
https://doi.org/10.4224/5763548

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. 

https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la 

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez 

pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at 

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the 

first page of the publication for their contact information. 

NRC Publications Archive

Archives des publications du CNRC

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien 

DOI ci-dessous.

Access and use of this website and the material on it  are subject to the Terms and Conditions set forth at

Simplification of Sampled Scalar Fields by Removal of Extrema
Brooks, Martin; Watson, L.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:
https://nrc-publications.canada.ca/eng/view/object/?id=484c8358-aa22-430a-a743-4d1a9592cdef

https://publications-cnrc.canada.ca/fra/voir/objet/?id=484c8358-aa22-430a-a743-4d1a9592cdef



National Research

Council Canada

Institute for

Information Technology

Conseil national

de recherches Canada

Institut de technologie

de l'information  
 
 
 
 

 
 

Simplificat ion of Sampled 

Scalar Fie lds by Removal of 

Extrema 
 
Brooks, M.F., and Watson, L. 
June 2007 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Copyright 2007 by 
National Research Council of Canada 

 
Permission is granted to quote short excerpts and to reproduce figures and tables from this report, 
provided that the source of such material is fully acknowledged. 

 

 

ERB-1147

NRC 47422



 
 
 
 

 
 

Simplification of Sampled Scalar Fields by 

Removal of Extrema* 

 
 
 
Brooks, M.F., and Watson, L.  
2007 
 
 
 
 
 
 
 
 
 
 
* June 19, 2007. 28 Pages. ERB-1147. NRC 49359. 
 
 
 
 
 
 
 
 
 
 
 
Copyright 2007 by 
National Research Council of Canada 

 
Permission is granted to quote short excerpts and to reproduce figures and tables 
from this report, provided that the source of such material is fully acknowledged. 

  

 



TECHNICAL REPORT

NRC-49359/ERB-1147
Printed June 2006

Simplification of Sampled Scalar
Fields
by Removal of Extrema

Martin Brooks
Liam Watson

Computational Video Group
Institute for Information Technology
National Research Council Canada
Montreal Road, Building M-50
Ottawa, Ontario, Canada K1A 0R6



NRC-49359/ERB-1147
Printed June 2006

Simplification of Sampled Scalar Fields

by Removal of Extrema

Martin Brooks

National Research Council Canada

Liam Watson
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Abstract

We present Extremal Simplification, a rigorous basis for algorithms that simplify geomet-
ric and scientific data. The Eilenberg-Whyburn monotone-light factorization [31] provides a
mathematical framework for simplification of continuous functions. We provide conditions on
finite data guaranteeing uniqueness of continuous interpolations’ topological structure, thereby
making continuous methods available in a discrete context. Lower bounds on approximation
error are derived. Extremal Simplification is compared to other scalar field simplification meth-
ods, including the Reeb graph [4, 5, 28], Morse-Smale complex [1], and the persistence diagram
[11, 9].

1 Introduction

This introductory section provides an overview of Extremal Simplification, identification of contribu-
tions, and an overview of related methods. The mathematical setting is introduced in section 2. The
definitions, constructions and theorem statements comprising Extremal Simplification are presented
in narrative fashion in two parallel halves: first for continuous functions in sections 3 - 4; then for
sample data in sections 5 - 6. Analysis of selected related simplification methods is presented in
section 7. The mathematical bulk of this paper comprises the proofs of seven new theorems; proofs
are relegated to a series of appendices, thus avoiding interruption of the theory’s presentation.

1.1 Overview

Extremal Simplification is couched in terms of point-set topology and is built on the Eilenberg-
Whyburn monotone-light factorization of continuous functions [31, 29]. The central objects are
an arbitrary Peano space X, a scalar field represented as a continuous function f : X → R, and a
sampled scalar field represented as F : D → R, where D ⊂ X is a finite collection of sample locations
and F = f |D.

Scalar field f ’s monotone-light factorization comprises a middle space M , monotone factor µ : X →
M and light factor λ : M → R, where f = µ ◦λ. We restrict our attention to piecewise monotone f ,
where M is a finite graph. Recognizing M as the Reeb graph [24], extrema are cast as points in the
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middle space. However, the middle space M is more than a combinatorial graph, it is a Peano space;
our development utilizes its topology and relies significantly on f ’s monotone and light factors.

