In situ powder x-ray diffraction, synthesis, and magnetic properties of the defect zircon structure ScVO$_{4-x}$
Shafi, Shahid P.; Kotyk, Matthew W.; Cranswick, Lachlan M. D.; Michaelis, Vladimir K.; Kroeker, Scott; Bieringer, Mario

This publication could be one of several versions: author's original, accepted manuscript or the publisher's version. / La version de cette publication peut être l'une des suivantes : la version prépublication de l'auteur, la version acceptée du manuscrit ou la version de l'éditeur.
For the publisher's version, please access the DOI link below./ Pour consulter la version de l'éditeur, utilisez le lien DOI ci-dessous.

Publisher's version / Version de l'éditeur:
https://doi.org/10.1021/ic900927j
Inorganic Chemistry, 48, 22, pp. 10553-10559, 2009-11-16

NRC Publications Record / Notice d'Archives des publications de CNRC:
https://nrc-publications.canada.ca/eng/view/object/?id=6c061040-b4f6-440e-8318-5f2e6a8fa268
https://publications-cnrc.canada.ca/fra/voir/objet/?id=6c061040-b4f6-440e-8318-5f2e6a8fa268
Access and use of this website and the material on it are subject to the Terms and Conditions set forth at https://nrc-publications.canada.ca/eng/copyright
READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site https://publications-cnrc.canada.ca/fra/droits
LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Questions? Contact the NRC Publications Archive team at PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.
In Situ Powder X-ray Diffraction, Synthesis, and Magnetic Properties of the Defect Zircon Structure ScVO$_{4-x}$

Shahid P. Shafi,† Matthew W. Kotyk,† Lachlan M. D. Cranswick,‡ Vladimir K. Michaelis,† Scott Kroeke,† and Mario Bieringer*††

†Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2, and
‡Canadian Neutron Beam Centre, National Research Council Canada, Chalk River Laboratories, Chalk River, Ontario, Canada K0J 1J0

Received May 12, 2009

We report the formation pathway of ScVO$_4$ zircon from ScVO$_{2}$ bixbyite with emphasis on the synthesis and stability of the novel intermediate defect zircon phase ScVO$_{4-x}$ (0.0 < x ≥ 0.1). The formation pathway has been investigated by means of thermogravimetric/differential thermal analysis and in situ powder X-ray diffraction. The oxidation of ScVO$_3$ to ScVO$_4$ involves two intermediates of composition ScVO$_{4.5+y}$ (0.0 ≤ y ≤ 0.22) and the novel phase ScVO$_{4-x}$ (0.0 < x ≤ 0.1). ScVO$_{4-x}$ crystallizes in the defect zircon structure in space group I$_{4}$/amd (141) with a = 6.77761(5) Å and c = 6.14045(8) Å. Oxygen defect concentrations in bulk ScVO$_{4-x}$ samples range from 0.0 < x ≤ 0.1. ScVO$_{4-x}$ is compared with the fully oxidized zircon structure ScVO$_4$ using powder X-ray diffraction, neutron diffraction, and bulk magnetic susceptibility data as well as 51Sc and 51V solid state NMR spectroscopy. ScVO$_{4-x}$ can only be obtained by oxidation of ScVO$_4$ or ScVO$_{3.5+y}$ whereas the reduction of ScVO$_4$ does not yield the novel defect structure. Mechanistic insights into the oxidative formation of ScVO$_4$ via the defect structure are presented.

