it as far as possible in further dis­

cussions(223).

The advantage of an approxim.ation is that estim.ates of the safety can be

calculated from. statistical data on the param.eters, without as rnuc h effort as in

the exam.ple shown which applies to the em.pirical distributions directly. The sym­

metrical normal distribution can in general be regarded as an upper limit for the

cases involved in structural engineering, because the data of structures are usually

distributed asymmetrically with a Lirn i t at the zero point. This rnean s that if the

norm.al distribution is employed, the safety is underestim.ated, and such an ap­

proximation is therefore on the safe side.

A much closer approximation, of course, is the Iogar ifhmic vnor rna l dis­

tribution, which will be taken up again in what follows (4.3).

4.3. Safety as a Design Parameter

Until now we have been dealing with the actual safety verification, in which

the safety of a structure is determined after its data (nom.inal values, scatters) have

been established.

Since in this sense safety verification is a judgment a posteriori, which

can only be applied to a complete structural calculation, an iteration process is

necessary for final dimensioning, so that the first results of the safety verification

must be followed by a new structural calculation with different data, until the safety

requirem.ent c. g. in the form. of a safety factor, is satisfied. Even cases where

the required safety factor is exceeded have to be recalculated for econom.ic reasons.

Where the calculations are extended, however, such an iteration process is very

laborious and tim.e consum.ing. As a consequence the question has long been asked

whether safety can be so formulated as to be incorporated in a direct dimensioning

process, not requiring a repetition of the work of calculation. More clearly speaking,

this m.eans that the safety might be introduced as an explicit dimensioning par arnet.e r

along with the other data of the projected structure.

The basic flow charts generated by these questions are shown in Figures

8 and 9. It is easy to see from these diagrams that direct dim.ensioning involves

a great deal less work.

If direct dimensioning is applied the problem. of the structural calculation

ts reversed: also, although in the trial and error m.ethod (safety verification) the d'i ­

m.ensions of the structure are selected as initial values of the iteration procedure

in the direct dimensioning process they are left open to variation. Instead the safety,

or a value derived therefrom, is prescribed and must then be satisfied by varying

the dimensioning values( effec tive depth, percentage of reinforcement, etc , ),
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Since the safety factor is the s irrrple s t form of safety coefficient, it will

be used as a basis for the rest of the investigation. It can easily be converted into

other comparative coefficients.

The safety of a structure is determined even before the data are chosen.

However, this does not hold for safety coefficients (margins of safety) which depend

directly on the static properties of the parameters according to 4. 1. These, too,

must first be a s sumed, before the actual process of dimensioning begins. The

safety coefficient can then also be determined a s s urnirrg of course, that the relative

deviations coefficient of variation of the data, varied for dimensioning purposes,

are independent of its nominal value. This a s eumpti.on is not correct in particular

for the cross-sectional dimensions (5.2. 12). For this influence, therefore, a special

gradation of the safety margins is required.

The attempt to derive safety coefficients from the statistical properties of

structures is based on relations which were derived in the foregoing section. For

the sake of simplicity we at first employ the Gaussian normal distribution. Where

this is no longer a good approximation, we shall replace it by the logarithmic-normal

distribution.

The true value of the safety factor can be regarded as a SUITl of the nominal

value and deviation:

S = S + 6S (47)

The deviation 6S is purely a random quantity in accordance with the working hypo­

thesis of 4.2. Its distribution can be calculated from the distributions of the parameter s

of the safety factor (46). We now wish to determine the nominal value S which with

the deviation permits the true value S to become greater than unity (24) for a sufficient

confidence.

We represent the deviation as a multiple of the standard deviation.

6S=g·(J
S

(48)

and finally solve for g, which is related to the distribution of S.

For example if we decide, as a safety rule that every millionth con­

struction, on the average, may be allowed to fail from random causes, then from a

table for the error integral (normal distribution(145):

g '" 4. 5

and we obtain the necessary margin of safety from the relation:

to

1 s S - g (J = S - 4. 5 v . S
S S (49 )

s ｾ 1 = __--.,;;;1 _

1 - g . Vs 1 - 4. 5 . v S

For this value, according to the table

F(l) = W(S s 1) = 10 ...
6

(50)

(51)
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as decided. Thus the problem, fundarn errtal Iy, is solved. We demanded a certain

confidence level (safety), and gave the distribution function of the safety factor.

From this we found the necessary nominal value of the safety factor. This can

now be substituted in the dimensioning like any other parameter, for example,

the assumed load, and the bearing capacity is brought by suitable variations of the

cross-sectional values or material properties to a value which satisfies the di­

mensioning conditions

P s:s; f (52 )

From the expression for the safety factor (50), however, it now becomes

apparent that the value of § increases very rapidly for higher variation coefficients

vS. If the variation coefficient is precisely

v
S

1
=

g
(53)

an infinitely large safety margin would have to be used, in order to attain the de­

sired safety. This obviously does not correspond to actual conditions, and con­

sequently it is clear that the symmetrical normal distribution is no longer applicable

as an approximation. We therefore replace it by the logarithmic-normal distribution

and obtain, in accordance with (50) the equation for determining the nominal value

of the safety factor ｾ

with

T his leads to

exp Ｈ ｾ ｬ S - g • 'J S) = 1
og log

IJ. = log S
log S

1 = e xp (oJ) = e xp(log S - g . a )
log S

( 54)

(55)

(56)

(57)

and the necessary safety factor is obtained as

S = exp (g. 'J log S)

For comparison the relation to the safety factor for the normal and l og a.r ithmic c norma l

distribution is represented in Fig. 10 for two different coefficients of variation.

The choice of the logarithmic -normal distribution as a better approximation

of the "actual" distribution derived from the different distributions of the individual

parameters, needs a still better basis than has hitherto been given. The central limit

theorem states: if A be the sum of n quantities which may have any distributions at

all, the distribution of A comes closer and closer to a normal distribution with in­

creasing n. Sirnilarly, the following nlay be derived: if B be the product of rn factors,
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which may also have any distributions, then with increasing m the distribution of B

comes closer and closer to a logarithmic-normal distribution. The central limit

theorem of course, holds true only under certain, but rather broad conditions

especially on the skewness of the distributions involved.

The question now is whether these results can also be applied to the

safety factor. And in fact, the safety factor generally can be written as the product

of its parameters. This is shown in example 4.2. for the case of pure bending.

If we assume that factor A of the non-scattering elements nevertheless possesses

a distribution, the safety factor is a product of four terms

S=A·CJ ·h·
F

1

p
(58)

Departures from the asymptotic logarithmic -normal distribution may also be due to

the fact that m = 4 is too small a number. However, since some of the individual

distributions of the parameters already resembled logarithmic-normal ones, this

limitation is compensated for.

The strongest objection that can be made against the approximation using

the logarithmic -normal distribution has to do with such stresses as pure bending, whic h

act on inhomogeneous cross-sections (reinforced concrete). In this case two different

materials are added together to produce the bearing capacity of a cross-section, and

the safety factor contains a: sum. In most cases, however, one building material will

outweigh the other in the sum, and thus its distribution will determine that of S, in

which case the product function is again approximated (see for example for axial

pressure in 4.5.1).

Finally, let us now give the two rules for the transfer of the error s of the

parameters to that of the safety factors:

For standard distribution, we may write, according to the method of least

squares:

(59)

(60)

For the logarithmic -rio r rnal distribution, accordingly,

a10 g 5 = (I a
2

10g '\ )i
The two equations will be found in the literature under the name "law of

error propagation" or " theorem of the addition of variants" (CJ2). In this simple form

they hold true only for non-correlated quantities a. .•
1
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With the determination of the necessary safety factor from the sta­

tistical data of the structure, a feasible path has been found of determining the safety

margins on the basis of statistical principles. Of course, two important conditions

must be satisfied, so that this path will lead to correct results.

1. The statistical data must be given with sufficient accuracy. At the

present time, however, this can rarely be expected. Primarily, we would need much

better information on loads and tolerances, and on certain properties of the foundation.

For the present, therefore, the applicability of the statistical method is restricted

to a very small and special category of structures: systems which are highly indeter­

minate (connected in parallel); simple cases of prefabricated parts under a load that

has been studied statistically (wind, snow, hydraulic discharges, etc.).

2. The method can only be used when the applied distribution functions

also hold for the extreme deviations. This has not yet been proved by observations

even for purely random parameters. Moreover, it is precisely the large, rare de­

viations in which the generally very strong influence of the coarse (human) errors

must be expected. In order to investigate this objection in somewhat greater detail,

the next section deals specifically with the extreme deviations.

4.4 Extreme Deviations, Empirical Values

For certain structural parameters statistical results are available. Others

can be secured at a reasonable cost. However, they relate to comparatively small

samplings - a few hundred to a few thousand. For the distributions obtained, this

means that good information may be available concerning the most common values

close to the median or mean value, but not the extreme ones, one tail of which is

of decisive importance for the problem of safety. Such information could only be

gained if much larger samplings could be taken. Their necessary size is approxi­

mately inversely proportional to the relative frequency of those deviations about which

one would like to have information and whose probability is of the same order to

magnitude as the frequency of the cases of damage W (E') which one is willing to

accept. If the safety is to be of the order of 1_10- 5 or 1-10-6, then samplings would

have to be available embracing at least 105 to 10 6 measured values in order to have

a good idea of the frequency of such rare occurrences. This is possible, however,

only at an extremely high technical cost, and therefore will probably have to be fore­

gone for the present in the field of structures.

Hypotheses can of course be constructed on the frequency of rare events

in the theory of extreme value statistics(12, 13). This can even be done on the basis of

distributions which have been determined from smaller samplings, by considering

only the behaviour of the extreme values of the distribution. Such hypothetical approxi­

mations, however, are really useful only when they can be supported by a very great

deal of observation material, for example, for long-term measurements of climatic

quantities, river discharges, etc. A suggestion was made by Weibull for the distri­

bution of the extreme deviations in the strength of building materials, derived from
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elementary strength considerations. It has the following form (12, 13):

F (a) = 1 _ exp (_ ( : ) k ) k > 0 (61 )

where a is the variable (strength quantity), a the expected extreme value.

For most structures, however, such expressions are inapplicable for

two reasons:

1. Besides the well-known parameters there are others for which no

equivalent information is available, but for which deviations of the same order of

magnitude must be expected. There is then not much sense in introducing an in­

fluence with higher accuracy when other quantities are represented only with rough

estimates.

2. In all structures the influences which generate large deviations out­

side the "natura l!' scatter, playa decisive part. These are again the "coarse"

errors, about which we have already spoken. According to their effects, probably

individual parameters can be assigned to them (overloading, design errors, defects

of material, errors in the design calculations, etc . ), Their cause must be sought

outside the structure in the personnel executing the construction (designers, con­

tractors, masons, etc.), and finally in the user.

For these two reasons there is no point to a further discussion of the

particular extreme values for which information is available; let us turn rather to

the consequences resulting from the fact that the statistical results and general

considerations do not suffice to determine the margin of safety for the general case

of the usual type of construction.

There are two problems to be considered:

1. Is it possible to get information on safety which will already incor­

porate the influence of the coarse errors?

2. What is the best way of dealing with coarse errors? i , e. how can

their frequency and magnitude be reduced, and what are the likely consequences with

respect to the choice of a margin of safety?

In what follows we shall discuss the first of these questions. The second
one will be dealt with in more detail below. (5.2.15. if).

