

NRC Publications Archive Archives des publications du CNRC

VOC and odor reduction for lignin plastic products Faye, Adrien; Saeidlou, Sajjad; Li, Hongbo; Ton That, Minh-Tan

Publisher's version / Version de l'éditeur:

PaperWeek Canada 2023, 2023-02-09

NRC Publications Archive Record / Notice des Archives des publications du CNRC : https://nrc-publications.canada.ca/eng/view/object/?id=57cd781d-1e7d-4cca-926e-5eab853bcc53 https://publications-cnrc.canada.ca/fra/voir/objet/?id=57cd781d-1e7d-4cca-926e-5eab853bcc53

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at https://nrc-publications.canada.ca/eng/copyright READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

L'accès à ce site Web et l'utilisation de son contenu sont assujettis aux conditions présentées dans le site <u>https://publications-cnrc.canada.ca/fra/droits</u> LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D'UTILISER CE SITE WEB.

Questions? Contact the NRC Publications Archive team at PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n'arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

PAPERWEEK) 20 CANADA) 23

VOC and Odor Reduction for Lignin Plastic Products

Adrien Faye, Sajjad Saeidlou, Hongbo Li and Minh Tan Ton-That National Research Council Canada

February 09, 2023

WWW.PAPERWEEK.CA

Outline

- Challenges for lignin blends in plastic applications:
 - VOC and odor issues in the plastic processing and industrial applications
- NRC solutions for VOC/odor reduction
 - Multi-level treatment approach
 - Examples
- Conclusions
- Acknowledgement

This work is undertaken with the collaboration of Canadian Forest Services

Forest bioeconomy & NRC contributions

Source: Anne-Helene Mathey, Room to grow: The forest bioeconomy in Canada, NRCan-CFS, 2019

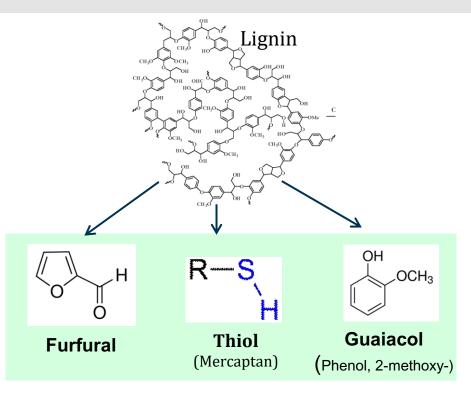
Lignin plastic blends

- Lignin is a plastic itself
- 2nd abundant renewable resource after cellulose

Lignin can be used to replace a part of plastic in plastic products

Outdoor applications

- Renewable
- Cost reduction



Indoor applicationsVOC and odor issue

VOCs and odor in lignin plastic blends

- Melt compounding lignin with plastics to form lignin plastic blends and also molding it into final plastic products are executed at elevated temperatures: <u>180 - 200 °C</u>
 - Lignin is very sensitive to thermal degradation and oxidation at such temperature thus producing VOCs (with strong odor)
 - Very limited fundamental understanding and no practical and cost-effective solution in VOC and odor removal for industrial applications

NRC strategies for VOCs and odor reduction

MULTI-LEVEL TREATMENT APPROACH

Reduce VOC/odor in raw lignin

Reduce VOC/odor during compounding of lignin/plastic blends

Reduce VOC/odor during making final products

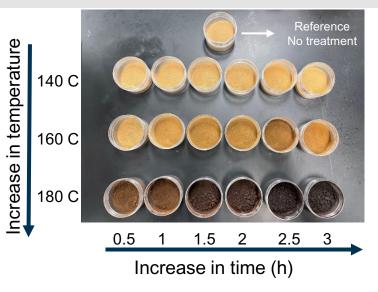
Injection molding

Profile extrusion

Film casting

Thermoforming

VOCs and odor reduction for the raw lignin *By thermal treatment under vacuum*

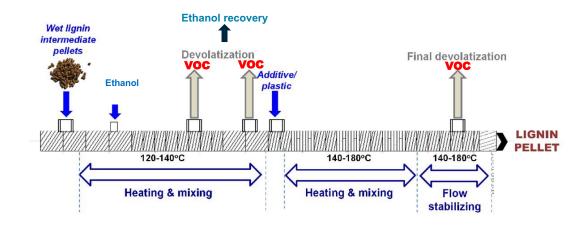


Methodology:

Heating lignin under vacuum at different temperatures for different time to remove VOCs and odor presented in lignin

Odor rating on a scale of 1 to 10:

- Inhouse smell test
- Lignin without treatment (reference) is rated 10

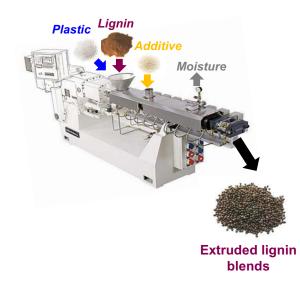


	0.5 h	1 h	1.5 h	2 h	2.5 h	3 h
140°C	10	10	9	9	7	6
160°C	10	8	7	5	4	4
180°C	6	4	2	2	1	1

Although VOCs and odors are reduced by this method, they are reproduced when process at high temperatures.

VOCs and odor removal for lignin plastics *By extrusion*

- VOC reduction by degassing during extrusion with the addition of organic solvent
 - Fine-turned NRC Patent pending technology, WO/2018/035598


- Significantly reduce VOCs in lignin : > 95%
- Reduce odor but not sufficient for in door applications → further development is required

0 0 0 7

VOCs and odor reduction for lignin plastics *By reactive extrusion*

Reduce VOC/odor for lignin plastic blends during compounding

Reactive extrusion methodology

Odor reduction

Lignin blends	Odor index #	
Without additives	54	
With additives	40-50	

Not effective because of

- Low residence time thus not permitting the complete interaction with odor molecules
- Only low concentration of reactive additives can be used due to the cost issue

Odor test

Odor Intensity	Odor index #		
No odor	0		
Negligible	0-24		
Acceptable	25-49		
Disturbing	50-74		
Unacceptable	75-99		
Unbearable	100		
	8		

Odor reduction in lignin plastic blends using polar materials

Typical VOC compositions in PP lignin blends

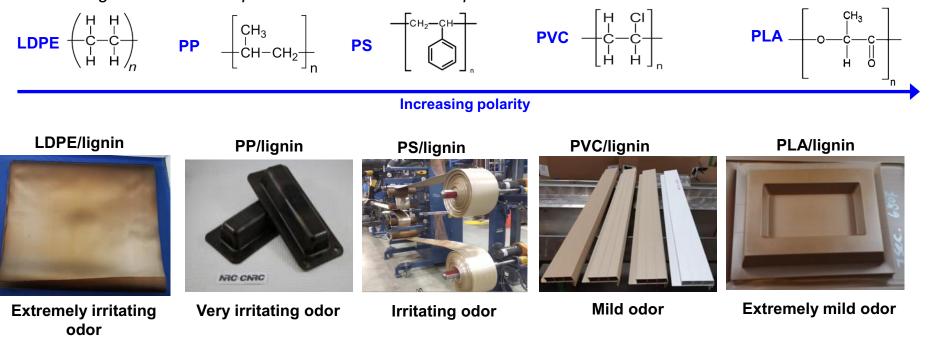
Chemical	CAS	Concentration at 50°C (ng/L)/g
Acetic acid	000064-19-7	348
Cyclotrisiloxane, hexamethyl-	000541-05-9	24
Furfural	000098-01-1	3,556
Ethanol, 2-butoxy-	000111-76-2	75
2-Furancarboxaldehyde, 5-methyl-	000620-02-0	39
Phenol	000108-95-2	10
C13 branched hydrocarbon		33
Pentanoic acid, 4-oxo-, ethyl ester	000539-88-8	67
Phenol, 2-methoxy-	000090-05-1	22
Nonanal	000124-19-6	53
Benzoic acid, ethyl ester	000093-89-0	118
Oxiniacic Acid	002398-81-4	48
Octanoic acid, ethyl ester	000106-32-1	75
Decanal	000112-31-2	29
Vanillin	000121-33-5	22
Total VOC		4,893

Observation:

All the odors are polar organic molecules, consisting of carboxylic acid, aldehyde, ketone, ester, etc.