1. Introduction

Rare earth orthovanadates of compositions AVO$_4$ with pentavalent vanadium and AVO$_3$ with trivalent vanadium have been extensively studied due to their interesting magnetic, optical, and electronic properties along with potential applications in secondary lithium ion batteries and photocatalysis. We are primarily interested in vanadate redox chemistry with compounds of composition AVO$_x$, where vanadium is the only paramagnetic cation in oxidation states V$^{3+}$ (d2 ions → $S=1$) and V$^{4+}$ (d3 ions → $S=1/2$) in the presence of a trivalent diamagnetic A-cation. The solid state oxidation pathway of AVO$_3$ (A = rare-earth or rare-earth like) bixbyite to AVO$_4$ zircon is of particular interest because of the structural relations between oxidation intermediates and the parent AVO$_3$ and AVO$_4$ phases. The AVO$_3$ structure types are primarily determined by the A$^{3+}$ cation sizes. Lu$^{3+}$ is the smallest known A$^{3+}$ cation capable of forming a stable AVO$_3$ perovskite structure whereas smaller A$^{3+}$ cations such as Sc$^{3+}$ and In$^{3+}$ form bixbyite phases with A$^{3+}$ and V$^{5+}$ disorder on the two available octahedral cation sites. AVO$_4$ (where A = Lu−Lu, Sc, Y) compounds are isomorphous with the tetragonal zircon phase, ZrSiO$_4$ (space group I$_{4}$/amd). In zircon type ScVO$_4$, each Sc ion is coordinated to eight oxygen atoms in a dodecahedral fashion, and the vanadium ion is coordinated to four oxide ions forming VO$_4$ tetrahedra. The AVO$_4$ series has been investigated especially for their magnetic, luminescent, and photocatalytic properties. The unit cell volumes of the AVO$_4$ phases scale with the A$^{3+}$ cation sizes. Furthermore, a systematic decrease of the V−O...

References:

distances with decreasing A\(^{3+}\) cation size has been reported for the zircon phases.\(^{14}\) At pressures of a few kilobars and temperatures less than 600 °C the zircon type vanadates transform to the denser scheelite structures, making them suitable candidates for the investigation of polymorphism among \(\text{ABO}_3\)-type compounds.\(^{14}\) Previous investigations of \(\text{AVO}_3\) bixbyite oxidations reported the occurrence of \(\text{AVO}_{3.5+y}\) \((0.00 \leq y \leq 0.22)\) intermediate phases during topoatomic reactions.\(^{10,15}\) In contrast, the corresponding perovskites undergo oxidation to the zircon type products with no observable intermediate phases.\(^{15}\) Intrigued by the presence of the oxidation intermediate \(\text{ScVO}_{3.5+y}\), during \(\text{ScVO}_3\) oxidation we decided to investigate this process further using in situ diffraction and thermal analytical methods. In situ techniques are particularly suitable for the detailed understanding of solid state reaction pathways. Frequently ex situ investigations cannot provide equivalent information and are prone to missing significant intermediates. Using in situ methods we can prove the occurrence of intermediates which are subsequently prepared as bulk samples after optimization of the preparative methods. Only very few defect zircon structures such as \(\text{RE}_2\text{O}_9\text{CrO}_3\) \((\text{RE} = \text{Gd, Yb, Y})\)\(^{16}\) have been reported and those are limited to simultaneous A-cation and anion deficiencies; that is, the B-cation oxidation state is unaltered. Anion deficient structures contain only partially occupied energetically equivalent oxygen-ion lattice sites, which are required for good oxide-ion conductivity. These materials find practical applications as solid state ion conductors in solid oxide fuel cells (SOFC) and solid oxide electrolyser cells (SOEC).