Extremal Simplification consists of three steps: analysis of data F0, resulting in a topological struc-
ture T0; simplification of the topological structure T0 by removal of extrema; and synthesis of data
F1 corresponding to the simplified topology. This process may be repeated, providing successively
simpler approximations F1 . . . Fn of the original data.

F0
analyze
−−−−−→ T0⏐⏐�simplify

F1
synthesize
←−−−−−− T1⏐⏐�simplify

. . .

The topological structure T0 is derived from a continuous function f0 interpolating the data F0.
T0 comprises f0’s middle space (Reeb graph) M0 and light factor λ0 : M0 → R. Topological
simplification of (M0, λ0) to (M1, λ1) comprises a monotone quotient. The diagram now looks like
this:

F0
interpolate
−−−−−−−→ f0

monotone-light
−−−−−−−−−→

factorization
(M0, λ0)

⏐⏐�quotient

F1
sample
←−−−− f1

synthesize
←−−−−−− (M1, λ1)⏐⏐�quotient

. . .

In the diagram, continuous functions are arrived at by two means: interpolation and synthesis. Syn-
thesized function f1 has middle space and light factor (M1, λ1). Synthesis of f1 may additionally
utilize as input any or all of the following: the original data F0, interpolated function f0, and topolog-
ical structure (M0, λ0). These inputs allow synthesis of function f1 as desired, for example: having
minimal approximation error ||f0 − f1||∞; or having extrema collocated with the corresponding
extrema of f0.

There are many ways to interpolate data F to a continuous function on X. We restrict our attention
to partitioning the domain X into patches P1 . . . Pn, where each Pi is assigned a local interpolant.
Common examples in two dimensions are triangular patches with linear interpolants, and square
patches with quadratic interpolants.

Interpolation is based on the sample locations D and patch geometry P . Given data values F : D →
R, there remains freedom to choose the patch interpolants; we capture this choice as an interpolation
strategy parameter I. For example, I might indicate linear patch interpolants. Thus, the 3-tuple
(P, D, I) defines a unique interpolation of data F to function f : X → R, where F = f |D and the
local interpolant for patch Pi is f |Pi.

The diagram now looks like this:
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F0
choose
−−−−→ (P0, D0, I0)

interpolate
−−−−−−−→ f0

monotone-light
−−−−−−−−−→

factorization
(M0, λ0)

⏐⏐�quotient

F1
sample
←−−−− (P1, D1, I1)

choose
←−−−− f1

synthesize
←−−−−−− (M1, λ1)⏐⏐�quotient

. . .

The simplified data F1 may be defined on the same sample locations D0 as the original data F0, or
it may be defined on a different set D1. In fact, there is additional freedom to choose interpolation
structure (P1, D1, I1). The most common expression of this freedom occurs when P0 is a triangular
mesh, of which P1 is chosen as a refinement, resulting in sample locations D1 ⊃ D0, with I0 = I1

being linear interpolation of each triangle’s vertices.

Does interpolation structure (P1, D1, I1) interpolate the simplified data F1 to function f1? In this
paper we allow the answer to be “no”, but we restrict selection of interpolation structures to those
that interpolate to a function satisfying a topological uniqueness condition local to P and D, the patch
and sample geometry. These so-called PD interpolations all have identical topological structure.

It certainly is of interest to allow D1 �= D0, for example when refining or decimating a mesh-
structured patch collection P0. Alternatively, when working with Morse functions, we could choose
P1 to be f1’s Morse-Smale complex, with D1 comprising f1’s critical points. However, in this paper
we restrict our attention to an unspecified, but unchanging, patch and sample geometry, P and
D. Thus, the interpolation structure for the i-th simplification, for any iteration i ≥ 0, is fixed as
(P, D, I). Additionally, we require that each function fi, is a PD interpolation of data Fi.

Finally, Extremal Simplification is as follows, where f1 and f ′
1 are PD interpolations of F1, and

typically f1 �= f ′
1:

F0
choose
−−−−→ (P, D, I)

interpolate
−−−−−−−→ f0

monotone-light
−−−−−−−−−→

factorization
(M0, λ0)

⏐⏐�quotient

F1
sample on D
←−−−−−−−− f1

synthesize
←−−−−−− (M1, λ1)⏐⏐�no choice

∥∥∥

(P, D, I)
interpolate
−−−−−−−→ f ′

1
monotone-light
−−−−−−−−−→

factorization
(M1, λ1)

⏐⏐�quotient

. . .