Hypothesis:

May foreign polar molecules interact with odor molecules via hydrogen bond or strong Van der Waals bond thus reducing odor issue?


Note:

- Red color dedicated to irritating smell
- Blue color dedicated to pleasant smell

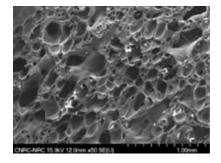
Odor reduction in lignin plastic blends using polar materials

Blend lignin with various plastics that have different polarities

Significant odor reduction as the material polarity increases !

10

VOC and odor reduction for lignin *By creating active biochar from lignin*


- Developed novel biochar from lignin for absorbing VOCs and odor in lignin plastics
 - Carbonization of lignin to produce biochar
 - Activization without harmful chemical treatment and maximization of the absorption of VOC and odor molecules
 - Execution of carbonization and activation in one equipment to reduce energy consumption and operation cost

Lignin Carbonization with/without Activation

Biochar with high porosity

VOC and odor reduction for lignin plastics *By creating active biochar from lignin*

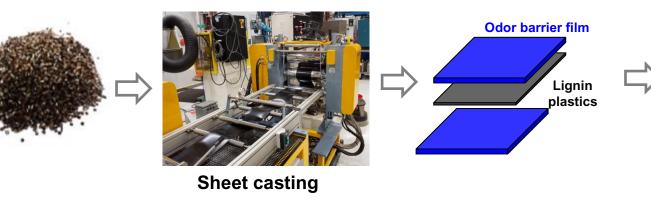
Pilot scale production: Active biochar from lignin

Carbonization and activation

VOC and odor reduction for lignin plastics *By creating active biochar from lignin*

Novel active biochar from lignin

- Effectively reduce the odor in lignin plastic products
- Promote the utilization of lignin \rightarrow increasing lignin consumption
- Reinforce stiffness and enhance thermal stability of the thermoplastics



Lignin plastic prototypes without odor

VOC and odor reduction for lignin plastics *By adding an odor barrier film*

Lignin plastic prototypes without odor using barrier layer

- Effectively reduce the odor emission from lignin plastic products
- Easily applicable to current plastic processing via co-injection or co-extrusion or compression molding

Compression Molding

Lignin PP prototype without odor

14

Summary

- NRC developed multi-level treatment approach to address VOCs and odor in lignin plastic applications:
 - Reduce VOC and odor in raw lignin
 - Vacuum heating effectively reduces odor and increases thermal stability in lignin but VOC and odor regenerate at high temperatures > 180°C
 - Reduce VOC and odor in lignin plastic blends during compounding
 - Significant VOC and odor reduction using NRC patent pending technology but it is not enough for indoor application
 - Reactive extrusion is not effective as reaction kinetics become the limiting factor
 - Lignin-based VOC absorbents are the promising and cost-effective solutions while increasing bio content in final products
 - Reduce odor in lignin plastic final products
 - Achieving almost odor free final product with post process treatment, however, additional operation is required

Acknowledgement

- Technical team:
 - Éric Cloutier and Éric Patenaude
- Project supports: Karen Stoeffler, Nathalie Legros and Milena Sejnoha

- Matthew Schacker
- Allan Ding
- Jean-François Levasseur

Thank you!

Adrien Faye, Ph.D.

Polymer Bioproducts Automotive & Surface Transportation

T 450-641-5172

Adrien.Faye@nrc-cnrc.gc.ca www.nrc-cnrc.gc.ca NRC.CANADA.CA

tional Research Conseil national de uncil Canada recherches Canada ©2023 National Research Council Canada