Construction as a whole can also be regarded as a population in the sta­

tistical sense, which can be observed. Without referring to specific events, we find

in all structures which have hi therto stood or which are still standing, a qualification

which is closely related to safety, namely the relative frequency of failures among

structures. This is a direct measurement value with respect to safety on a very

large sample.

It is not possible, of course, to formulate exact numerical values in this,

because all failures do not have equal significance, and not all are accessible to
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investigation. However, the "general experience" can be very well summarized

in the form of estimates.

On the other hand, we know by what methods and with what margins of

safety construction has been practised at any given time in the past. For example,

since 1951 a collapse safety factor of 1.8 for bending elements reinforced with

high grade steel has been used. For buildings put up since that time, therefore,

it may be assumed that they have been dirnensioned with this requirement in rnirid ,

These will form the basis of discus sion of further exarnpl.e s ,

The value 1. 8 is designated in the Standard (53) as the "minimurn col­

lapse safety". In this connection it rnay further be rernarked that the term "safe tl

is not adrnissible for the safety factor or for any other cornparative safety value.

If structures put up by elastic rn e thod s are recalculated using the ultirnate load pro­

cedure, on the average a somewhat higher safety factor, namely S:: 1.9, is ob­

tained. This value may be considered a median of the distribution of the "actual

safety f a c t o r s !' of bending e Iernen t s ,

From this i.nfo r mati on a second value is also accessible, narnely the

relative frequency of structures which have failed for any reason at all. It is be­

tween 10- 3 and 10-5. This includes all cases of negligence, unreliability and other

coarse errors. Accurate nurne r i c a l values are very difficult to obtain, since for

understandable reasons not all cases of damage are made public. Furtherrnore,

before such figures can be forrnulated, it would be neces sary to carry out an

evaluation of the individual events (it is not the same if a rnaj or bridge or rne r ely

a secondary e l erneri t of a high building fails). For spectacular, far-reaching ac­

cidents one can always deduce a value which lies between certain Iirni ts , Generally

speaking serious accidents of this kind do not becorne public knowledge. *
Frorn the statistical data on the properties of structures we can, for

exam.ple with the aid of a Log a r i thrn i c-rio r rria.l distribution as an approxirnation, cal­

culate the distribution curve of the purely r aridorn deviations for the safety factor.

It is only a hypothesis, of course, if we employ this particular distribution for the

rare r a n d orn deviations as well. However, this hypothesis has sorne support frorn

the results of the two preceding sections.

Using formula (35) for calculation of the bending resistance for the

plastic mornent, and putting the following estimated rn e an values for the coefficients

of variation

v = ± 8%
1

v = ± 5%
2

v = ± 5%
3

* Experienc e in North Arnerica tends to indicate the opposite. (Trans.)
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we get for the "random" fracture probability with

g = 5.8

the value

W(EI) = W(S $1) = 1.3 • 10-
8

( 62)

Because of the vaguene s s of the as sumptions made, this re su lt, of cour se, is a

rather crude estimate. The choice of numerical values employed must therefore

be reviewed briefly. For the coefficient of variation of strength a mean value is

taken from a series of American tests on the yield limit of reinforcing steel.

This value is generally re sponsible for the re sistance of beams subject to bending

stresses. For accuracy of size (geometry of a cross-section, v2), which depends

strongly on the dimensions of the rnernb e r s , a scatter of 5% is surely too high for

large cross-sections. For srna.Il rnerribe r s , which constitute the majority, however,

such an uncertainty must be employed, e specially for the effective depth (location

of steel). The estimation of the coefficient of variation of loading Ｈ ｶ ｾ should actual!y

be preceded by an e xt r erne value calculation. Very different standards are

ernployed for different kinds of loads. For exarriple , for the loading of residential

houses a value is prescribed that is generally rnuch too high and which in reality

is never attained. On the other hand, e stirnate s of loads due to natural forces

are usually based in part on rne te or olog ica l observations spread out over a very

long t irne . In other cases, for example warehouses, the posted load also

repre sents the as sumed load, without taking specifically into account the fact

that excess loading may very well occur. The coefficient of variation of 5 % is

therefore simply a convenient substitute for the extremely variable type sand

magnitudes of deviations of the assumed loads.

In contrast to the example of Section 4.2 in this case the logarithrnic­

normal function was used for all distributions in order to simplify the calculation.

Since from here on the discussion is in terms of magnitude, however,

these assumptions, some of which are only rough approximations, will not too

greatly affect the conclusions which are to be drawn from them.

For example, if we compare the two values for the probability of

collapse as derived from general experience (W [EI ] ｾ 10- 3 to 1 0 ＭｾＬ and as

d e t e rrn ined from random deviations (l0-8), the difference becomes very clear

in a quantitative way.

Thus, many more cases of failure occur than would be expected

from r and orn deviations of the structural properties. This result confirms

the supposition of Section 4. 1., that almost all failures are the direct result

of human shortcomings.

Consequently, we can base another conclusion on what corresponds

essentially to the brief formulation about the effect of inspections (4.1.):
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Margins of safety which would give better protection against

coarse errors would have to be made di sp r opor tionate ly high. This would

lead, in turn, to unjustifiable costs. Instead of increasing the safetv factors,

therefore, means must be sought to eliminate these errors as far as possible.

The be st such means, of cour se, are inspections.

Coarse errors, with respect to their kind and manner, size,

sign and place of occurrence, are alrn o st unlimited. It is therefore reasonable

to say that they cannot be eliminated by simple, stereotyped measures.

Inspection procedures rnu s t be varied depending on the kinds of error that may

be expected. Errors in the structural calculation can be detected only by means

of mathematical checks, which, however, must not be re stricted to mere

arithmetical checks. There must be genuine checks, i , e. procedures that are

as far as possible independent of the original calculation. Rough errors in the

dimensioning of supporting members, on the other hand, can be eliminated

by simple visual inspection, or by checking the measurements with the simplest

methods, etc.

The following principle applie s: the checks applied must be as

varied as the error possibilities. Admittedly, for technical reasons, this

principle is never wholly satisfied, but must remain as a guide line. In

the present paper we shall have to forego considering inspection and checking

measure s in detail, because this would involve a recapitulation of the whole

technology of construction, and the most important feature of inspection,

namely the care with which it is carried out, must always be left to the

indi v idua l s involved. The refore, there is not much point to is sue regulations on

inspection except where generally essential routine verifications are concerned.

As a rule the checks are not difficult, but in many cases involve

additional cost and loss of time which are worthwhile only when we consider

all structure s together.

4.5 Formulation of Safety Margins

In order to facilitate the practical application of safety margins,

and at the same time to make them adaptable in as many ways as possible to

the individual conditions, the basic form, i , e. the simple safety factor, was

broken down into components. These were to be assigned variously to the

individual design values (structural properties) in order to eliminate their

uncertainties. A larger safety margin is assigned to an uncertain value than

to one in which the magnitude is known very exactly( 70). Other information is

also incorporated in it, for example, the relative importance of the structure,

expre s sed as the degree of seriousne s s of the consequence s of any collapse.

Thus, greater safety margins are demanded for steel railroad bridges than

for buildings, etc. When we study the variation of safety margins from these



- 33 -

points of view I we are c orn.pe Ll.ed , on account of the variety of individual a rgurne nt s I

to replace the simple safety factor by a system of partial safety margins which

can be combined in various ways to produce the desired variation.

Obviously, load and strength are quantitie s which are largely

independent of each other. Nor are the strength properties of different

structural materials influenced by each other, so that from this standpoint

a separate partial safety factor should be introduced for each such group of

paramete r s ,

In what follows we shall briefly review the main possibilities for

analysis of the safety factor, in particular outlining the formal arguments.

It would lead us too far afield to discuss all the possible applications in detail.

Since the simple safety factor § is to be dealt with in greater detail,

it will not be considered in the comparative considerations of this chapter. It is

a special form of safety margin and need not be introduced for comparisons of

the different systems of partial factors.

4. 5. 1 The material factors

Construction materials have various statistical properties, as may

be expected in view of the different materials and different manufacturing methods.

Since the strength of a material is one of the most important safety parameters,

special factors have been introduced in order to compensate for the expected

deviations right at the beginning. These factors reduce the mathematically

assumed strength value by an amount that corresponds roughly to the expected

extreme deviation. These are the material factors mi.

Their value was determined primarily from general experience,

and especially from earlier safety regulations (U.S.A., U.S.S.R. 117,121).

When it is stated that the material factors have been determined solely from

statistical considerations, this must be considered at the very least doubtful,

because, as we shall see below, it is not possible to get agreement between

the laws of error propagation and a system of material factors.

In addition to the actual material properties and their statistical

significance, other conditions are usually taken into account by the material

factors as well, namely the importance of the structure in question, geometric

uncertainties, load assumptions, etc. Depending on how many of the material

factors have been assigned, they either embrace the entire safety margin or

only a partial one which then must be supplemented by other coefficients, for

example, load factors.
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This raises a first difficulty. The material factors have to take

into account influences which do not correspond to their function. Their

determination, and probably also their classification thus becomes very

difficult. Of course, where we have the case of a structure constructed from

a single material, the use of material factors will become, from the formal

point of view, once more equivalent to the single safety factor, and the

disadvantage is not incurred. In the case of reinforced concrete, where two

fundamentally different structural materials are involved, this is not so simple.

Therefore, a brief formal investigation of this case will be carried out.

For the sake of simplicity we assume that the yield stress (OF) of

the steel, and the compressive strength (Sn) of the concrete are the only

parameters which may have substantial deviations. The assumed load shall be

taken to be so accurate that no errors resulting therefrom are of any consequence.

For the formal investigation we employ an example: we shall

determine the strength of a cross-section axially loaded under a compressive

stress. The rated value is:

T=T +T =F
concrete steel B (63)

The coefficient of variation of the ultimate load, which is also that of the safety

factor, is calculated by the ltla w of error propagation":

1 Vs r vB . B f ＨｾＮｶ｡ • 0
)2

V s = T ·'dB · +
da

F
F

ｾ ( T cor;rete
2 T 2

• vB ) + , steel
• vi: ) (64)=

T

=

If the safety W (S > l ) with characteristic factor g is prescribed, we can then

determine the necessary safety factor as

s =
1

1 - g • v
S ( 65)
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(Here we use the simple no rrna.l distribution as a basis. For the logarithtnic­

n o rrn a l distribution the s arrie fo rrrral conclusion is obtained, but in this case it

cannot be repre sented as clearly. )

On the other hand:

s =
T

III • T +Ill .If
B concrete S steel

(66)

and, by substitution of the first equation in the second we get the following

f o rrnula ;

1 =
1 - g • j( I{ v )2+ (I{ v \)2

S S J B B
( 67)

This is a functional equation for the m ate r ia.l factors Ill
B

and IllS' provided we

observe the following subordinate conditions, which must be satlsfied for

plausible reasons:

The rnaterial factors rnust not depend on the cross-section values

= 0 (68)

Nor m ay they depend on each other:

o (69)

Thus, no solution of the functional equation (67) is possible. as can

easily be shown by a t r ansforrnat'ion, This rnean s that no s y stem of rriate r ial

factors can be found which will do justice to the uncertainties in the strength of

the two m ate r iaI s , There is no s irrrple relationship between the m ate r ial factors

and the quantities linked additively to the scattering values; m ate r-ia.l factors,

therefore, are not fo rrrial Iy correct in this case.
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Practical experience with various building standards have shown,

however, that the approximative use of material factors for most cases results

either in excessive risks or excessive expenditures(223).This is because the

functional equation, whose form in any event depends on the choice of the

individual distributions, can be adequately expressed by a stepped approximation

of the safety coefficients (in this case the material factors). Therefore, a system

of material factors should not be rejected arbitrarily. However, it must be

emphasized that with such an approximation the safety coefficients can no longer

be derived from the statistical weights of the structural materials, but are the

product of a practical c om.pen s a ti.ng process; in other words, a system of material

factors (or other partial factors) must be based in turn on general experience, and

hence to some extent, therefore, on the discretion of the people involved.