In this paper we show how to make iterated simplification sequences. At iteration i each extremum
of topological structure (Mi, λi) has a scale which, when Morse fi is Morse, is equal to its persistence
in the sense of Edelsbrunner et al. [11].

The extrema of simplified topological structure (Mi+1, λi+1) are a subset of those of (Mi, λi). The
corresponding extrema necessarily have identical values under function fi and fi+1, and fi+1 may be
chosen so that corresponding extrema are colocated in the domain X. However, we cannot guarantee
that corresponding extrema have identical scales, although in most cases most of the extrema will.
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This differentiates Extremal Simplification from ǫ-simplification of Edelsbrunner et al. [9] and the
simplification found in Edelsbrunner et al. [11]. In the latter case, the persistence of all remaining
extrema is reduced by a fixed amount; whereas an ǫ-simplification leaves fixed the persistence of the
remaining extrema. On the other hand, Extremal Simplification properly contains the simplifications
of Carr [4].

Because scale is not preserved by Extremal Simplification, it does not make sense to talk about
“persistence order” with respect to the sequence of extrema removed by the simplifications. However,
Extremal Simplification admits sequences having successively increasing smallest scale, so that for
any δ > 0 the sequence has a member having no extrema of scale δ or less. Alternatively, one might
order a sequence of simplifications using the local geometric measures of Carr [4], although this is
not included in Extremal Simplification as presented herein.

Measuring approximation error in the continuous and discrete domains, respectively, as max
x∈X

|fx−gx|

and max
x∈D

|Fx−Gx|, we prove that when reducing the number of extrema, both measures are bounded

below by half the smallest of f ’s or F ’s extrema’s scales. We discuss situations in which this lower
bound can be, or cannot be, realized.

1.2 Contributions

The two main contributions of Extremal Simplification are as follows.

(1) Rigorous connection between continuous and finite domains: The topological representation used
by Extremal Simplification is derived from a function on a continuous domain; this function is an in-
terpolation of finite data. Also, simplification of the topological representation results in a simplified
continuous function that is subsequently sampled to obtain simplified data. A topological unique-
ness condition for interpolation restricts our attention to interpolations having the same topological
representation; thus we obtain a well-defined notion of simplification for finite data, and are able
to extend the continuous theory to the discrete case, including the lower bound on approximation
error.

(2) Breadth and generality: Extremal Simplification is insensitive to the dimension and homological
complexity of the Peano space X upon which the scalar field f : X → R is defined. Restriction to
“piecewise monotone” functions tames the complexity and floods the potentially fractal characteris-
tics of Peano spaces. Any piecewise monotone f : X → R can be simplified; “degenerate” functions
are not an issue. Patch and sample geometries for X are not restricted to polygonal meshes having
samples at the vertices.

1.3 Related Work

Simplification of sampled scalar fields has appeared recently in work by Carr [4], Carr et al. [5],
Weber et al. [28], Bremer et al. [1], and Edelsbrunner et al. [11, 9]. Each of these papers describe sim-
plification of sampled scalar fields defined on either two-dimensional manifolds or three-dimensional
volumes. Edelsbrunner et. al [9] state: “Use of the simplified complex together with the original
data may be tolerable for visualization purposes, but it is not satisfactory when the simplified data
is used in the subsequent data analysis stage”. This is in alignment with Extremal Simplification,
which is application-neutral, being concerned only with data simplification but not the use to which
it is put.

Each of the the papers mentioned above ([4, 5, 28, 1, 11, 9]) uses the topological structure of the
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scalar field to guide simplification. Carr et al. [4, 5] and Weber et al. [28] use the Reeb graph
[24], Bremer et al. [1] use the Morse-Smale complex [10], and Edelsbrunner et al. [11, 9] use the
persistence diagram. The Reeb-based techniques are concerned with removing extrema; the Morse-
Smale and persistence-diagram methods may also remove critical points related to the genus of
isosurfaces. Extremal Simplification represents scalar field topology as the function’s middle space
and light factor, an augmentation of the Reeb graph.

Each of the papers [4, 5, 28, 1, 11, 9] includes computational considerations, including data structures
and runtime complexity. As presented herein, Extremal Simplification theory does not explicitly
address computation; however, many of the methods referenced in the literature are applicable, and
the intent of Extremal Simplification is to provide the basis for computational methods.