There are only four distinct compounds, namely, \(\text{Sc}_2\text{VO}_5\), \(\text{ScVO}_4\), \(\text{ScVO}_3\), and \(\text{ScVO}_{3.5+y}\) \((0.00 \leq y \leq 0.22)\), reported so far in the scandium vanadium oxygen phase diagram. We are reporting for the first time the existence of the metastable oxidation intermediate \(\text{ScVO}_{4-y}\), which was revealed by in situ powder X-ray diffraction and simultaneous TGA/DTA experiments. It is important to note that the oxidation from \(\text{AVO}_{3.5+y}\) \((0.00 \leq y \leq 0.22)\) to \(\text{AVO}_3\) is not topoatomic or starting material dependent and involves complete reconstruction of the crystal lattice. The cation disordered bixbyite structures are built from oxygen bridged cation–oxygen octahedra, whereas the zircon structure consists of isolated vanadium–oxygen tetrahedra. The oxygen deficient \(\text{ScVO}_{4-y}\) zircon structure has been synthesized via low temperature oxidation of \(\text{ScVO}_{3.5+y}\) \((0.00 \leq y \leq 0.22)\). \(\text{ScVO}_3\) crystallizes in space group \(I4/mmd\) \((141)\) and maintains the tetragonal zircon structure with disordered oxide defects.

2. Experimental Section

Bulk samples were prepared via a four-step solid state reaction synthesis. All materials were ground in acetone using an agate mortar and pestle. Polycrystalline \(\text{ScVO}_4\) was synthesized from stoichiometric amounts of \(\text{Sc}_2\text{O}_3\) \((\text{Alfa Aesar: 99.99%})\) and \(\text{NH}_4\text{VO}_3\) \((\text{Cerac: 99.9%})\) in air at 1000 °C for 12 h with one intermediate grinding, eq 1

\[
\text{Sc}_2\text{O}_3 + 2\text{NH}_4\text{VO}_3 \rightarrow 2\text{ScVO}_4 + 2\text{NH}_3 + \text{H}_2\text{O} \quad (1)
\]

No impurities or traces of starting materials were observed by powder X-ray diffraction. The polycrystalline \(\text{ScVO}_4\) was then reduced in a \(\text{CO}/\text{Ar}\) \((1:3\) volume ratio) flow at 600 °C for 12 h, eq 2

\[
\text{ScVO}_4 + \text{CO} \rightarrow \text{ScVO}_3 + \text{CO}_2 \quad (2)
\]

The phase pure \(\text{ScVO}_3\) was then oxidized topotactically in air at 300 °C for 4 h according to eq 3

\[
4\text{ScVO}_3 + (1 + 2y)\text{O}_2 \rightarrow 4\text{ScVO}_{3.5+y} \quad (3)
\]

\(\text{ScVO}_{3.5+y}\) was partially oxidized to \(\text{ScVO}_{4-y}\) at 500 °C for 12 h in flowing \(\text{O}_2\), eq 4

\[
4\text{ScVO}_{3.5+y} + (1 - 2y - 2x)\text{O}_2 \rightarrow 4\text{ScVO}_{4-x} \quad (4)
\]

Fully oxidized \(\text{ScVO}_4\) powder was prepared directly from \(\text{ScVO}_3\) in oxygen flow at 1100 °C, eq 5

\[
2\text{ScVO}_3 + \text{O}_2 \rightarrow 2\text{ScVO}_4 \quad (5)
\]

All polycrystalline products were identified with a Bragg-Brentano powder X-ray diffractometer (PANalytical X’Pert Pro, diffractometer radius = 240 mm) using Cu K\(\alpha\), \(\text{radiation}\) \((\lambda = 1.54098\ \text{Å}, 1.544426\ \text{Å})\) equipped with a diffracted beam Ni-filter and an X’Celerator detector. Room temperature data sets were collected in the 2\(\theta\) range 10° to 90° in 0.0083° steps using a zero background quartz sample holder. All diffractograms were analyzed by the Rietveld method using GSAS.\(^{19}\)

In situ powder X-ray diffraction experiments were carried out on the same diffractometer using an Anton Paar HTK-2000 high temperature attachment equipped with a platinum strip heater. The 20 min diffractograms were recorded for the angular range 2\(\theta\) = 8° to 79° using 0.0167° steps. Samples were mounted as thin layers from acetone slurries and heated in oxygen flow from 30 °C to 1000 °C at 10 °C increments. The in situ reduction of \(\text{ScVO}_4\) in CO/He \((1.2\) volume ratio) flow was carried out in 20 °C increments from 20 °C to 900 °C. The temperature of the furnace is accurate within at least 5°C between room temperature and 1200 °C.