This also affects the possibility of a reconstruction of the true safety

from the safety coefficients. Such a reconstruction is not directly possible and

a special safety verification must therefore be carried out in each Case.

4. 5.2 Load factors

Basically, it does not matter whether the safety margins in the

design stage are applied to the bearing capacity (material factor) or to the

assumed loads (load factors). If only material factors are used, it may be

objected that the type of load as sumption and its uncertaintie s cannot be taken

into account. The reverse holds true for the load factors.

In general it may be said that

rn , ｾ 1
1

and for the load factors

A. ｾ 1
1

(70)

(71 )

Beyond this there is nothing which distinguishes the load factors fundamentally

from the material factors. Formally one could deduce also for the load factors

(e. g. for the case where the load is a sum of various components of various

accuracy), that they, like the material factors, cannot be made to conform to

the law of error propagation. Generally speaking, therefore, the true safety of

a structure cannot be determined from the load factors, either. However, this is

not a rnatter of great irnportance, since for lack of information we are at present

unable in any case to reconstruct the quantitative relationship between safety and

safety coefficients.
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Material factors and load factors can also be used in combination ( 54,55).

In this way the statistical weights of the two parts of the safety inequality (T and P)

can be taken into account separately, in which case the same formal objections

apply as for the material and load factors.

The load factors will be taken up again below in connection with a special

problem (Appendix 8.2).

4. 5.3. Allowable stresses

Design by the allowable stress method is based on the theory of

elasticity to the extent that load, stre s s and strain are proportional. The

allowable stresses correspond more or less to a system of material factors.

For the same reasons, therefore, they are not completely satisfactory. Further­

more, they cannot be used for investigations beyond the scope of the theory of

elasticity and must be replaced by other systems of safety coefficients for such

a case. If allowable stresses are used in the design, this means designing in

accordance with a criterion of strain, which in many cases is illogical. The

time when a structure shows certain (very small) deformations is unimportant;

on the other hand, it is essential to know what load it will withstand (collapse

criterion, 3.3.).

There is another argument against the use of allowable stresses:

the measured strength values cannot be used in the calculation; certain

standardized classes of construction materials, which perhaps are out of date,

have to be observed. For example in the SIA standards two kinds of reinforcement

steel are distinguished by the allowable stresses; only the respective yield points

are taken into account. Whether or not these steels have uniform strength, which

would conform to the safety concept, is disregarded. The adaptation of allowable

stresses to this matter would be extremely complicated.

Nevertheless, we cannot yet dispense with the allowable stresses as

safety coefficients, since they are the traditional form of the safety margin which

has been used in recent decades for most designs. The industry has become

accustomed to their use. Moreover, the elastic theory will have to be applied

to many problems of the theory of structures and problems of dimensioning for

some time to come, because other, more general methods have not yet been

r e searched fully enough in order to permit designing for the collapse load in all

cases. It should also be borne in mind that the changeover from allowable stresses

to other forms of safety margin will constitute a considerable readjustment to

which all builders will have to adjust before new methods can be generally introduced.

Consequently, the method of allowable stresses must continue to be

applied as a useful instrument for some time to come, side by side with more

up-to-date procedures, which can develop as time goes on.
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4. 5.4. Conclusions

From the discus s i on of various pos sibilities for breaking down the

safety factor into components, it is evident that this always entails disadvantages,

at least of a formal nature.

Hence, there is no other system of safety coefficients apart from the

simple safety factor by which the safety margin can be determined correctly

with respect to the error distribution in the given case. (No general proof of

this contention has been given, but this could be done for any division of the

safety factors into multiplicative or additive components, as have been carried

out in the case of the material factors. This proposition does not hold for the

safety zone Z (15), which can be derived from the safety factor without breaking

it down. )

The formal criterion, of course, is only of theoretical value as long

as safety margins cannot be based solely on statistical values. That is to say,

as soon as we drop the working hypothesis of 4.2. it is no longer possible to

form a ucorrectll system of safety coefficients, but only one that is as close as

possible.

There are other considerations, as well, especially procedural ones.

As we shall show in Section 8.2, there are problems which can be solved more

readily with one of the system.s (load factors) than with others. However, the

solution of the simple safety factor has the advantage of greater clarity and

easier manipulation, especially for plastic methods of design. Therefore, the

problem will be treated with the aid of the simple safety factor, right up to the

numerical application of a suggested system to two typical design examples

(6.1; 6.2).
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5. THE VARIATION OF THE SAFETY FACTORS

5. 1 Conditions

Before drawing up a usable system of safety factors, it is first necessary

to examine a number of procedural aspects and practical conditions so as to de­

termine how such a system can be developed.

The first and most important condition is the need for simplicity. In

other words, the introduction of the margin of safety into the design should not

complicate it substantially.

A second, more fundamentally theoretical rule is as follows: the

application of margins of safety must not entail any additional errors which would

introduce appreciable deviations in the results. In other words the true nature

of the structural problem must not be distorted by the safety margin, as may

easily happen through the clumsy application of material factors or allowable

stresses.

The third and most important principle concerning safety coefficients

IS that these must do Justice to all influences through a proper variation which affects

the available or required safety. An example of an influence which helps to determine

the available safety is the strength of the material, while a pa.rarnete r of the required

safety w oul d be, for example, the nurnbe r of people or the value of the goods which

might be endangered by the possible collapse of a structure.

A system of safety rnar g in s must satisfy these three main conditions.

They are to SOIne extent contradictory, so that no one solution is "correct, II but

at be st can be an opti.mum, a situation that already had to be accepted in con­

nection with the f o r mal aspects of the problem.

5.2 COInpilation of Basic Variables

The following sugge stion for the choice of variable s , which are

important for the numerical determination of the safety factor, is not the only

possibility. Not all special p r obl.e rn s can be enc ompas sed in it in a s irnpl,e

manner. Therefore, this c ornpilafion should be regarded as a simplified pres­

c ription of "how it might be done ...

Since the prevention of collapse is generally more important than

protection against other dama.g e (defoz-mation s , cracking, etc.), it is tacitly

assumed that the compilation is everywhere based on this criterion. In accor­

dance with the observations under 5. l , we distinguish between two groups of

variables:

-5.2. 1 Sources of errors and deviations as well as controls that are

applied and which dete r rrrine the actual safety (of the finished

structure).
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-5.2.2 Ways of achieving the required safety.

5.2. 1 Variables of actual safety

5.2. 1. 1 Uncertainty in material properties

In reinforced concrete two materials are always involved which have

very different properties both statistically and structurally. In the case of steel

the yield stress is generally employed, while for concrete it is the expected com­

pre s sive strength which is used in the calculation as a repre sentative quantity. The

two materials do not always contribute to the bearing capacity according to their

proportions. For example, in pure bending of weakly reinforced cross-sections

(u < ｾｇｲＩ virtually only the strength of the reinforcement under tensile strength is

employed, because this is what determines the moment that the cross-section is

capable of transmitting (33). In the case of heavily reinforced cross-sections

Ｈ ｾ > ｾｇｲＩＧ on the other hand, it is the strength of the concrete compression zones

which is critical. As an illustration see example s in 6. 2 and 6. 1. The latter

example, of course, deals with a section in compression, which behaves from this

point of view, however, like the compression zone in an over-reinforced beam.

Different safety margins must be used, depending on which material

mainly determines the bearing capacity. For poured concrete, for example, the

margins are much greater than for reinforcement steel which is obtained from a

manufacturing process. In concrete, moreover, a greater frequency of coarse

errors must be expected, since it is produced and finished with less strictly trained

personnel and less well developed methods. This also has a great bearing on the

safety margins.

5.2. 1.2 Inaccuracy of dimensions

The geometry of the cross-sections, especially the effective depth hand

the external dimension, also have a direct influence on the bearing capacity,

according to the formulae for the cross-sectional strength. Different designs and

different methods of production mean that the cross-sections are not all susceptible

to such errors of measurement to the same extent.

In the case of poured concrete structures, greater deviations occur than

in prefabricated elements (8. 1). When the dimensions are small formwork errors and

errors in positioning the reinforcement are relatively much more important than in vel'

massive structures. In poured concrete errors of measurement of a few centimetres

must be expected. In the variation coefficients, however, the se are related to the

dimensions themselves, so that for slender parts a deviation of 1 to 2 ern is suffi-

cient to re sult in a considerable decrease in the actual bearing capacity, whereas

the same error in very deep girders has no appreciable effect.
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This is taken into account, for example, in SIA Standard 162, where

lower allowable stresses are prescribed for thin parts than for heavy ones. (Actually

the difference is conceived with reference to deflections and the width of cracks, but

would be similar for taking into account errors of measurement. )

Inaccuracies of dimensions have hitherto generally been disregarded in

statistical investigations, presumably on the grounds that they should be lumped

together with the coarse errors. Certainly there are some departures which must

be ascribed to incorrect construction of the false work or support work, etc.

Scatters of a few em can never be wholly avoided. Consider only the upper rein­

forcement, which during as s e mbl.y is forced out of position by the pouring and

distributing of the concrete. Added to this there are inaccuracie s of plans, the

settling of f o r rn work, openings boxed out in the fo r rn work, etc.

Of great fundamental importance, moreover, is the fact that the position

of r e info r ce merrt , in particular, cannot be corrected after the concrete has been

poured, and that it can then only be observed and checked with difficulty. Hence we

have no statistical information on these quantities and have only to rely on estimates

for their consideration.

5.2.1.3 Uncertainty in load estimates

It is generally customary to apply maximum values of the load estimates

and to introduce these into the calculation, since in most cases the maximum load

determines the fate of the structure. Departures from the mathematical estimates,

therefore, obey an extreme value distribution, and where statistical considerations

are at all applicable, can be treated in the same way as the properties of the material.

In the case of loads which are applied directly by human beings, various

pos s ib i l it i e s of overloading must be taken into account. The loads are applied during

occupancy, and checks of overloading must therefore take place during this time in

order to be effective.

In those cases for which the maximum load will not be the sum for

all kinds of all loads of the same sign, will be further discussed below (8.2).

5.2.1.4 Methods of design and calculation

Basically, all methods applied in the theory of structures are approxi­

mations. In the usual cases, however, the errors committed through simplifying

as sumptions concerning the mechanical behaviour (e. g. "elastic - ideally pl.asfic")

are small enough that they can be disregarded in comparison with the variance of

the other par arnete r s ,
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However, since the methods of mechanics and statics applied to

structures do not always suffice to solve the problems of the theory of structures

in this frame of reference, we often use still rougher approximations and simpli­

fications (for example in calculating multi-dimensional bearing elements such as

slabs, shells, e tc , }, This is often done even where an exact method might be

known to exist, but could only be carried out with an inordinate amount of calcu­

lation.

Wherever possible, an attempt is then made to determine whether the

approximate results are "on the safe side," i. e. whether the safety expected from

the results is not overestimated. In many instances, however, this is not possible.

One must then assume the existence of errors of unknown size and sign.

Such errors can sometimes be dealt with by studying special cases of

a simple kind, or te st items. This means that only cases of entirely new building

materials, structures, and methods, are inaccessible to reliable estimation.

