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We comment on the spectral modification and temporal reshaping of a narrow-band light pulse propagating

through an atomic absorber that has a still narrower spectral hole. The regime of propagation narrowing is

distinguished from the regime of Beer's law.

I, INTRODUCTION

Hole burning is the term for the selective photo-
excitation of atoms or molecules in a small por-
tion of an inhomogeneously broadened optical ab-
sorption line. In this region of the line, following

the photoexcitation, there will be fewer than the
normal number of atoms or molecules in their
ground states. A subsequent narrow-band weak

probe pulse will suffer less than normal attenua-
tion if its center frequency lies within the excita-
tion region. The resulting absorption curve

mapped out by scanning the frequency of the probe
beam has a hole in it. Figure 1 shows an example.
All of this is well known.

'
In the present note we address a question that

comes up when the weak probe pulse has a spec-
tral width greater than the width of the hole, as
shown in Figure 2. This question is: What is the

temporal form of the transmitted pulse'? The un-

certainty relation 6pAz )1 suggests that b 7 in-

creases because hp decreases, but in order to
answer the question properly it turns out to be

necessary to consider the propagation of the

probe pulse through a finite depth of absorber. If
the probe pulse is weak enough to have negligible
effect on the hole, then the question can be an-
swered analytically in closed form.

II. PROPAGATION OF WEAK OPTICAL PULSES
THROUGH BROADBAND INHOMOGENEOUSLY

BROADENED ABSORBERS

In the familiar two-level-atom model for an

absorber, ' transmission and absorption of light are
governed by the equation

(s/az+ 8/act)$(t, z) = 2ni(u&/c) 6'(t, z),

where g and 6' are the complex envelopes of the

electric field strength and the atomic polarization

density. An expression for 5' involves the off-
diagonal part of the two-level atom's density

FIG. 1. A Doppler-broadened absorption line with a
homogeneously broadened hole.

FIG. 2. The initial probe pulse spectrum (shaded)
overlaid on an absorption line with a much narrower
spectral hole.
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matrix in the rotating wave approximation, averaged
over the Doppler distribution of atomic veloci-
ties:

(f'(t, z) = ted(r„(t, z; v)}„. (2)

S(t, z) = Jt e(v, z)e '"'dv/2s, (4a)

(tz)= f„p(v, ,z)e' 'du 2/w", (4b)

and find the equation

[s/sz —iv/c —if (v)+ —,
'

g(v)) e(v, z) = 0,

where f and g are the dispersive and absorptive
parts of the dipole reaction field:

(5)

Here, pf is the density of atomsand d' is the mag-
nitude of the atomic transition dipole matrix ele-
ment along the direction of the electric field vec-
tor.

If, as we assume, the electric field of the probe

pulse is too weak to alter the shape of the inhomo-

geneous line (with the hole already burned into it),
then the equation obeyed by r»(t, z; v) is simply

s2 „/st = —(P+ 2/2)r„+ (i) d g.

Here, t), = 6 (2)) is the detuning between pulse fre-
quency and the Doppler-shifted atomic resonance
frequency and P is the halfwidth of the homogeneous

component of the atomic absorption line. An

average over 6's is equivalent to an average'over
v s.

Because Eqs. (1) and (3) are linear they are
trivially solved by Fourier transform methods.
We define

linewidth is appreciably greater than 6v„we can
take g(v) = g(0) for all significant frequencies
(~ v

~

& 5v, ). Then the only significant frequency
dependence is due to the Gaussian factor that came
from the incident pulse. Thus the pulse retains
its Gaussian shape and is simply attenuated uni-

formly at all frequencies according Beer's law:

) e(v z)] —
[ g ]

-&2/~"0) (10)

All this is well known, and Crisp' has given
interesting examples showing dramatic departures
from the kind of behavior implied by (10) when

the pulse bandwidth is much greater, rather than

less, than the Doppler linewidth.