Powder neutron diffraction data were collected on the medium resolution 800 wire diffractometer C2 operated by the National Research Council Canada at Chalk River at room temperature.\(^{17,18}\) Diffractograms were measured using a cylindrical vanadium sample container and neutron wavelengths \(\lambda = 2.37043(5)\ \text{Å} (5° \leq 2\theta \leq 85°)\) and \(\lambda = 1.33003(2)\ \text{Å} (35° \leq 2\theta \leq 115°)\) at 0.05° increments. Rietveld refinements against powder X-ray and two powder neutron data sets were performed with GSAS.\(^{19}\) The two neutron wavelengths were refined during the three histogram refinements.

Simultaneous thermogravimetric analysis (TGA) and differential thermal analysis (DTA) experiments were conducted with a Linseis L81 thermobalance. Polycrystalline samples were either fully oxidized in \(\text{O}_2\) or fully reduced in \(\text{CO}/\text{Ar}\) with a linear heating rate of 25 °C/min from 25 °C to 1200 °C. All experiments were corrected for buoyancy and were conducted in alumina crucibles with \(\text{Al}_2\text{O}_3\) powder (similar mass as the sample) as the reference. All products were identified by powder X-ray diffraction.

3. Results and Discussion

a. Oxidation Pathway of ScVO₃. ScVO₃ crystallizes in the cubic bixbyite structure, space group Ia₃ (206) with scandium/vanadium disorder on the 8h and 24d sites. In situ powder X-ray diffraction experiments, Figure 1, and simultaneous thermogravimetric/differential thermal analysis (TGA/DTA) data, Figure 2, of ScVO₃ oxidation in oxygen flow indicate that the oxidation to ScVO₅ proceeds through at least two intermediate phases. In agreement with earlier reports, the cubic bixbyite phase ScVO₃ undergoes a topochemical oxidation to the defect fluorite structure ScVO₃₋ₓ with 0 ≤ x ≤ 0.22, space group Fm3m (225). This process is evident from the contour plot of the in situ powder X-ray diffraction experiments at approximately 300 °C, that is, the disappearance of the bixbyite peaks accompanied by the appearance of the defect fluorite peaks. The exothermic peak A and the associated mass gain in the TGA/DTA data in Figure 2 are in agreement with this reaction step. The defect fluorite structure, ScVO₃₋ₓ, is made up from (1 - 2y)V⁴⁺ and (2y)V⁵⁺ cations, and all cations, that is, Sc³⁺, V⁴⁺, and V⁵⁺, are disordered on the 4a site. At approximately 450 °C the fluorite structure disappears, and a tetragonal phase consistent with space group I4₁/amd similar to the zircon structure ScVO₄ is observed in the in situ X-ray diffraction experiment, Figure 1. The exotherm B and the associated mass gain in this temperature range in Figure 2 agree with this oxidation step. The apparent sudden shift (ΔT = 10 °C, ΔT = 20 min) of the tetragonal peaks towards lower diffraction angles with no evidence of a space group change at 570 °C indicates unit cell expansion. In fact, the peaks show significant sharpening while shifting toward lower diffraction angles. We propose that the intermediate observed between 450 °C and 570 °C is an oxygen defect zircon structure which undergoes full oxidation to ScVO₄ at 570 °C in oxygen. A mass gain of 0.54% (TGA) and a broad exothermic peak C (DTA) between 500 °C and 750 °C in Figure 2 support this additional oxygen uptake during the final reaction step. Note that this transition occurs over a broad temperature range during fast heating in the TGA/DTA experiment while a narrow temperature range is observed for slow heating during the in situ powder X-ray diffraction studies. Notably the diffusion peaks of the defect fluorite and the defect zircon structures are significantly broader than those for the bixbyite starting material and the final zircon structure. This peak broadening is associated with the presence of defects and the resulting limited crystallinity of these polycrystalline phases. In summary the thermogravimetric/differential thermal analysis (TGA/DTA) data and in situ powder X-ray diffraction data suggest that oxidation of ScVO₃ follows the sequence ScVO₃ → ScVO₃₋ₓ → ScVO₄₋ₓ → ScVO₄. The total mass gain during oxidation indicates that the starting material was ScVO₃₋ₓ and the third oxidation step with 0.54% mass gain suggests that the oxygen stoichiometry of the intermediate zircon defect structure is ScVO₃₋ₓ.
b. ScVO$_{4-x}$ Bulk Sample. Phase pure bulk samples of ScVO$_{4-x}$ were obtained from single phase ScVO$_{3.5+y}$ starting materials. It is noteworthy that samples prepared directly from ScVO$_3$ resulted in impure products containing ScVO$_{3.5+y}$. ScVO$_{3.5+y}$ is a black powder, ScVO$_{4-x}$ is yellowish-brown, and ScVO$_3$ is cream colored: the contrasting sample colors are shown in Figure 3. The oxygen stoichiometry of the oxygen defect bulk sample was confirmed to be ScVO$_{3.94(2)}$ using TGA under oxidizing (ScVO$_{4-x}$ + $\frac{x}{2}$O$_2$ \rightarrow ScVO$_4$) and reducing (ScVO$_{4-x}$ + (1 - x)CO \rightarrow ScVO$_3$ + (1 - x)CO$_2$) conditions and was compared with fully oxidized ScVO$_4$ with no oxygen uptake during oxidation and an oxygen stoichiometry of ScVO$_{3.99(1)}$ as determined during reduction.

