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ANALYZER
ABSTRACT

The method of finite differences is used to
obtain the cutoff wavelength and the field dis-
tribution for TE mode propagation in a rectangular
waveguide with double ridges placed symmetrically
about the guide axis. Design curves for this wave-
guide, which is potentially very useful in microwave
heating and drying applications, are presented.
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FIGURES

Cross section of a rectangular waveguide with symmetrically placed double
ridges showing schematically the electric field distribution for dominant
mode TE propagation.

IMustrating extrapolation to an infinitely fine mesh size from coarse mesh
sizes for dominant mode propagation in a waveguide with b/a = % , tla = %
and g/b = 1.

Extrapolated values of the cutoff wavelength for dominant mode propagation
with b/a = % and t/a = % . Circles are experimental values.

The effect of ridge thickness on dominant mode propagation in a waveguide
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Contours of uniform longitudinal magnetic field in one quarter of the wave-
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The effect of the ridge position on the relative electric field strength on
y =0, 0<x <a/?2 for dominant mode propagation in a waveguide with
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t/fa =21 and hfa=1.
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WAVEGUIDES WITH SYMMETRICALLY PLACED DOUBLE RIDGES

— E.V. Jull, W.J. Bleackley and Margaret M. Steen —

INTRODUCTION

The introduction of ridges to a rectangular waveguide can provide a larger band-
width and a greater degree of mode separation. These features have long been exploited
in the single- and double-ridged waveguides [1, 2]. Waveguides with multiple ridges,
which apparently have not been used previously, are, in addition, capable of producing
a transversal and longitudinal field distribution suitable for microwave heating of lossy
objects within the guide or for feeding a waveguide array of slots. Uniformity in micro-
wave heating, for example, may be achieved by distributing the power density in the
guide in accordance with the shape of the object and the power absorbed by it. This
arrangement may be approximated in the waveguide described here.

A cross section of the waveguide with the electric field configuration for dominant
mode excitation is shown in Fig. 1. Double rectangular ridges placed symmetrically
about the center line of the rectangular waveguide produce an essentially uniform electric
field of the desired intensity in a region about the waveguide axis. Power absorption in a
long object placed along the guide axis can be compensated for by changing the position of
the ridges or, more conveniently, the spacing between them. In this paper design curves
for the waveguide, obtained by solving the wave equation inside the guide by the method
of finite differences, are presented. A computer program was developed which automatically
gives the cutoff wave number and cross sectional field distribution for various positions
and sizes of the waveguide ridges.
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Figure 1 Cross section of a rectangular waveguide with
symmetrically placed double ridges showing schematically the
electric field distribution for dominant mode TE propagation
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NUMERICAL SOLUTION OF THE WAVE EQUATION

It is difficult to obtain analytically the propagation characteristics of waveguides
with multiple ridges. An analysis of a ridged rectangular waveguide by transverse
resonance, for example, yields a transcendental equation for the cutoff wave number
which is awkward to solve for more than a single or double ridge [1, 2]. With the
help of an electronic computer, this difficulty can be avoided, by using instead the
more direct method of finite differences which yields, in addition to the cutoff wave
number, the field distribution in the waveguide cross section.

Finite differences solutions of the Helmholtz equation,
[ 5 +-8 + 2] s@n=0, &)
ox? ay? ¢

in a cavity resonator were described more than 20 years ago by Motz [3]. As several
authors have recently adapted the method to computer studies of waveguides [4, 5, 6, 7]
there is little value in more than a brief outline of it here. For a waveguide with
rectilinear boundaries, the cross section is subdivided most conveniently into a mesh of
square regions with side #, and the longitudinal field ¢, ) at row j and column k of the
mesh is related to that at adjacent mesh points by the dlfference equation

¢j,k+1 +¢]"‘l,k + ¢ J—-1 ¢f+1,k + [(kch)z - 4]¢],k=0 2)
obtained by approximating a Taylor’s series expansion of the Laplacian operator in (1).
Boundary conditions at conducting waveguide walls and at field symmetry planes, if they
are used, are introduced, yielding a set of simultaneous linear equations equal in number to
the field points. For dominant mode propagation the problem is then one of solving this
set for the lowest eigenvalue (k h)? (where k = 21r/7\ is the transverse wave number) and
the associated eigenvector ¢, whose components are the relative values of the longitudinal
field. Numerical techniques for this solution are well established.