In one sense model tests which may give results on the basis of analogies

that cannot be checked, and which are characterized by great inaccuracy and large

systematic deviations, fall within this category. It is especially dangerous to attempt

to draw quantitative conclusions from model te sts, because often there is no way of

verifying them.

Among cases which must be calculated with coarse approximations are

r:ertain instances of combined stress in the region of failure (shear and torsion with

bending), and which have not yet been investigated thoroughly enough. In such cases

empirical formulae are used which have been adapted to the results of tests. However,

the farther the conditions of the specific instance of application differ from that of the

test the less reliable does its application become.

Errors which stem from the application of approximation methods cannot

be regarded as random. Rather, this constitutes a kind of "coarse" error, but one

which cannot be avoided. We know too little about such errors to be able to base any

variation of safety margins on them. The only rule that can be applied in order to

avoid dangerous effects is a purely practical one, namely whenever unchecked

approximations must be used one should try to verify the results by means of different

approximations.

5.2. 1. 5 Reliability of checks

The effectiveness that one might derive from the reliability of inspection

and control on the level of the safety margins is of an entirely different kind from the

four preceding ones. It cannot be described by the error tolerance. Formally

speaking all that can be said is that the checks reduce the frequency of large deviations.
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Every check consists of an inspection of an object for coarse errors. If such errors

are discovered in the course of inspection, they can generally be examined for their

seriousness, and if necessary corrected. Thus every control that is applied reduces

the possibility of coarse errors.

When it is a question of employing the effect of controls as another para­

meter for the variation of the safety margins, a number of questions arise, especially

concerning how the checks are to be applied so that maximum effectiveness in the

elimination of large deviations can be attained.

Schematically the many possibilities of large deviations and errors can be

represented by a series of partial probabilities, the sum of which is approximately

known. (The "Oder probability, .. of course holds only under the condition that the

various individual probabilities belong to independent events, which, however, may

be reasonably assumed in this case). That is to say:

n

L
1

W. ｾ W (E I)
1

( 72)

where W (E t) is the frequency of failure relative to all structures, which according

to (4.4) is in the order of magnitude of 10- 3 to 10- 5•

Through checks and their effect, i , e. improvements, as large a number

as possible of individual probabilities shall now be eliminated. The total error of

probability is now reduced by the component

m

L
1

W. = 6 W (E I) = k > W (E r)
1

(73)

If all the W. terms are equal, this can be simplified to
1

k% = n-m

n
100 (74)

where k gives the reduction. Now, if k is to be as large as possible, then for the

general case we find that as far as possible the most dangerous - largest ­

individual probabilities are to be pursued, and indeed as many as possible. This

appears obvious, but there are certain consequences which are not self evident:

thus, it does not appear reasonable to examine at great expense and to correct

a single parameter, for example the strength of the concrete or the accuracy

of the formwork, if at the same time other sources of error such as load,

behaviour of the foundation soil, etc. are neglected. The best results are

obtained from the most logical pos sible distribution of the checking costs.
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Another basic question may be formulated as follows: should the safety

margins be changed at all according to the effectiveness of the inspections and

controls? This would as sume that the control would be subject to a reproduceable

set of regulations, which in view of what has been said above meets with great

difficultie s •

Nevertheless this practice has already become customary in some

cases (e. g. Danish Reinforced Concrete Standards 1939). This is pas sible where

gave rnrnental agencie s are re sponsible to carry out the se inspections u.nifo r rn.l v , How

this might be organized in our own country, for example, cannot be discus sed here.

A strong argument against the rewarding of controls in this way is that

this itself is very difficult to check and consequently the responsibility would

necessarily become obscure. Moreover, it would mean the legalization of an

intolerable state of affairs, namely that it would be left to the individual to erect

poorly or well verified structures: coarse errors can have all sorts of effects.

If they are not eliminated as far as pas sible, then even bigger margins of safety

will not help.

Another school of thought advocates variation of the margins of safety

depending on the reliability of the controls: through the smaller consumption of

materials that would be necessary as a result of the lower safety margins of well

controlled structures, controls would become visibly and directly profitable. This

would have an educational effect. Since controls have a favourable effect also on

the random events (random according to our definition above), something would

be gained in this re spect as well.

The discussion and weighing of the pros and cons with respect to this

point belong in the fields of economics and social science, and can therefore not

be discussed further here. For the variation of the safety factor in the present

example the placing of a premium on controls is not considered.

5.2.2 Variables of the required safety

5.2.2. 1 The kind of stress

The failure of a cross-section occurs differently, depending on its

structure and on the stress to which it is subjected. We distinguish between the ideal

cases of "brittle" and "plastic" failure and, correspondingly, brittle and plastic

cross-sections. This is incorrect inasmuch as one and the same cross-section

may react differently under different forces. In every case, therefore, the kind

of stress must be specified.



- 45 -

In the brittle failure, the transm.ission of force is suddently interrupted,

without any visible deformations occurring beforehand, i , e. at a given place the

supporting structure ceases to have continuity. The degree of static indeterminacy

is usually thereby reduced by six (three -dimensional problem) or by three (two­

dimensional problem), which must often lead to a local collapse. Plastic failure

can be described more or less as follows: after the stress (load) has risen to a

certain value - e. g. the plastic moment - the deformations begin to increase

rapidly without any furthe l' increase of load. Only after the deformations have

also increased to a certain, and generally visible extent, does the actual collapse

take place, and is then usually brittle in nature. The degree of static indeterminacy

is reduced only by one (3.5) as a result of a location (e. g. "plastic hinge"). Only in

statically determinate systems does this signify exhaustion of the structure.

Plastic failure occurs in all members which under pure bending,

eccentric tension and compression do not act brittlely for structural reasons

(excessive reinforcement or no reinforcement).

The deciding factor here again is which material "yields" first. If it

is the steel, the collapse is usually a plastic one; if it is the concrete, a brittle,

sudden failure occurs.

The consequences of this difference is obvious. There are cases where

collapse occurs suddenly without appreciable deformations, which might have been

visible beforehand and give warning. On the other hand there are systems which

indicate approaching exhaustion by large deflections.

From this one may draw conclusions concerning the course which any

potential accident may follow, and it is reasonable to say that its consequences

are attended by different degrees of danger, depending on which kind of failure is

involved. This can be taken into account by varying the safety margin.

5.2.2.2 Circuitry of structural members

As for the cross-section and the individual member, so we may also

discuss the course of a possible accident for an entire structure. For this the

"c i r cu.it r v" of the structure is the determining factor. In the case of the statically

determinate system, corresponding to connection in a series, the elimination of

any single force transmission is sufficient to exhaust the structure. Any slight

increase of load then results in collapse. In the case of statically indeterminate

structures, i , e. connected in parallel, there are always several possible ways in

which the system might fail under a given load: there are several collapse

mechanisms. For an illustration of this argument see example 6.2.



- 46 -

We can distinguish essentially between local, i , e. locally restricted

failure s, and the entire collapse. Collapse mechanisms involving large space s

must be prevented by correspondingly higher safety margins, and the case may even

be i rnag in e d where a local collapse, possibly a harmless one, is deliberately

invited by lower safety margins. It might be desirable for the structure to begin

to ufail u at a point which is known and can be specifically observed. This is

analogous to the fusing of electrical circuits and would be the means of preventing

a very serious and extensive collapse.

Such a safety measure doe s not nece s sarily mean the c ornpl.ete ucollapse 11

of the safety member, but would indicate such changes as cracks. or slight sagging.

This is also the meaning of the principle of elastic dimensioning; one guards against

large deformations and thus also against what these would entail, namely damage

and collapse. The elastic protection indication only tells how and at what increase

of load the collapse might begin, and therefore one never knows "how far one is

from collapse, It when the critical deformation is reached.

The lIinternal s e.quence s " of a potential failure, i , e. the consequences

for the structure itself, are what results from the circuit properties of the

structure. For variation purposes, therefore, the question is against what

possibilities (mechanisms) of collapse is it necessary to take special precautions

through highe r safety margins?

5.2. 3 The structure and its surroundings

Every structure constitutes a danger for its contents and its

surroundings. The latter, therefore, must also be included in a safety

consideration.

There 1S a fundamental difference between purely economic values,

which may be represented, say, by the costs of reconstruction, and human life

and limb.

The risk taken by storing goods in a warehouse can be weighed

against, say, the extra expense that would necessarily be involved in increasing

the margins of safety. Hence it is possible to arrive at an "optimum" value

of the safety margin from an economic standpoint, which, however, would in

general be insupportable from the human point of view. Thus, material values

alone do not determine the levels of the safety margins.

Human life and the danger to which it is exposed, however, cannot

be simply expressed in material value scales. (Although this is done in a

certain sense in life insurance, we shall disregard this here, because the

establishment of such a scale cannot be based on technical conside rations. )

Nonetheless, it is reasonable to pay more attention to the safety of buildings
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which are constantly used by large numbers of people, than buildings which are

only employed for the storage of commodities. This is especially true since

people circulating in an auditorium, crossing a bridge, et.c , , often provide

the determining load. As a scale or a relative graduation of safety margins

one might use, for example, the number of people who might find themselves

in the vicinity of the structure at the time of a presumed accident and would

thus be endangered. This, however, would only give some idea of the

relative size of the safety margin.

In order to establish it quantitatively, on the other hand, we have

to draw on experience: lithe safety coefficients used so far have been satis­

factory (or not satisfactory) and thus there is not (is) a reason for increasing

or lowe ring them. "

Again we shall dispense with further discus sion of this point,

because it leads us into the fields of ethics and social sciences. Fundamentally,

of course, one must have a clear conception of the problem of relative values

as between human life and costs, which, of course, cannot be resolved with

the tools at the disposal of the engineering sciences.

5. 3 Formal Considerations in Connection with the Variation of Safety Margins

5.3. I Variables

We shall represent the 8 variables discussed briefly in section 5.2,

some of which cannot be represented mathematically, by the quantities Xl •.•

X8. To Xi we as sign values: Xi = I, 2, 3, so that wherever the safety margin

receives a low, intermediate or high value on account of the variable Xi' the

respective numerical values I, 2, 3 stand for the variable Xi. We divide these

into not more than 3, and often only 2 classes, since any more detailed graduation

would lead, at least for this fundamental investigation, to an excessively complex

system.

The variables stand for the following arguments:

Xl uncertainty concerning the properties of the materials

X
2

inaccuracy in dimensions

X
3

errors in estimated load

X
4

inaccuracy of calculation and design

X 5 reliability of controls

X
6

kind of stress

X
7

circuitry of structure, "internal consequences of failure"

X
8

contents and surroundings of structure, "external consequences of failure. "
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5.3.2 Reduction of the number of variable s

With 8 variables each divided into 3 steps we would get a total of

3
8 = 6561

different safety factors. Such a system is too complex for ease of handling.

Hence certain individual variables rnust be dropped, and others left undivided.

The reasons for the procedure selected hereinafter are given in section 5. 2.

Only their essential features will be recalled here.

X
4

inaccuracy of calculation and design

X
5

reliability of controls.

Practically speaking no variation in respect to the se two arguments

can be carried out, because there are no adequate scales for the departures

which result or are reduced by controls.

Xl uncertainty of rnate r ial properties

X
6

kind of stress.

The consequences of these two variables cannot be separated. Where

the concrete determine s the bearing capacity, a brittle behaviour must be accepted.

Conversely, plastic strains usually occur wherever steel reinforcement determines

the strength of a member. We c o mb irie these two variables into a single one,

namely y 1.