Detailed analysis of the papers [4, 5, 28, 1, 11, 9] is presented in section 7.

Computational methods for simplification of three-dimensional geometry have been a topic of interest
in the research literature for a decade, almost entirely in connection with visualization. The primary
simplification mechanism is edge contraction in a triangular mesh [14]. Some approaches include
topological considerations based on the Reeb graph, e.g. Takahashi et al. [25], or Morse-Smale
complex, e.g. Gyulassy et al. [13]. These works differ from Extremal Simplification, because they
focus on simplifying the geometry of triangulated surfaces rather than scalar fields.

2 Peano Spaces & Monotone-Light Factorization

A topological space X is a Peano space when it is a compact, connected, locally connected, metric
space. Peano spaces include disks and compact manifolds in Rn, as well as non-manifold surfaces
resulting from gluing together compact manifolds. Peano spaces are not necessarily smooth; they
include polygons, simplexes, graphs and fractals. Peano spaces are also called Peano continua;
continuum theory had its heyday in the mid-twentieth century, e.g. [31], although there are some
more recent treatments [22].

Throughout this paper all spaces are Peano and all functions are continuous.

For Peano spaces X, Y and continuous f : X → Y , when W ⊂ X is, respectively, connected, locally
connected, closed or compact, then fW has this same property; and when W ⊂ Y is, respectively,
open, closed or compact, then f−1W has this same property.

f : X → Y is monotone when for every connected W ⊂ Y , f−1W is connected. f is light when
for every discrete W ⊂ Y , f−1W is discrete. The Eilenberg-Whyburn monotone-light factorization
[31, 29] states that there exists a unique Peano space M , called f ’s middle space, such that f = µ◦λ,
where µ : X → M is monotone and λ : M → Y is light. We specify f ’s monotone-light factorization
by simply listing µMλ. See Appendix A for historical discussion of the monotone-light factorization.

Suppose f : X → Y . f ’s middle space M is defined exactly as is the Reeb graph [24], but is not
in general a graph. The middle space is a quotient of the domain X, where x, y ∈ X are identified
if and only if they both lie in a connected component of a level set f−1z. f ’s monotone factor µ is
the natural map from X to M ; f ’s light factor λ assigns each point p ∈ M the value f(µ−1p) ∈ Y .
Thus f = µ ◦ λ.

Standard results [31, 29] state that the middle space is a Peano space, and that the monotone-light
factorization is unique.
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3 Piecewise Monotone Functions

The monotone-light factorization provides the basis for a generalization of “piecewise monotone”.
We give a general definition, followed by focus on real-valued piecewise monotone functions.

Definition 3.1. Suppose f : X → Y has monotone-light factorization µMλ.
λ is locally monotone at p ∈ M when p has a neighborhood upon which λ is monotone.
M∗ denotes the set of all points of M at which λ is locally monotone.
f is piecewise monotone when:

(1) M∗ is dense in M ;
(2) M∗ has finitely many components; and
(3) λ is monotone on the closure of each component of M∗.

The closures of the the components of M∗ are the monotone pieces referred to in the name “piecewise
monotone”. λ is a homeomorphism on each monotone piece.

We will see that the middle space of a real-valued function is its Reeb graph.

f : X → R is piecewise monotone whenever the set of points not locally monotone, M � M∗, is
finite. Condition (2) of definition 3.1 then follows from compactness of M ; condition (3) follows
from lightness of λ and separability of M .

When f : [0 1] → R, definition 3.1 is exactly the usual meaning of “piecewise monotone”.

Throughout this paper all real-valued functions on Peano space X will be piecewise monotone.
Suppose f : X → R is piecewise monotone with monotone-light factorization µMλ.

f ’s middle space M is partially ordered, with p < q whenever there exists a path P ⊂ M from p to
q with λ numerically monotone increasing along P . A point p ∈ M is a maximum (resp. minimum)
when there does not exist q > p (resp. q < p). When p ∈ M is both a maximum and a minimum,
then it must be the case that M = {p} and f is constant, in which case we count f as having no
monotone pieces. Assuming f not constant, each maximum and minimum is an extremum. Two
extrema are same-sense when they are both maxima or both minima. Extremum p ∈ M is global
when λp is an endpoint of the interval fX.

Throughout this paper all functions f : X → R will be assumed to be non-constant.