Table 1. Structural Parameters, Bond Angles, and Average Bond Distances for ScVO$_{4-x}$ Zircon Defect Phase (space group: I$_4$/amd) As Obtained from Rietveld Refinements against Two Neutron and One X-ray Diffraction Pattern Measured at Room Temperaturea

<table>
<thead>
<tr>
<th>T (K)</th>
<th>unit cell a (Å)</th>
<th>c (Å)</th>
<th>V (Å3)</th>
<th>$U_i/U_e \times 100$</th>
<th>χ^2: powder totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>296 K</td>
<td>6.77761 (5)</td>
<td>6.14045 (8)</td>
<td>282.067(5)</td>
<td>1.35</td>
<td>4.19</td>
</tr>
<tr>
<td>100 K</td>
<td>2.37126(5) Å</td>
<td>3.16</td>
<td>3.19</td>
<td>3.70</td>
<td>5.56</td>
</tr>
<tr>
<td>100 K</td>
<td>3.12967(2) Å</td>
<td>4.40</td>
<td>4.17</td>
<td>4.96</td>
<td>11.88</td>
</tr>
<tr>
<td>0.1 T</td>
<td>12.20</td>
<td>4.031</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

aSc$^{3+}$ is located on site 4a (0, 3/4, 1/8) and V$^{5+}$ on 4b (0, 1/4, 3/8).
structure with very reasonable bond lengths and structural parameters during the multi-histogram refinements against powder X-ray and neutron diffraction data: the Rietveld plots are shown in Figure 4. The backgrounds were fitted with a cubic spline between background points during an early stage of the refinement but were held fixed during the final refinement cycles. The tetragonal unit cell constants, all zero points and peak shape parameters for the pseudo-Voigt functions, were refined together with the atomic coordinates of oxygen and all anisotropic temperature factors. The structural details are provided in Table 1. In contrast to the earlier reported defect fluorite structures, ScVO$_{3.5}$, (0 ≤ y ≤ 0.22), the powder neutron diffraction data of ScVO$_{4-x}$ did not reveal any evidence of oxygen defect clustering.