X
7

circuitry of the bearing capacity, "internal consequences

of f ai.Iu r e '!

This variable must be dealt with separately, because its value will

differ, depending on the method of design employed, in order to insure a

reasonable behaviour with respect to failure. It is intended for application

specifically in the plastic methods of design, and its use is described briefly

in example 6. 2.

5.3.3 Choice of numerical values

According to section 4 the fundamental quantitative theorem of the

safety factor cannot be given a scientific basis. No reliable conclusions can

be drawn either from statistical data or from considerations in the theory of

probability, with regard to what value s of safety margin should generally be

chosen. We are therefore relying on the presently accepted safety margins

as control values of our proposal, but leaving the way open, of course, to

modified and increased variation with respect to new requirements in some

case s.
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The system of safety factors is represented in such a way that for

each design a simple safety factor can be read from a table. once the table

parameters (Xi) have been determined from a classification of design cases.

The supplementary factor SI will be discussed separately in section 5.4.5. since

for formal reasons it cannot be fitted into the table.

The classification of structures according to the table para.meters

is given in section 5.4. For the sake of simplicity. the nomenclature of the

variables remaining from 5.3.2 after reduction can be summed up as follows:

Y 1 ma.terial properties and nature of stress

Y2 dimensions

Y3 load as sumption

Y4 content and surroundings of structure. risk and consequences

5.4 Classification of Designs (Suggestion in Short Form)

5.4.1 Material properties and ｳ ｴ ｲ ･ ｳ ｳ Ｇ Ｚ ｾ

= 1 Cross-section with IJ. < IJ. Gr • 0.8

pure bending. bending and axially force

y 1 = 2 All cross-sections with IJ. > IJ.
G r

• 0.8

bending. bending with axially force.

axial compression

=

5.4.2 Dimensions

Y 2 =

3 All cases of shear and torsion (since shear and

torsion never, or almost never occur alone. a

rule must be added here. wherever it is necessary to

design for shear or torsion. See 5.4.6)

1 Cross-section for which effective depth is at

least 18 em and maximum reinforcement

diameter is not more than h.

8

2 All cross..sections for which the effective depth

is less than 18 em and/or the maximum reinforcement

diameter exceeds h.

8

-'­'"
Y 1 should probably be divided

definitive boundary will occur

actual conditions.

into more than 3 classes so that no very sharp and

at IJ.Gr which, of course, does not conform to
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5.4.3 Load assumption

y :::
3

1 Structures for which the total dead weight exceeds half

the maximum total load, and structures where the load

is restricted by the geometr ic factors to the calculated

value (containers, etc , },

::: 2 Structures for which the dead weight is less than half

the rnaximum total load.

::: 3 Structures which are no longer being used for their original

purposes; warehouses for rrrixed commodities, special

cases where the true load is not accurately known.

5.4.4 Contents and surroundings of the structure

Y ::: 1
4

Simple warehouses, sheds, machine shops; all structures

in which numbers of people never remain for any length

of time (for a proposed standard, of course, this classi­

fication would have to be formulated more precisely,

which is not appropriate here).

::: 2 Apa r-trnent buildings and office buildings, vehicular bridges,

pedestrian bridges, industrial buildings, hotels.

::: 3 Churches, audItor iurns , d.epar trrient stores, theatres,

moving picture houses, railroad bridges.

5.4. 5 Function of the structural member

All supports, such as frame legs, columns, and walls contain a

supplementary factor SI ::: 1.4 unless for s orne other reason they have not already

been assigned to the class Y1 ::: 2. In designing by the mechanism rrrethod, the

supplementary factor holds for all collapse mechaniam s which are not restricted

to horizontal bearing rne rnbe r s ,

5.4. 6 Schematic arrangement (Table 1)

In Table 1 the values of the safety factor S, obtained in accordance with

the variation of the class pararnete r s are given: S (Y 1. Y2' Y3' Y4).

The values of S can at the s arne time be considered medians of the

estimated distribution of the actual safety factor. Accordingly, in the structural

calculation, the bearing capacity and load, and hence also the other data should _

be represented by the rnedian s of their distribution. Other than the safety factor S,

no supp'lementa r y reduction or other ｣ ｯ ･ ｦ ｦ ｩ ｾ ｩ ･ ｮ ｴ ｳ are used, since the entire safety

margin required is combined in the factor S.
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TABLE 1

Y1 1 2 ,
Y2 1 2 1 2 1 2

Y, Y
4

1111 1211 2111 2211 3111 3211
1 \

1,5 1,6 2,4 2,6 2,4 2,6

1112 1212 2112 2212 '112 '212
1 2 1,6 1,7 2,5 2,7 2,8 ',0

111' 121' 211' 221' 'U, '21',
1,8 1,9 ',0 ',2 ',2 ',5

1121 1221 2121 2221 3121 3221
1

1,5 1,6 2,5 2,7 2,5 2.7

1122 1222 2122 2222 '122 3222
2 2

1.6 1,8 2,6 2,8 2,9 ',1

1123 1223 212' 222' 3123 322',
1,8 2,0 ',2 ',4 3,5 ',8

1131 12'1 2131 22'1 3131 3231
1

1,6 1,8 2.6 2,8 2,6 2,8

1132 1232 2132 22'2 3132 3232, 2 1,7 1,9 2,8 ',0 3,5 '.8

u" 123' 21" 22" '1" '23',
2,0 2,2 ',4 ',7 4,0 4,2
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For illustration, let us review once more the conditions leading to

this proposal:

1. All magnitudes employed in a structural calculation or design are

estimates. Consequently the results of these calculations are also classed as

estimates (T and P, S).

2. Since no unbroken relationship can be established between the safety

factor and the statistical properties of the design parameters, a number of guide

values for the safety margin must depend on traditional design practice (standards).

This has been done for the value s S (1112), S (l122), S (l222) and for the basic

value S (2 ••. ) of all factors under Y 1 = 2. Reference for this are the collapse

safety regulations in SlA-Standard 162' 53).

In designing for shear (Y 1 = 3) no such reference can be cited, since

this can be carried out only with elastic methods. The numbers in this col.umn,

therefore, must be used together with the best available collapse formula as soon

as one becomes available. It has hitherto been customary to exclude the possibility

of collapse of a girder subject to high shearing stress by the use of comparatively

high safety margins. This is reasonable, since shear failure usually occurs very

suddenly (brittlely), and because it is usually possible to avoid this kind of failure <'it

small expense.

3. The supplementary factor 5' which represents the importance of

individual supporting members, should be used wherever a design detail falls into

the category of "plastic htng e " according to the other design rules, where the

function of the bearing member however demands a greater safety because its

failure would have serious consequences (6. 2).

4. Approximation of safety requirements by a graduated variation of

the safety factor does not correspond to the actual nature of the problem. Especially

in the case of parameters Y2 and Y3 the graduation may appear rather crude.

However, it was employed in order to retain clarity. It would be entirely possible

to do more justice to the conditions through a finer subdivision.

5. As the basic form of safety margin, the simple safety factor has

a number of defects, in addition to many disadvantages. From the procedural

point of view, and from formal considerations. it must be preferred to other

possibilities. This is countered by certain practical arguments, especially the

fact that it has hitherto not normally been used in the practice of reinforced

concrete design, and thus would require a certain amount of rethinking. However,

it is not the task of a technical inve stigation to determine what should be emphasized

in the discussion of such points of view, because this involves the weighing of

many different requirements, some of them of an entirely practical nature, against

each other. The question of the best system of safety coefficients must be left

open here. Another example for the choice of numerical values is found in the

ICBR papers (225).
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6. EXAMPLES FOR THE USE OF THE SAFETY FACTOR

6. 1 Reinforced Concrete Section under Eccentric wad

(Example of safety verification according to 4.2; 5.)

The safety factor on a doubly reinforced concrete cross-section of rectangular­

shape is to be verified.

The data are as follows:

d = 24 cm

d t = 2cm

b = 18 cm

R = 250 kgJcm2

of = 3500 kg/ cm2

P = 40,000 kg

e = 2 ern

Fe = 7. 7 cm2 (5 x 14)

ｾ = 1. 78 0/0

Fe, ｾ for one-sided reinforcement

The cross-section is assumed to be that of a short column (neither buckling

nor plastic flow are considered here). The slight eccentricity results in Y 1 = 2.

The effective depth is greater than 18 ern, thus Y2 = 1. Suppose the column is

being used in an auditorium: then Y
4

= 3. Let the assumed load fall into class

Y3 = 2. The dimensioning case therefo:e falls into the class 2123, and hence

the safety factor according to Table 1 is S = 3.2.

Assuming a parabolic stress distribution in the concrete at ultimate

load (E
u

= 3 %0) and ideal elastic -plastic behaviour of the reinforcing steel, a

mean bearing capacity is obtained of

T = 128, 000 kg

The dimensioning expres sion is:

S = 3.2 <

and is thus satisfied.

128,000
=

40,000

Detailed calculation of the cross-sectional resistance T from the

above data was omitted here, because the details of the process are very complex.

The value of T is taken from a table. (34).

6.2 Dimensioning of a Steel Reinforced Concrete Framework

(Example of direct dimensioning)

A two-column framework is to be dimensioned so as to have a safety

margin as given in 5.4. It is completely fixed on both sides and rectangular. Its
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eros s-section is constant over the entire length (beam and columns) (Fig. 12).

Let this frame be used in a building with coefficients Y4 = 3, Y 3 = 2.

Its s i ze means that Y2 = 1, as can be estimated initially.

Logical dimensioning requires that a frame be protected against any

possible type of collapse with whatever safety factor is necessary in the given

case. Y 1 therefore varies, depending on the specific dimensioning detail in

question. In order to prevent the example from becoming too lengthy, we will

omit dimensioning for shear on the assumption that this will be undertaken later.

The data of the frame are as follows:

;. = 5 m

W = 5000 kg

p = 2000 kg/m

h = .t = 5m

Initial dimensioning gives a beam depth d = 65 em and cross-section

width b = 30 em. The resulting dead weight, g = 500 kg/me

The calculation is then conducted in 2 different ways:

1. Determination of the force distribution by elastic methods and

dimensioning of cross-sections with reference to the collapse criterion.

2. Dimensioning of the frame as a whole by the mechanism method

(force distribution and dimensioning for the collapse state).

For the sake of comparison the results of a dimensioning according

to the purely elastic method under the regulations of SIA (standard 162 are also

given.

6.2. 1 Determination of the force distribution: elastic. Dimensioning

according to collapse criterion.

The elastic calculation of the force distribution is of no interest here

and therefore only the results are shown (limiting value curves) (Fig. 13).

From the limiting value curves of the nominal loads we can get the

necessary cross-sectional resistances; at every point investigated the proper

safety factors are assigned by which M and N must be multiplied in order to

make them exactly equal to the non cross-sectional resistance (dimensioning

condition) •

From the table of safety factors, we get S = 1. 8 for the tie beam.
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For the columns the necessary safety factor is also S = 1.8, but this

must be additionally multiplied by S' = 1.4 in accordance with (5.4. 5), so that

the ultimate safety factor of the column is given by

SI = 1. 8 1. 4 = 2.5

For each eros s-section it must additionally be shown that it will not

behave in a brittle manner (1.1 ｾ 0.8 • I.1Gr)' since otherwise it would fall within

the class Y1 = 2 and its safety factor would have to be increased accordingly.