III. PROPAGATION THROUGH A SPECTRAL HOLE

With the background formulas derived in Sec. II,
it is easy to take into account a narrow hole in the

Doppler line. For simplicity we will take the

shape of the Doppler curve, as well as the hole,
to be Lorentzian. This is realistic as far as the

hole is concerned and not a bad approximation
for the Doppler curve because we will be con-
cerned only with its center portion. Another

simplication will be to take the centers of the

spectral curves of the incident pulse, the Dop-
pler line, and the hole all to coincide at v = 0, as
shown in Fig. 2. Under these conditions the

angular bracket in Eqs. (6) is to be interpreted as
an average over Doppler detuning 4 with the

normalized weight function

P* 1
P+)

)) g2+ (P 2c)2

/()=--;G~( '
), (8a)

where p* is obviously now the Doppler width. Then

we can evaluate the brackets in Eqs. (6) by explicit
integration and find

(8b)

Here, G is the primitive attenuation parameter for
the problem

G = 4 )& N d ()()/)2 c,

v/P* vlP»
1+ (~/~*)' 1+ ( /

)+ (v/))')' )+ (u/Pg)') ' (11b)

and the angular brackets denote the Doppler
average.

The solution to Eq. (5) is immediate:

e(v z} g e &./2(u/6RO) gf(R)g -)/22(v)ge vz — oe e e (8)

(9)

However, in the usual case, when the Doppler

We have assumed that the incident pulse is Gaus-
sian in time, with bandwidth 5v, and temporal
length 2 s/6v, .

The pulse Fourier energy spectrum obviously
changes with propagation:

[e(v z)~ =
[ g ( e «/ 0&'e 2-o&-

where o. is the normal Doppler absorption coeffi-
cient at line center:

n = 4s+d'e/kcP*, (12)

P*» 5vo» Ps» P .
In other words, we assume the Doppler line to
be much broader than any other spectral feature,
and the width of the incident pulse to be much

broader than the hole in the Doppler line. The

and p* and pe are the half-widths of the Dopper
line and the hole, respectively. We are principally
interested in the limits
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underlying homogeneous width is taken to be

negligibly small compared to all the other widths.

These conditions are qualitatively met by the

curves in Fig. 2.
Given relation (13), there are two distinct re-

gions of the spectrum:

(a) The region of ProPagation narrouing, where

v6 Ps.
(b) The region of Beer's Ime, where v» P„.

We have discussed region (b) briefly in Sec. II.
Region (a) is characterized by a simple appraxi-
mate expression for g(v):

8.0,-

4 0

0
—2

aZ =2.0

g(v) =~(vlPs)'.

Thus, in region (a) we have

Ie(v z)I'= I& I'

(14)

(15)

v/3 vp

FIG. 4. The spectrum of the probe pulse, as in Fig.
3, except that the normal component of absorption has
been removed.

where

5v(z) = Ps/[uz+ (Ps/5v, )']'i'.

That is, in the region of propagation narrowing
the spectrum is Gaussian but with a variable
width. Note that at of@ = 0 the width is equal to
the initial pulse width 5pp and only becomes small-
er due to propagation. The decrease can, however,
be rapid because I'e/5v, can be much less than

unity. The threshold for propagation narrowing
occurs at nz= (I'„/5v, )'.

In the region of Beer's law the spectrum is
aJ.so Gaussian, but with width 5po, independent

of nz.
To interpolate between regions (a) and (b) re-

quires the full expression (11b) for g(v). In Fig.
3 we show the full (e(v, z}(' as a function of v for
several values of az, given the ratios P*/5vo
=~ and Ps/5vo=1/10. The two distinct Gaus-
sians appropriate to spectral regions (a) and (b)
are evident. Figure 4 shows the effect of the hole

alone by plotting (e(v, z)(' without the first term
of g(v). In effect, Fig. 4 shows that the relative
importance of the hole grows with propagation,
but, as expected, only near line center. The broad
base of all of the curves is simply exp[- (v/5v, )'] ~

IV. TIME-DEPENDENT FEATURES

The exact expressions obtained in Sec. III for
(e(v, z}(', as well as the approximate relations
valid in the regions of propagation narrowing and

Beer's law, permit good qualitative estimates of

the time dependence of the transmitted pulse.
However, Ie(v, z)(' does not provide everything,
because the consequences of f (v) are not included.
In this section we present the results of numerical
computation of the Fourier transform (4a}, there-
by giving the full space-time behavior of g(t, z}.

Figure 5 shows the temporal behavior of the

transmitted pulse after propagation to ez = 2. A

clear departure from the Gaussian shape of the

l.O

l.O-

I g (t,z)l vs t

QZ =2.