Temperature dependent d.c. magnetic susceptibilities of the fully oxidized ScVO$_4$ sample were subtracted from magnetic susceptibilities of the ScVO$_{4-x}$ defect zircon structure. The resulting difference revealed a small paramagnetic signal consistent with small amounts of V$^{4+}$ in the otherwise diamagnetic compound. Note that ScVO$_4$ and ScVO$_{4-x}$ both showed the typical paramagnetic temperature dependence due to miniscule amounts of paramagnetic impurities in the starting materials; subtracting the fully oxidized sample data from the defect structure data eliminates the magnetic signal from the starting material impurities, and thus the remaining signal represents V$^{4+}$ paramagnetism in the defect structure, Figure 5. The deviations from the Curie fit shown in the inset of Figure 5 are most likely caused by small differences of the sample holders used for the two experiments. The d.c. magnetic susceptibility is consistent with a minimum of 3% of V$^{4+}$ in the sample.

Magic angle spinning solid state NMR spectroscopy revealed significantly broader 51V peaks for V$^{4+}$-O$_4$ tetrahedral environments in the oxide defect structure ScVO$_{4-x}$ (1110 Hz), Figure 6b, than for the fully oxidized ScVO$_4$ sample (655 Hz), Figure 6a. This broadening could be due to increased disorder in the structure or to the presence of paramagnetic centers. However, the 51V spin–lattice relaxation times (T$_1$) decreased dramatically from 25(1) s to 1.0(1) s for the defect structure, betraying the influence of paramagnetic cations. Furthermore, the absolute (mass-normalized) integrated 51V signal intensity decreased by approximately 7% from ScVO$_4$ to ScVO$_{4-x}$, supporting the reduction of V$^{5+}$ to paramagnetic V$^{4+}$ in the defect sample to form ScVO$_{3.94}$. The 45Sc solid state NMR spectrum of ScVO$_4$, Figure 6c, agrees with the data published by Kim et al.\(^{(21)}\) of 8-fold coordinated scandium in ScVO$_4$ (δ$_{iso}$ = -33(1) ppm, η = 21.6(1) MHz, η ≤ 0.05). In ScVO$_{4-x}$, the 45Sc peak broadens by approximately 9 ppm (1300 Hz) due to the proximity of paramagnetic V$^{4+}$, Figure 6d, and a corresponding reduction in relaxation times is observed.

To evaluate the reversibility of the reduction–oxidation cycle between ScVO$_4$ and ScVO$_3$ the in situ powder X-ray diffraction reduction of ScVO$_4$ in flowing CO/He was followed. During this reduction no evidence of the formation of any intermediates was observed. The reaction occurs in a single step between 650 °C and 750 °C as seen in the in situ X-ray diffraction data, Figure 7. Figure 8 shows the TGA/DTA traces during the reduction of ScVO$_4$ to ScVO$_3$ in CO/Ar with a single broad exotherm and a single step mass loss. This oxidative versus reductive hysteresis demonstrates that the ScVO$_{3.5}$ and ScVO$_{4-x}$ phases are only formed from appropriate starting materials, that is, during gentle oxidation, but that they cannot be accessed directly via reduction of ScVO$_4$ using conventional methods. This serves as evidence of a strong structure–reactivity relation in the zircon–bixbyite system. In addition to the in situ diffraction experiments ScVO$_4$ oxidation reactions were carried out at 500 °C in air and pure oxygen flow for 24 and 36 h and resulted in the partially oxidized yellow-brown ScVO$_{4-x}$ defect phase. Reduction of ScVO$_4$ in carbon monoxide at 500 °C for 24 h resulted in the formation of fully reduced black ScVO$_3$.