The structure is investigated in four sections (l, 2a, 2b, 3). The

necessary plastic moments are derived from the dimensioning condition:

M = S . M
P max

The quantitie s as signed by sections are as follows:

Section 1 2a 2b 3

M in cmt -1550 -5350 -3900 + 0
P

M+ +4000 + 400 + 300 +2700
P

Dimensioning may now be carried out with these quantities, substituting the

nominal material properties. In doing so, of course, the influence of the normal

force must also be taken into account and evidence must be given that all cross­

sections will also behave plastically under the influence of the normal force.

However, since this calculation is not involved in the manipulation of the safety

factor it shall not be presented here. Since the steel percentage must not in

any event exceed 1.25 %, the condition is immediately satisfied everywhere.

6.2.2 Dimensioning by the mechanism method

For calculation and dimensioning (the two here are more or less

carried out as a single process) by the mechanism method we assume that

other kinds of failure (fracture of cross-section due to shear, etcv ) are not

pos sible, in the same sense as in 6.2. 1. There are then three kinds of collapse

("independent mechanism SU or "independent kinematic chains ", Figures

14-16). They are distinguished by the position of the hinges, and a special

distinction must also be made between whether the hinges in the corners of the

frame develop in the region of a column or in the region of the tie beams.

However, by suitable designing it can easily be assured that they will lie with

high probability within the tie beam; hence no further consideration will be

given of this point.

According to 5.4. 5 the beam mechanism of Fig. 14 requires a safety

factor 51 = 1.8.
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The other two mechanisms, according to 5.4.5., must be secured

with a total factor of 52 = 1.8 • 1.4 = 2. 5, similar to the calculation in 6.2. 1. ,

where again it is assumed that no brittle places will be found in the hinged region.

The difference between mechanism 1 t on the one hand, and 2 and 3 on the

other, may not appear very important in this simple, two-column frame. Mechanism

1 is an example of a purely local collapse, while the other two involve the entire

structure. Failure of the tie beam alone endangers only the space directly below

the beam; a collapse at one side, however, affects the actual region outside the

structure. This essential difference is much more obvious in multi-column frames

several storeys high, where a lateral displacement mechanism can result in collapse

of an entire building, whereas a beam mechanism is always locally restricted.

Mechanism 3 shows one peculiarity. Theoretically the hinge in the beam

does not occur in the middle of a frame. Its position depends on the resistance of the

othe r hinge s (X = S. .t).

For dimensioning purposes it is convenient to apply the safety factor to the

load, which is being inve stigated at the time (g + P, g + W, e tc , },

Now, we formulate the three equations between internal and external work

according to the principle of virtual displacement. For the three mechanisms we

get the following relations:

(p + g) • L
2

• S 1 • r:p = (M - 2 + 2 • M+3 + M - 4) • r:p

w . .t. 5t 2 • r:p = (M - 1 + M+2 + M 4 + M +5) • cp

(77)

(78)

(w . .t + (g + p) • .t
2
• _1_) .

2-S
Sf rf"l2 • 't'

2

2-S (M+3 + M 4 ) + M +5 ) • cp (79)

Substituting a ｾ for the equal sign in each equation, we get the safety inequalitie s

of the three collapse mechanisms. In numbers they are as follows:

11, 200 s: M 2 + 2 M+ 3 + M 4

6200 s M 1 + M +2 + M - 4 + M+ 5

(80)

(81 )
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2
6200 + 15,600 •

2-S
:<;;;M

1

2
+ 2-S

(M+ - ) +
3+ M4 +M 5 (82)

As an approxirnation the quantity S can be replaced by 1 (exact calculation will

give 0.92, which has very little effect on the inequality (82». and we obtain

three inequalities of a linear program for the values of the plastic moment:

M 1 + 2 • M+ 3 + M 4 - 11,200 ;;:: 0

6,200 ;;:: 0

- 21,800 ;;:: 0

From the symmetry of the system and the loading (W can come from both sides)

we get the relations:

-M ::: M
1 5

- -
M ::: M

2 4

The inequalities can thus be simplified to:

2 • M 2 + 2 • M+ 3 - 11, 200 ;;:: 0

From the linear program, therefore, five unknowns must be determined. So that

in the course of optimization none of the quantities become negative or receive

too great a value which would be unattainable in the design (brittle cross-sections

with high steel percentage), lower and higher bounds must be introduced.

M+ - 1000 ;;:: 0
1

M - 1 - 3000 ｾ 0

- M+ + 4000 ;;:: 0
1
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- M+ + 1000 ｾ 0
2

M 2 - 3000 ｾ 0

M+ - 2000 ｾ 0
3

- M + 6000 ｾ 0
2

- M+ + 4000 ｾ 0
3

To this we add a goal function, representing more or less the relative costs

resulting from the reinforcement of the different cross-sections:

4 • M +1 + 3 • M 1 + 4 • M + + 7 • M - + 6 • M + = z
223

Table 2 - Linear Program for M

--------------p

M+ M
l

M+ M-
2

+

1 2 M 3 1

£1 0 0 0 +2 +2 - 11..200

f
2

+1 +1 +1 +1 0 - 6200

f
3

+1 +1 0 +2 +2 - 21,800

f
4

+1 0 0 0 0 - 1000

f
5

0 +1 0 0 0 - 3000

f
6

0 0 +1 0 0 - 500

f
7

0 0 0 +1 0 - 3000

f
8

0 0 0 0 +1 - 2000

f
9

-1 0 0 0 0 + 4000

flO 0 -1 0 0 0 + 1500

f 11 0 0 -1 0 0 +' 1000

£12 0 0 0 -1 0 + 6000

£13 0 0 0 0 -1 + 4000

z +4 +3 +4 +7 +6 0
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The entire linear program has the form of Table 2. Its solution is:

M+ = 3500 cmt
1

-
M = 1500 cmt

1

M+ = 0
2

-
4900 cmtM =2

M+ = 3500 cmt
3

Checking the plasticity conditions (principle of virtual displacements) gives:

f
1

= 2 • M - + 2 • M+
2 3

= 16,700 > 11,200

= 8, 550 > 6,200

f
3

= M+ + M 1 + 2 . M + 2 . M+ ::: 21,800 = 21, 800
1 2 3

Hence they are satisfied. Substituting of f i in the first form of the plasticity

condition (80 to 82), the safety factor can be calculated for each mechanism.

The load must therefore be raised by this factor so that the structure collapses

by the collapse mechanism in question - assuming, of course, that it has not

already collapsed in some other manner. (Table 4).

As in 6.2.1. dimensioning of the individual cross-sections is

now carried out, the re sults being repre sented in Table 3.
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Table 3 - Required Reinforcement Fe

1. Calculation by II. Dimensioning by Ill. Calculation

the elastic method. the mechanism method and dimensioning

tross Section
Collapse dimensioning

by the elastic

of the cross section
method.

Fe
2 2

Fe
2

Fe
2

Fe
2

Fe
2

cm Fe ern ern cm cm ern

internal external internal external internal external

1 14.0 5.7 12.8 4.2 11.8 6.0

2a 4.0 18.0 0 19.0 4.0 17. 1

2b 4.0 17.0 0 22.8 8.8 19. 5

3 11. 1 0 16.9 0 13. 5 0

Table 4 - Safety Factors

Calculation and Mechanis:m
di:mensioning

m e thod

M n M
1. Elastic calculation.

Collapse dim.ensioning 2.15 4.5 2.3

of cross sections

ll. Di:mensioning by
2.7 4.0 2.5

the rne c han i srn :method

Ill. Calculation and

di:mensioning by elastic 2.4 5.0 2.2

lrnethods
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The :mechanis:m :method per:mits variation of the distribution

of :mo:ments (force distribution) under a given load within certain Lirrrit s ,

In this way, as shown in the exa:mple, the best arrange:ment of reinforce­

:ment can be can be sought.

The exact di:mensioning of the cross-sections, taking the nor:mal

forces into account requires an iteration process which is not taken up here

because it lies outside the scope of this work. We shall also o:mit any de:m­

onstration to the effect that no brittle places are a:mong the cross-sections

introduced as plastic joints (see 6.2. l.).

Fro:m the results (Table 3 and 4) obtained by the three different

:methods of calculation for the fra:me, the following conclusions :may be drawn

for this exa:mple:

1. The :method of plastic di:mensioning of cross-sections leads to

about the s arne consu:mption of :material as the :mechanis:m rne thod , Purely

elastic di:mensioning according to the SlA Standard calls for about 10% :more

reinforce:ment.

2. With the :mechanis:m :method it is pos sible to base the

dimensioning on the collapse progra:ms actually available. This is a funda:mental

difference fro:m the other two :methods, in which only the strength of the individual

cross-sections are investigated, without any possibility of considering the behaviour

of the system as a whole. This is expressed in the fact that in the results of the

:mechanis:m :method all safety factors are pre served for the individual :mechanis:ms.

With the other two :methods, despite a greater consu:mption of

:material, the safety factor falls below that required by :mechanis:m No.3. In

these structures, therefore, the over-all probability of collapse would be

greater (d. 3.6.). In the case of :method III (pure elastic dimensioning) the

safety factor applied to the very consequential :mechanis:m 3 is actually the

s:mallest; this :means that if the structure should fail it would in all probability

collapse in this way. This constitutes a serious objection to designing with

elastic :methods. The extent to which it applies apart fro:m this particular

exa:mple, of course, is still an open question.

3. Com.plete agree:ment of safety factors with all three

di:mensioning methods cannot, of course, be attained, even when special

instructions are drawn up for each rne thod , The proof of this state:ment is as

follows:

In the purely elastic and the "eIastic -pla stic" :methods t he force

distribution is fixed. In the :mechanis:m :method, however, it can be freely

varied, within certain li:mits (for the collapse condition). The relationship

between the various safety factors depends directly, however, on the force
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distribution (80 et seq). Now, if the force distribution has been determined

by different m.ethods the safety factors will be different for the different

results. Thus, the designer has to be content with an approximate agreement.

The remarks about the safety factors of the different collapse

mechanisms (commentary to Table 4) appears trite when seen in the light

of the conventional view that the value s of a structural calculation are fixed

quantities. However, if we drop this assumption and consider the cross­

sectional strength values in particular, as statistical variables, then the

program of collapse of a structure is no longer obvious. If the safety factors

applied to two mechanisms differ very little, as for example those of mechanisms

1 and 3, then there will be a probability of collapse of the same order of magnitude

for both types. It is therefore entirely possible that the frame (e. g. with the

dimensions of method I), although it shows a smaller safety factor than me chani sm

1, rn a y nevertheless collapse through lateral displacement - because the beam, say,

was made somewhat stronger and the legs somewhat weaker than prescribed.

This is an important consequence drawn from the statistical view of

structural de sign. It leads - as in the case of method II (mechanism method) to

a new interpretation of safety. Instead of a standard criterion (cracks, deformations,

plastic yielding of a cross-section, e tc , }, which we guard against with an equally

standardized safety factor, we can now consider various possibilities of the potential

course of an accident, side by side, and provide a different Ieve l of assurance

a.gainst each, depending on the relative risks.

7. SUMMARY, CONCLUSIONS

The problem of safety in the designing of structures can be regarded

fundamentally as a kind of prognosis. That is to say, if we succeed in arriving

at conclusions about the properties of a specific structure that is still to be built,

from the abundant and complex information available from research and from

existing structures, then a solution to the safety problem has been solved.