The procedure used here, which has been described by Collins and Daly [4], is an
iterative one which always converges to the smallest eigenvalue and associated eigenvector
of the matrix equation

= (k)¢ 3)

whatever the trial value of (kch)2 ¢ used initially. Iteration is stopped by the computer
program when this convergence is judged to be essentially complete. The program required
for this calculation is quite simple, as a standard subroutine for inversion of the matrix 4
may be employed.
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The five-point finite difference equation (2)*was applied to the waveguide region in
x>0,y >0 of Fig. 1. For the dominant TE mode, the boundary condition ¢ = II =0,
where H is the longitudinal component of the magnetic field, was used on the ﬁeld
symmetry plane x = 0, and aHz/an = 0, where d/0n is the normal derivative at the
boundary, was used on the waveguide walls and on y = 0. Higher order modes were
examined by changing the boundary conditions on the symmetry planes along the x and y
axes.

The computer program fitted the mesh and generated the elements of the matrix from
information on the mesh size 4 and the waveguide dimensions and ridge position. It was
convenient to accommodate the entire matrix in computer storage in this process with all
mesh points within or on the waveguide boundary, as this is both necessary for matrix
inversion and desirable for storage economy. Storage space limitations, as well as the
time required for matrix inversion, restricted the number of field points which could easily
be handled to about 150 and the smallest mesh size used was h/a = 32, where a is the
broad waveguide dimension. This limited the accuracy that was directly obtainable in the
final result. Successive mesh halving was used where possible, however, and the results
were extrapolated to values approximating those for 1/a = 0. When, as here, the mesh
fitting is exact, ‘this extrapolation procedure can be very accurate, even for results obtained
from coarse meshes, as Davies and Muilwyk [5] have demonstrated.

NUMERICAL RESULTS
Dominant TE Mode Propagation Characteristics

Numerical values of the cutoff wavelength >\ /a for dominant TE mode propagation in
a symmetrically ridged rectangular waveguide w1th dimensions b/a = ‘ and ridge thickness
tla = + are shown in Table I for several values of ridge spacing s/a, gap size g/b and mesh
size h/a The values f = )\ /a for h/a = 0 were extrapolated from those computed for
£y f2, f_j, where it was possxble to fit three mesh sizes, h, » hy, h into the waveguide, as
illustrated in Fig. 2. With h,= 2h = 4h,, Richardson’s deferred approach to the limit

[9]F gives

_ K, -5
f= % @

where X = (f, - f)/(f f ). For a fixed s/a, the same value of X in (4) was assumed for
all g/b when only two mesh sizes fitted, and interpolation was used to correct the values

*Collins and Daly [4] observed that higher approximations to the Laplacian operator do not significantly
affect the final results. This observation, based on numerical results for the ridged waveguide, may have
been influenced by the reentrant comer. The five-point formula has been shown to yield results more
accurate than the nine-point formula in solving Laplace’s equation near a 90° comer [8].

tAitken’s §2 — process yielded essentially the same results.
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TABLE I

X
8

[ ] reference [1] () measured values.