The three steps of the oxidative pathway from ScVO$_4$ to ScVO$_3$ can be rationalized in terms of structural similarities during the topotactic processes as well as major lattice reconstructions for the non-topotactic steps due to poorly matching ionic radii. ScVO$_4$ undergoes oxidation by means of topotactic oxygen uptake at low temperatures. The bixbyite structure is formally a largely oxygen deficient fluorite structure with 25% of ordered oxide defects. ScVO$_{3.5}$ with 0 ≤ x ≤ 0.22 is an oxygen deficient fluorite structure that can accommodate disordered oxide defects with concentrations ranging from 12.5% (ScVO$_{3.5}$) to 7% (ScVO$_{3.72}$). The large concentration of the small V$^{5+}$ cation (44%) for ScVO$_{3.72}$ destabilizes the defect fluorite structure and results in the formation of an oxygen deficient zircon structure ScVO$_{4-x}$. The reconstructive oxidative transition involves major cation reorganization. The final oxidative step follows a topotactic route such that the disordered oxide defect positions will be filled with oxide anions resulting in stoichiometric ScVO$_4$. Figure 9a shows the cation positions in bixbyite.

Shafi et al.

It is evident from Figure 9a that there are only subtle changes in the cation positions during the transition from bixbyite to the fluorite structure, thus emphasizing the topotactic nature of the reaction step. This topotactic oxidation of ScVO$_3$ to ScVO$_{3.5}$ has been reported in the past.10,15 In contrast the oxidation from the defect fluorite (ScVO$_{3.5}$) to the defect zircon structure (ScVO$_{4-x}$) requires a major lattice reconstruction. Figure 9b illustrates the relationship of the cation lattices between the fluorite and the zircon structure as observed during oxidation. The disordered Sc$^{3+}$ and V$^{5+}$ cations (green spheres) in the fluorite type structure separate into two distinct cation lattices and form two interpenetrating distorted diamond sublattices in the zircon structure. Sc$^{3+}$ = blue, V$^{5+}$ = yellow. Here we also report the oxide deficient zircon type ScVO$_{4-x}$ structure and its oxidative formation for the first time. We propose that during oxidation the defect fluorite structure collapses and that the oxide defect zircon structure is initially assembled with sufficient oxide and V$^{5+}$ concentrations to build a sustainable oxide network. During the final oxidation step the oxide vacancies in ScVO$_{4-x}$ are filled topotactically, resulting in stoichiometric ScVO$_4$. This mechanism appears to be driven by the V$^{5+}$ cation size. Pentavalent vanadium is too small to be accommodated in the fluorite structure. Notably the final oxygen uptake is a distinct step from the initial zircon network formation. This contrasts with a formation mechanism involving oxygen inhomogeneities through phase fraction changes of ScVO$_{3.5}$ and ScVO$_4$.

4. Conclusion

We have reported the synthesis, structure description, and thermal stability of the novel defect zircon phase ScVO$_{4-x}$. The oxidation of ScVO$_3$ proceeds through the topotactic formation of ScVO$_{3.5+y}$ ($0.00 \leq y \leq 0.22$) defect fluorite, followed by the occurrence of the novel ScVO$_{4-x}$ ($x \leq 0.1$) defect zircon phase, and completes with the topotactic oxidation to the ScVO$_4$ zircon phase. The structure-reactivity relationship is evident from the contrasting single step reduction of ScVO$_4$ to ScVO$_3$ with no observable intermediates. Consequently, following an appropriate route permits the formation of novel phases with variable oxidation states;
this is a significant step forward for solid state synthetic methods. The phase transition from the defect fluorite to the defect zircon structure is not driven by oxygen affinity but by the decreasing average B-cation size during oxidation. In situ methods have been crucial for the discovery of these reaction pathways and will likely provide important insights into solid state reactivity in the future.

Acknowledgment. We are grateful to NSERC of Canada for operating and infrastructure support (M.B., S.K.) and a graduate scholarship (V.K.M.). The Canada Foundation for Innovation is acknowledged for providing the NMR and XRD facilities. We thank Craig Bridges (McMaster University) for assistance with the magnetic measurements.