In order to arrive at such a conclusion, then the reference data and

propertie s on which it re sts - in this case the totality of the structures - must

be known as much as possible. Now, this is a condition which is only partially

satisfied as far as structures are concerned. Apart from certain specific

information about some of the properties (parameters) often only a number of

uncertain estimates are available which relate not to individual parameters, but

to quantities which are themselves complex functions of several properties of

the structure. In the main, we can distinguish between two kinds of information.
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1. Observations, test results and statistical estimates con­

cerning individual properties of structures. These are confined to only

some of all the parameters, namely the strength of the building materials and of

individual structural members, as well as certain kinds of loads.

2. General experience. This has to be substituted wherever no

better information is available. Experience is a form. of knowledge which cannot

be interpreted in a strictly scientific way, and must therefore be regarded as

rather inexact. On the other hand, it is the product of a very long continuing

process which embraces the observation (unsystematic, of course) of a great

many structures. For this reason a great deal of emphasis must be placed on

experience when discus sing the safety problem. It can be applied to all quantitie s

relating to construction, and e specially to safety itself: we know approximately

the number of instances of damage and accident which occur in structures, and

we possess information on their causes, and thus, from e xperIeric e we have an

estimate for the safety of structures that have been erected to date.

The results from the two kinds of information generally do not lead

to the same quantitative conclusion for the required margins of safety. They

contradict each other if indeed such a conclusion is at all permissible in view of

the great uncertainty and incompleteness of the two sources of information.

On the basis of the statistics which have been obtained for individual

safety parameters, an estimate of the expected safety can be calculated. It lies

in the order of magnitude of 1 - 10- 6 to 1 - 10-8, if we start from the distribution

functions which are normally applied to the scatter of structural properties.

F'r orn general experience, however, the probability of failure in a given structure

is about 1 - 10- 3 to 1 - 10- 5• There must be a reason for this discrepancy.

From considerations concerning the nature and origin of errors the

following supposition has been formed as an explanation: the fact that instance s

of damage are more frequent than would be expected from the random deviations

can be attributed to the occurrence of coarse errors, which generally cannot be

included in the statistics. The coarse errors, in turn, are caused by man himself,

who both as the erector and user of the structures is responsible for everything

that happens to them, apart from the purely accidental and unavoidable. More

precisely, carele s sne s s and ignorance are the direct causes of coarse errors,

and hence of most accidents. This supposition is also found in the legal attitude,

which almost always lays the blame for an accident on some person involved

either in the construction or use of the structure in question.

When we consider that a person can commit an error at any place

and in any Io rrn whatsoever, this supposition is shown to be possible. No proof

can be presented that the hypothesis applies to all cases. However, in specific

instances it is very often possible.
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If we retain this hypothesis, the question then arises whether

and to what extent the safety margins must take account of the occurrence of

coarse errors. Two replies are given to this question from two different

points of view:

1. Since neither the type nor frequency of coarse errors can

be determined beforehand, no quantitative or numerical values can be derived

from them. At present, therefore, it remains iInpossible to present any

explicit relationship between safety coefficients and errors.

2. Conversely, tolerable safety has been obtained with the

safety margins customarily applied s o far. Proof of this can be seen in the

fact that the general tendency is not towards an increase of safety coefficients

(and hence of safety itself). In other words, despite the occurrence of coarse

errors, they have been adequate, and instances of dam.age which occur from

time to tim.e are tolerated. In the course of application, therefore, a kind of

equilibrium has set in between the effects of errors (accidents, losses) and the

additional expense involved in the taking of safety measures.

Since we have no detailed information on the basis of this

equilibrium, there is no reason to undertake any wholesale changes of a

quantitative nature in the safety margins, thereby running the risk of upsetting

the equilibrium that has been attained. Of course, this conclusion doe s not

apply strictly to all individual safety coefficients, but only to a few central

guiding value s, such as the general collapse safety factor for bending in

reinforced concrete (5 = 1.8).

However, a variation of safety factor s about this guide value with

re spe ct to special, and partially new points of view can be justified. As an

example we may mention here the aspect (proportion) of consequences of an

accident, i , e. the consequence s which would result from the failure of the structure

for its contents and surroundings: it is one thing if a subordinate structural part

should collapse on stored goods of low value, and something else again if the

collapse of a whole building endangers the lives of many people.

Another aspect of the safety problem can be summed up in the

que stion of what form a system of safety margins must take in order to do

complete justice, as far as possible, to all requirements of a practical and

theoretical kind. The most important of the se are as follows:

1. By means of a clear, codified variation, the safety margins

must rnake allowance for the conditions of a specific structure. This means that

the required safety coefficients for each design case should be obtainable in a

simple manner from a compilation.
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2. The relationship between the intent of the safety concept

and the corresponding comparative value (safety m.argins) rnu st be sim.ple,

and as far as possible, reconstructable.

3. The safety coefficients m.ust be sim.ple enough to handle

so that their use doe s not com.plicate the problem.s of structural theory

significantly, and their true form. is not distorted.

4. The safety m.argins rnust be based on a m.eaningful

criterion of dam.age, e. g. the generally accepted criterion of failure (when

the structure be c orne s unstable). Basically, we can say that the eventuality

against which we wish to guard with the safety m.argin m.ust be explicitely

repre sented in the structural calculation.

5. The application of safety m.argins cannot be confined

to a specific theory, as is the case, for exarnple , for the perm.issible

stresses, which are applied on the basis of the elastic theory.

It is not possible to observe all sides of these principles

completely at the s arne time, since to some extent they are contradictory.

The solution, a system of safety coefficients, must therefore be the result

of an optimization process, cornparable more or less to the problem.s of

calculating compensations, although here, of course, neither algebraic

nor numerical quantities can be used and it is necessary primarily to weigh

procedural and practical, form.al and em.pirical, aspects against one another.

In all compensation proce s se s the re sult depends very strongly on the choice

of the weights which are assigned to the individual conditions. The choice of

weights, however, is a difficult one even in the s irnple problem.s of com.pensation

calculation. Nor can any suggested solution, a system. of safety factors (section 5),

cl a irn to be the be st and only one. In other words, if the em.phasis is shifted,

another rn.e thod m.ay ve ry wel.l appear to be better. For exam.ple, in the m ore

recent standards of the USA and USSR(54, 55), combined m.aterial and load factors

have been introduced. This contradicts certain form.al argum.ents, but satisfies

certain other practical ones better.

The numerical suggestion for variation of the safety coefficients,

(Table 1, safety factors) is based, briefly, on the following consideration:

For the quantitative principle (guide values) overwhelm.ing weight

is assigned to the experience of building practice with the safety regulations that

have hitherto applied. Thus, Y l = 1 or 2 and Y3 = 1 or 2, are categories em.brac­

ing the most frequent structures, and have therefore been assigned the custom.ary

collapse safety factors. As far as possible, they have been taken directly from.

SIA Standard 162 or have been converted with reference to typical exam.ples from.

the system. of allowable stresses.
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For the variation of the safety rna r g i n s according to various

different, and in SOITle cases new, par am.e te r s ("variables tt ) special

points of view have increasingly been taken into account. Of course,

in these cases one has to be satisfied with s irnple e s tirriate s as long

as reliable structural observations r erna in inaccessible. In this sense,

in order to d e rn on s t r ate the principle, the nurne r i c al values have also

been varied for case s which were not specially qualified in the previous

building standards, a n d for which, in s orn e case s , adequate principle s

of calculation were not available: Y 1 = 3, Y3 = 3, Y 4 = 1, 2, 3.

The se should be regarded as e xa.rnp l e s ; for each nurne r i c a.l value we

cannot give specific reasons which are independent of the other values.

This could not be done, of course, even for the safety regulations in

force today, all of which are based on the ltequilibriuITln attained through

long experience. The given nurne r i c a.I values, rn.o r e o ve r , have been

subdivided only a little in order to retain clarity; neither f o rrna.IIy nor

quantitatively, could they provide the basis for drafting a new standard.

The a irn of the investigation has rather been to clarify the

structure and to delineate the principal que stions that go to rna ke up the

safety problem, using the available arguments and a few exarnple s , This

is an i.rrrpor t.arit condition for constructing safety regulations on a foundation

which includes all the i nfo r m at ion available to us today and that we rna y

acquire in future. More precisely, conditions must be created whereby

we may progress step by step f r orn purely tlintuitive lt safety rna.r g in s to

ones that have a scientific basis. No doubt it will always be necessary to

employ simple e s t'irnate s to considerable extent; however, they rnust not

r e rna in the sole basis.

For some years attempts have been repeatedly rna d e to relate

quantitati ve aspects of the safety problern with statistical data via

individual structural p r ope r ti.e sj ZL, 22, 23,24,25, 27, 212, 2l5-?17).

The fact that no real success has been gained in this is due to a nurnb e r

of circumstances, including a lack of sufficiently reliable statistical

information concerning all the pa r arne te r s , Secondly, many properties

or functions of structures depend directly on how people ernpl.oy them

(manufacturers, users). They are consequently non-random values and

thus cannot be the subject of statistical investigation and calculation. If

they are nevertheless treated by such rne t hod s , erroneous conclusions are

often arrived at.

Statistical information, therefore, no matter how valuable it may

be in itself, must be handled with due caution. In the present work the

author has tried to indicate to what extent and in what form the presently

available statistical information can be employed for the determ.ination of

safety coefficients.
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8. APPENDIX. SPECIAL PROBLEM

8. 1. Observations on Building with Prefabricated Elements.

Up to and including the suggested solution in section 5 we have been

discussing the safety problem as it applies to the conventional methods of con­

struction in poured-in-place concrete.

Structures are increasingly being erected from prefabricated parts.

We are not concerned here with the technical advantages and disadvantages of

these new methods, but only with the special aspects of the safety problem which

arise from them.

The problems of prefabricated construction can be compared with

those of steel construction. In both cases slender, generally unidimensional

members are used, and the chief difficulty in construction and assembly is with

the connections. In steel construction, also, a number of very serious accidents

happened before sufficient attention was given to these problems(26).

In section 4. 1. we listed the four principal groups of structural

properties:

strength

geometry

load

foundation soil. joints, connections.

Let us compare the uncertainties which arise in these four fundamental

parameters for the two methods of "poured-in-place conc r e te " and ltprefabricationlt•

This leads more or less to the following conclusions and findings, which we now

discuss under the above four headings:

8.1.1 Strength properties.

Prefabricated parts are manufactured by an industrial process. It

has already been indicated above that by this means, better and more uniform

strength properties can be achieved, than is possible in poured-in-place concrete,

which is generally produced under less favourable conditions. This affects the

scatter of concrete strength values and applies both to the frequent, unavoidable

random deviations and to the coarse errors, which can be eliminated much more

effectively by the control methods applied at the factory than is possible on the

building site. Thus, it may be assumed that the bearing capacity of parts

Itc a r e fu lly rnanufac tu r ed" in a factory is more uniform than that of similar

members poured in place. As a guide value approximately vT = ± 10% may be

applied for the coefficient of variation for this quantity, a relative error that

probably cannot be reduced much more, but which, in comparison with other

sources of error may generally be regarded as negligible. For poured-in-place
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concrete, on the other hand, strength scatters of 20% and more occur.

Unfortunately, strong ernphas i s must be placed on the words

ucarefully rnanufactur ed!", since a few cases have recently arisen where

concrete e l erne nt s had greatly reduced bearing capacity because of improper

and careless rnanufactu r e , and these failed at the building site. In most cases

this was due less to the strength of the concrete than to incorrect design of

the part, but the effect was the same as if there had been a los s of strength.

Another dange r for the prefabricated element lie s in its trans­

portation to the building site. Load-bearing elements are often damaged in

the course of transportation under entirely different stress conditions, but

are nevertheless a s serribIed at the site. In many cases no serious consequences

were expe rienced with re spect to the bearing capacity of the structure as a

whole. However, this does constitute an additional source of error.