g/b hfa s/a
0 0.125 0.250 0.375 0.500 0.625 0.750
0.125 1/32 4.2083 | 4.1847 | 3.8653 | 3.4323 | 2.9045 | 2.2657 | 1.5885
0 4.48 4.47 4.12 3.72 3.20 2.40 1.58
(4.60) (3.78)
0.250 1/16 3.1471 | 3.1518 | 2.9648 | 2.6924 | 2.3668 | 2.0187 | 1.6769
1/32 3.3157 | 3.3290 | 3.1235 | 2.8204 | 2.4512 | 2.0330 | 1.6581
0 3.456 3.481 3.283 3.001 2.629 2.076 1.649
[3.453]
0.375 1/32 2.8459 | 2.8618 | 2.7178 | 2.4965 | 2.2307 | 1.9505 | 1.7247
0 2.93 2.99 2.82 2.66 2.34 1.96 1.72
0.500 1/8 2.31103 2.2361 2.0353 1.8594
1/16 2.4694 | 2.4736 | 2.3779 | 2.2370 | 2.0770 | 1.9280 | 1.8047
1/32 2.5413 | 2.5526 | 2.4491 | 2.2904 | 2.1052 | 1.9235 | 1.7873
0 2.6011 | 2.620 2.5208 | 2.366 2.1649 | 1.910 1.7792
[2.604] (2.36)
0.625 1/32 2.3250 | 2.3301 | 2.2579 | 2.1520 | 2.0335 | 1.9242 | 1.8467
0 2.37 2.39 2.32 2.22 2.06 1.91 1.84
0.750 1/16 2.1188 | 2.1144 | 2.0813 | 2.0383 ([ 1.9935 | 1.9556 | 1.9293
1/32 2.1663 | 2.1652 | 2.1213 | 2.0618 | 1.9982 | 1.9422 | 1.9043
0 2.206 2.209 2.162 2.095 2.008 1.901 1.893
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Figure 2 Ilustrating extrapolation to an infinitely fine mesh
size from coarse mesh sizes for dominant mode propagation
in a waveguide with bla =

1
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when only one mesh size was used. The number of figures retained in Table I is
suggestive of the final accuracy. Numerical values for the double ridge waveguide
(s/a = 0) obtained by a different method [1] are shown in square brackets in Table I.
Some experimental values are also shown in parentheses.

The extrapolated values of Table I are shown graphically in Fig. 3, where it is evident
that a reduction in either ridge or gap spacing increases A c/a. The bump which appears in
the curves of Figs. 2 and 3 for small values of s/a is probably due to a neglect of the field
singularities at the edges of the ridges. A much finer mesh size is needed to account
adequately for these singularities.
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Figure 3 Extrapolated values of the cutoff wavelength for dominant mode

propagation with bfa = % and tfa = %. Circle§ are experimental values,
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The effect of changes in ridge thickness ¢/a on 7\C/a when g/b = %- is shown in Fig. 4.
Here the dimension s'/a is the spacing between the ridge center lines so that the smallest
values of s'/a in the curves correspond to a doubly ridged waveguide and the largest values
to a waveguide boundary in the shape of a cross. These unextrapolated values correspond
to h/a =3—‘2 and so, using values in Table I as a guide, are approximately from %% above to
7% below the correct values, the largest error occurring near the middle of the range of
s'/a. Figure 4 shows that wider ridges increase the cutoff wavelength if the ridge spacing

is small, otherwise the cutoff wavelength is decreased.
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Figure 4 The effect of ridge thickness on dominant mode propa-
gation in a waveguide with bla = 4, g/b = 1, and hfa =312.
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Figure 5 Contours of uniform longitudinal magnetic field in
one quarter'of the waveguide cross section for dominant mode
1

propagation with hfa = 5

Dominant Mode Field Distribution

The field distribution in one quarter of the waveguide cross section for dominant
mode TE propagation in a guide with b/a = 1.t = % , g/b = % and s/a = + is shown in
Fig. 5. The contours of uniform longitudinal magnetic field H, were obtained from the
field values at the intersection points of the grid ; that is, the components of the eigenvector
associated with the lowest eigenvalue in the solution of (3). The lines show the orientation
of the electric field vector inside the waveguide, and their rate of change shows its intensity.

The effect of the ridge position on the electric field distribution is of interest in
microwave drying applications. Figure 6 shows the relative electric field intensity Ey obtained
from a numerical differentiation 0H,/0x iny =0, 0 < x < g/2 for three gap spacings
between ridges of thickness t/a = %. As one would expect, ridges with small gap spacings
draw the electric field intensity away from the center of the waveguide most effectively. The
optimum ridge spacing for this appears to be about s/a = %, as ridges at the edge of the
waveguide are not very effective in controlling the field at the center.
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Figure 6 The effect of the ridge position on the relative electric

field strength on y = 0, 0 <x <a/2 for dominant mode propa-

gation in a waveguide with bja = —2-, tfa = —;- and hfa = 5’—2 .