0.5-

0
-2

v/S vo

FIG. 3. Me spectrum of the probe pulse (e(v, z)(2 st
a succession of propagation depths ~s =0.0, 0.5, 1.0,
and 2.0. The horizontal axis is in units of 6v().

I a ~ w ~ ~ a ~

0 20 40
3 Ppf

FIG. 5. 'Hle probe pulse intensity Ih(t, z)(t tn srb;
trary units as a function of time, after propagating two

absorption depths into the medium. The horizontal axis
is in units of (6vo)
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FIG. S. The probe pulse intensity (8(t, z)~ as a func-
tion of time at two different spatiaL positions, « =0 a«
2. The vertical axis is logarithmic, but to the same
scale as in Fig. 5, and the units of time are (6vo)

FIG. 7. The probe pulse intensity )8(t,z)(t as a func-
tion of time after propagating six absorption depths into
the medium. The vertical axis is to the same scale as
Fig. 5, and the units of time are (6po)

input pulse is evident in the trailing portions of

the transmitted pulse. In Fig. 6 we show the data
of Fig. 5 again, but with the z = 0 curve added for
comparison. At 5pog = 2 the tra, iling edge of the

transmitted pulse becomes stronger than the

tail of the incident pulse, although it is two orders
of magnitude weaker than the incident pulse peak.

Finally, Fig. V shows the transmitted pulse at
&z = 6. It is seen that the bulk of the pulse energy
is now in the long tail, and one can begin to say
that a single frequency-time uncertainty relation
again describes the pulse reasonably well. The
temporal width of the tail is roughly W3 times the
width shown in Fig. 5, in accord with (16) since
(P„/5v, )' is negligible. Moreover, we note that
the resonant interaction of pulse and atoms, during
the pulse transmission, is fully coherent in our
model. This is responsible for the slight inter-
ference minimum that occurs between the two

components of the pulse.

V. DISCUSSION

The spectral and temporal changes predicted
by solution (8) are illustrated in the figures.
They are a consequence of purely linear disper-
sion theory and are novel only in the sense that

classic discussions of light propagation in dis-
persive media do not appear to have included

treatments either of purely inhomogeneous line
broadening or of lines with holes in them. Ex-
perimental observations of the predicted peak
delay and pulse lenghtening do not appear to have

been reported either.
Another view of these results is obtained by re-

garding our model of an absorption line with a
hole as a continuous-band interference filter. In

one sense it is a pure interference filter; no

f(v)= z' nv/P„,

~z g(v) —z o!(v/Ps)

(17a)

(17b)

This is a consequence of the hole in the line, of
course. For a normal line without a hole, one
has g» f for all frequencies near the center.

Finally, because of the linearity of the model,
it is also possible to treat the pulse as if it were
interacting with two entirely separate groups of
atoms. The first group comprises the usual di-
pole oscillators in the full Doppler line, and the
second group is a set of "negative" oscillators
occupying a region of width Ps at line center. The

negative oscillators emit rather than absorb light.
It is the emission of the "negative" oscillators
that causes the growth, with increasing propaga-
tion distance, of the peaks of the curves in Fig. 4.
In this view of the model it is the interference
between the positive and negative oscillators at
line center that causes the pulse lengthening. In

classical theory the negative dipoles can never
be more "negative" than the real dipoles are
"positive, "because they are designed only to
cancel the real dipoles in a certain spectral re-
gion. In the quaritum theory the negative atoms
are not so severely restricted. For example,
the hole has been constructed in our treatment
so that g(0) = 0. That is, we have assumed the
absence of absorbing dipoles at line center. How-

energy loss mechanisms are included in the model.

However, conversion of pulse energy into loss-
free atomic dipole oscillations all across the Dop-

pler line will nevertheless lead to pulse decay,
and it is more realistic to speak of an inter-
ference filter, as opposed to an absorption filter,
when the effect of f(v) is much more important
than that of g(v). Formulas (11) show that for
v «P„ this condition is well satisfied:
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ever, the original preparation of the hole could
have been arranged to include a degree of atomic
inversion at line center. In this case g(0) & 0, and

gain rather than loss would be expected. The
"negative" oscillators in the model would then

more than cancel the positive ones. We will not

explore this case.
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