8.1.2. Geometry, diITlensions

Regarding inaccuracies in the d irnen s ion s of prefabricated parts,

the same can be said as for the strength properties. The deviations in general

are considerably less. They usually lie within the order of millimetres. For

the position of r e inf'o r c ernent a corresponding improvement rnay also be reckoned

with. Since the parts are frequently prestressed, this can easily be understood.

The prestressing wires are usually mounted and stretched in the form with the

aid of a tem.plate, so that the pouring of the concrete can scarcely move them

out of position.

With due caution, therefore, it may be stated that the bearing capacity

of prefabricated parts, as a function of material strength and dimensions, scatters

less than the bearing capacity of poured-in-place concrete. The consequences of

this fact as far as the safety problem is concerned will be discussed only later.

8.1.3 Load

Structure s consisting of prefabricated parts are used for the same

purposes and in the same places as similar parts from poured-in-place concrete.

There is no reason, therefore, to change anything in the argument of the assumed

loads.

This, however, means that the advantage which was gained owing to

the smaller scatter of the bearing capacity is much less, in the end, than might

be expected. This can be illustrated by a brief calculation. The scatter of bearing

capacity and loading for a certain structure of poured-in-place concrete is assumed

to be 15% in each case. The scatter of the safety factor, in that case, neglecting

all other errors, is:
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1

(2 • 15
2)2.

100 = 21%

For a prefabricated part the scatter of the bearing capacity is reduced by one

half. The coefficient of variation of the safety factor is then:

1

vs = (8 2 + 152)2 • 100 = 17%

The reason that the reduction of error is so small, lies in the form of the "law

of propogation of e r r o r s!",

For the coarse errors, similar considerations apply. However the

reduction is somewhat greater here, by the amounts of the errors which can be

eliminated by the improved industrial control measure s ,

8.1.4 Joints, connections

Prefabricated parts are usually joined together and to the re st of the

structure at the building site. This has been found to be the weak point of the

entire prefabricated method of construction. The joints are made of a different

rnate r ia.l than the parts themselves - generally poured-in-place concrete.

For reasons of economy prefabricated parts are usually constructed

with very strong concrete. However, the tying elements are usually made of

poured-in-p1ace concrete, which owing to the conditions at the site cannot possibly

be produced with the same high strength, so that there are always places in the

structure which are "less strong", and also behave in a less uniformly strong

manner, than the prefabricated parts. Frequently, for reasons of assembly,

the tying pieces are situated at places of very high stress (nodal points, corners,

et c , }, so that frequently the high strength of the structural parts cannot be fully

exploited.

Another consequence is that special attention has to be given to the

joints, so that these will actually be capable of transmitting the forces to which

they are subjected. This applies particularly to large and multi-membered

building constructions. Frequent accidents of assembly have shown that in the

partially assem.bled structures conditions may occur in which it has too few

joints which are already functioning. Joint locations which are rigid in the final

structure and which can transmit all six generalized force s, are not yet completely

interconnected and offer no resistance to displacement in one direction or another.

The structure can then become a kinematic system offering little or no resistance

to certain motions and can thus be set in motion by small erection forces. This

has to be prevented during the planning of the assembly process and is one of the

dutie s of the construction engineer, who is required to ascertain whether or not

the structure may become even slightly unstable during any stage in the construction.
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The same applies to the finished construction. In this case

a force transmission does not usually disappear altogether, as may happen

during erection, but may be exhausted sooner than expected. Under extreme

forces (especially wind), exhaustion of ties may even occur before the structural

element has c orne anywhere near being loaded to its bearing capacity.

It follows from what has just been said that new problems arise with

the use of prefabricated parts and construction. For the present, at least, there

is no long experience to fall back on. On the basis of the principles by which

safety margins are established, therefore, it is too early to formulate such

margins for construction with prefabricated parts. Until this can be done,

the old regulations must be applied as far as possible. Additions and modifications

must corne gradually from investigations and experience.

8.2. Combined Stresses withDifferent Sign.

As an illustration of the problem we shall begin with a simple example.

It is required to determine the dimensions of a simple reinforced concrete beam.

Three different loads are given (design value and scatter):

fixed load g :: 800 kg/m

snow p :: 1400 kg/m

wind (suction) w:: -700 kg/m

The beam data are as follows:

span t= 6 m

cross section d :: 50 cm

b = 25 ern

:: ± 0

v p =- ± 10%

v :: ± 10%w

Let the beam be secured adequately against uplift at its support, so that no more

consideration need be given to the construction of the bearing.

We calculate (with the de sign value s) the maximum positive and negative

(or minimum positive) moment at the centre of the beam:

+ (g + p) . 1
2

M :: :: + 1000 cmt
max 8

M+ (g + w) • 1
2

50:: :: + cmt
rn iri 8
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As a re sult of the dimensioning the lower reinforcement in mid- span is

determined. It is calculated from the maximum positive moment at mid­

span and comes to:

Fe = 11.6
2

ern

with 0b = 110 kg} ern
2

and 0e = 2000 kg/cm
2

According to SIA Standard 162 no upper reinforcement is required,

since no negative moments arise from the registered load.

For the sake of simplicity we hereinafter consider the strength

and geometry value s to be exact, i , e. there is no scatter in the bearing

capacity. The only place where deviations may be expected, accordingly,

is in the assumed load. For all three kinds of load let the normal distribution

apply. This, of course, is a rough approximation; however, nothing will be

substantially changed in the result of the consideration.

We compute the variation coefficient of the stresses:

p

v(M ) = ± v . = ± 6.4%
max p g + P

w
v(M ) = ± Vw

. = ± 70%
min g + w

The standard deviations in these quantities are:

a (M ) = M • v(M ) = ± 64 cmt
max max max

a (M . ) = M . • v(M .) = ± 35 cmt
rnm rrun rrrm

The bearing capacity for positive moment is:

M = o • F'e v h s 1-0.6 •
P F

a •
F

bh •
1840 cmt
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The safety factor against the positive moment, therefore, is:

for M S = 1. 84
max

for M .: S = 37
mIn

From here on we confine ourselves to the consideration of minimum moments,

since the safety inequality or positive moment is sufficiently well satisfied.

If we plot the probability function of the minimum moments we

realize (Fig. 17) that there is clearly an appreciable probability of negative

values also arising. This probability is represented by the hatched region

and comes to:

W(M . ｾｏＩ = F(O) = 7.6%
mIn

For negative moments, however, the value of our calculated bearing

capacity (M p) is incorrect. In reinforced concrete construction it obviously

depends on the sign of the stres s and, if we neglect the tensile strength of

the concrete - is given approximately by

For a negative moment, therefore, the safety factor also vanishes.

The hatched region therefore simultaneously represents the

probability that the safety factor is smaller than the critical value of unity.

It corresponds approximately to the probability of collapse. We can plot

the probability function of the safety factor (Fig. 18) and at S = 1 the collapse

probability intersects at approximately 7.6%. The safety is thus only 92.4%,

which is obviously quite unsatisfactory.

It may be concluded from this that caution is required in applying

the usual methods of limiting values from design values of the loading(35).

This could be formulated somewhat better as follows:

If a given stress is the sum of components of different sign stemming

from different loads, there will be discontinuity in the distribution function of the

safety factor if the stress is applied to a cross-section the strength of which

depends on the sign of the stress. If this is not taken into account. the safety

will be over-estimated.
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The example is chosen very sim.ply so that in construction practice

it would im.m.ediately be recognized that the beam m.ust also be reinforced against

negative m.om.ents. There are other cases where the play of forces is not so

clear, and the true character of the problem. is m.uch m.ore difficult to realize.

The question arises as to how a system. of safety coefficients should appear in

order to be able to m.eet such a danger autom. atically•

One pos sibility is offered in the use of m.odified load factors. as

follows:

Coefficients are applied to every load com.ponent which in their sign

correspond to the expected deviations upwards and downwards and containing the

safety m.argins of the design case in question. Every load m.ust therefore be

m.ultiplied with two different factors and m.ust be investigated for each of the two.

The m.ost unfavourable com.binations of these m.odified load com.ponents then becom.e

the basis of dim.ensioning and f r om this a kind of expanded lim.it value procedure

is obtained which we shall now carry out for the original example.

We fo rrn load factors for the maximum values of the loading components:

+
A

W
= 1.8

and for the rnirrirnurn values:

A.- -
g = 0.8 A p = 0 A w = - 0.5

These are applied to the design values of the loads. and we obtain the l'largestlt

and the ltsITlallestU stress for each load separately:

M M
ITlinm ax

g . i 1
2 • g

>...+ -g: = + 4.3 mt A = + 2.6 mtg g
8 8

p . 1,2 1 2 • p

p: )..+ = + 13.2ITlt )..- P . = 0
P

8 8

w . 1,2 w • 1
2

A
-

1. 6 rnt )..+w: = + = - 5. 7 rntw w
8 8

It rnu st be erripha s i zed he re that ItrniniITlum va.Iue l! and lmaxiITlUITl va.Iue " are

not to be taken in a statistical sense. The figures for the load factors include

all the safety m a rgins and basically, therefore, they have nothing to do with a

statistical variation of the as sum.ed load. Division into load factors is carried

out here solely in order to prevent the errors described above. Because as

was shown for the material factors in 4. 5. 1•• no algebraic relation between
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distribution functions and safety margins can be constructed as soon as

these are divided into partial factors, these load factors are merely

c ornpar at i ve values. As such they cannot be brought into agreement with

the statistical laws of safety, but can no doubt be used as an approximation

for the single safety factor.

We now calculate the extreme values of the load considering the

various load cases. In order not to calculate all variations separately, but

instead to determine the extreme values directly, the following rule concerning

the signs of the load factors to be chosen may be observed:

Let
sign Pl.i - 1) • sign (qi) = sign (Bm ax- :8)

always be satisfied, where qi is a specific load component, :\. i the corresponding

load factor, Bm ax and B the extreme values sought and the design value of the

load respectively. The case A;. = 1 is not embraced in this simple rule. This is

the case where the extreme is exactly equal to the design value, and as such

can be used in determining the stress. It is also assumed that

This rn.e an s that the design value of any load must lie between the two "ext r-erne s ",

as will generally be the case.

A few additional remarks are required on the use of the two -fold load

factors(2l4).

1. The formal difficulty which was noted in connection with the

load factors in 4. 5. is equivalent to saying that the "extreme value s " just

calculated are not true extreme values, but are comparative values used for

dimensioning purposes. This is in conflict with the principle that the true form

of the structural pr oblern should not be modified by the safety margins. This is

a serious objection. It may be illustrated as follows: because of the safety

margins which must be introduced into the load factors, we get for the calculated

UextreITle values of the dirrien s iorring" values which no longer bear any relation

to reality.

2. The advantage that is gained with the method of two-fold load

factors is that the often obscure and difficult problem of combined stresses, can

be reliably taken into account without greatly adding to the work of calculation.

3. The method assumes the superposition of the forces in the

stress. Since this is correct only for truly elastic problems of the first order

and in the broader sense for all statically determinate problems, the method

cannot be applied in this form, for example, to plastic methods of design.
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4. A s vstern of two-fold load factors would have to be

directed towards the a s surned load alone. Adrnit.tedl y one would also

have to consider variations of the other structural properties. This

can be avoided by a c orribi.nation with rnate r ia.l factors, as is already

done in SOIne places (see 4.5.2. ) where, of course, two-fold load factors

are not prescribed.
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