Higher Order TE Modes

The TE mode of next higher order to the dominant mode is that for which 04 /bn
on both symmetry planes x = 0 and y = 0. This corresponds to dominant mode propa-
gation in an asymmetrically ridged waveguide for which some numerical values are already
available [2, 6]. The largest value of }\ /a occurs when the single ridge is symmetrically
located, and for a waveguide with the parameters of Fig. 3 and g/b =1, A /a for this
mode is 2.5 [2]. Evidently this waveguide provides adequate bandw1dth as indicated by
the ratio of the cutoff wavelengths of the fundamental mode to the next higher order
mode, if the ridges are not close to the waveguide edge.
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The propagation characteristics of some higher order TE modes in the waveguide are
shown in Fig. 7. The waveguide dimensions of Fig. 3 apply here and the results are for
a mesh size hja = 5-’2 For Fig. 7a the boundary condition H , = 0 on both symmetry
planes was used and for Fig. 75, sz/an = 0 was used on x = 0,and H, =0ony=0.
The electric field in the waveguide cross section is shown schematically.
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Figure 7 Cutoff wavelengths of some higher order modes

. . ) vl =1 =1
in a waveguide with bja T t/a 5 ad hfa T
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EXPERIMENTAL RESULTS

Some wavelength measurements were made at 2.45 GHz on a WR(340) waveguide
with double ridges symmetrically placed and with dimensions corresponding to those in
Fig. 3. Least accuracy is expected in the larger values of 7\c/a, whether they are obtained
numerically or from

A A
a

aVi1- /A2 (5)

in which A is the measured guide wavelength and X is the free space wavelength. The
values in Tglble I are the average of five measurements along a 15-inch ridged section, and
the vertical line through these points in Fig. 3 indicates the spread of the measured values.
The numerical results agree to within the limits of experimental error in each case, although
an accurate measurement of )\g was particularly difficult when the ridges were closely
spaced.

DISCUSSION

The solution of finite difference equations on an electronic computer now appears to
be the most direct and powerful way of dealing with propagation in a waveguide with
irregular boundaries. The iterative procedure used here to solve the resulting matrix
equation converged rapidly to the desired eigenvalue with the mixed boundary values
which were used. While possessing the advantage of simplicity, it is an inefficient
procedure in terms of computer storage space and computing time compared to, for example,
the method of successive point overrelaxation. If the method of successive overrelaxation is
used, little more than a single row of the matrix need be stored at one time, permitting a
much finer mesh to be used [5, 6].. However it is doubtful whether a finer mesh would
significantly improve the accuracy here unless the electric field singularities at the reentrant
corners are taken into account. Corner singularities can be included by the method described
by Motz [3], if a fine mesh is used, otherwise less, rather than more, accuracy may result.
This neglect of corner singularities is considered to be the limiting factor in the accuracy of
the results of Table 1 which, however, by comparison with experiment and with numerical
results obtained by others for the double ridged waveguide, are sufficiently precise for
practically all design purposes.

The principal objective here has been to investigate the propagation characteristics
and obtain design curves for a relatively simply constructed waveguide which is potentially
very useful in microwave heating or drying applications. The particular application which
has been investigated at these laboratories is an apparatus for rapid uniform cooking of
objects such as sausages located on the waveguide axis. An essential requirement is ful-
filled in the heating or drying of any object with appreciable loss in this waveguide*

*Patents have been applied for in respect of this waveguide.
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in that power absorption can be controlled by the gap spacing between the ridges.
The numerical results presented show the effects of gap spacing changes, indicate
optimum positions for the ridges and show that the waveguide has good bandwidth
features. It is hoped that they will also be useful in other applications of this wave-
guide.
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