The extrema of M ’s partial ordering correspond exactly to the intuitive notion of f ’s extrema.
Working in f ’s domain X, a closed connected subset K ⊂ X is a maximum (minimum) of f if and
only if f is constant on K, K is a component of f−1fK, and there exists an open set V ⊃ K such
that fx < fK (fx > fK) for all x ∈ V � K. Working in f ’s middle space M , an extremum p ∈ M
is a maximum (minimum) if and only if p has a neighborhood U with q < p (resp. q > p) for all
q ∈ U � {p}. Therefore, K ⊂ X is a maximum (minimum) if and only if K = µ−1p for maximum
(minimum) p in M . Throughout this paper we focus on extrema in the middle space; when p ∈ M
is an extremum we interchangeably refer to p as an extremum of M and as an extremum of f .

Every monotone piece S ⊂ M is mapped homeomorphicly by λ to the real interval λS. Monotone
pieces may only intersect at their endpoints. Thus we recognize the middle space of a real-valued
piecewise monotone function as its Reeb graph. When X is simply connected then M is a tree; see
Appendix A for proof of this well-known result.

The approach taken in this paper is to focus on the topological properties of the middle space.
However, we adopt some graph-related terminology: Any p ∈ M � M∗ lies in the boundaries of
at least two monotone pieces; we call p a branch point. A saddle is a branch point that is not an
extremum. The union of the extrema and saddles comprise M ’s nodes. Graph-theoretically, the
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paths connecting M ’s nodes comprise M ’s arcs.

3.1 Scale

This section defines the peak-to-valley vertical extent of an extremum is its scale.

For any set S and point p ∈ S, we denote by Cp(S) the connected component of S containing p.

Definition 3.2. Suppose f : X → R is piecewise monotone with monotone-light factorization µMλ;
let p ∈ M be an extremum.
Then p’s scale interval, denoted Ip, is the shortest closed interval I containing λp such that either:

There exists q �= p ∈ Cp(λ
−1I) with λq = λp; or

I = fX.

The length of Ip is p’s scale, denoted σ(p).
The smallest of f ’s extremas’ scales is f ’s least significant scale, denoted σ(f).

Ip = fX implies p is a global extremum; the converse implication does not hold. σ(p) = 0 if and
only if f is constant, i.e. M = {p}.

For maximum p ∈ M , note that λp = max Ip. We also see that when there exists at least one other
maximum then there exists a branch point q < p ∈ M with λq = min Ip such that there exists
r �= p ∈ M with q < r and λr = λp. The symmetric statements hold for minimum p ∈ M . We call
each such q a turnaround of p. Every non-global extremum has at least one turnaround.

When f is a Morse function, every branch point is a saddle, and the light factor λ takes unique
values on the extrema and saddles of M . Therefore every non-global extremum has exactly one
turnaround, and no saddle is the turnaround for more than one extremum. The pairing of non-
global extrema and their turnarounds is exactly the pairing of critical points used to determine
persistence by Edelsbrunner et al. [11, 10], and each extremum’s scale is equal to its persistence. To
see this, let p ∈ M be a non-global minimum having turnaround q; we consider the components of
sublevel sets S(z) = {r ∈ M | λr ≤ z}. The point p comprises a component of S(λp). As z increases
from λp, the component of Sz containing p remains distinct from all components containing other
points of S(λp) until z = λq.

3.2 Approximation Error

Functions f, g : X → R will be compared in L∞. If we think of g as approximating f , then e(f, g)
denotes the approximation error, with e(f, g) = max

x∈X
|fx − gx|.

The following theorem captures the relationship between scale and approximation error; proved in
Appendix B.

Theorem 3.3. Suppose f, g : X → R are piecewise monotone, where g has fewer extrema than f .
Then e(f, g) ≥ σ(f)/2.

Theorem 3.3 is a generalization of the well-known result of Ubhaya for isotone approximation [26].
Bremer et al. [1] refer without proof to this bound for simplification of Morse-Smale functions on
two-dimensional manifolds. Edelsbrunner et al. [9] show that their ǫ-simplification cannot always
achieve this lower bound. The next section includes discussion of the achievability of this bound for
piecewise monotone functions.
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4 Simplification of Piecewise Monotone Functions

Roughly speaking, a function is simplified by taking a certain type of quotient of its middle space.
This section defines simplification, introduces several types of simplification, and defines simplifica-
tion sequences.

Suppose f : X → R is piecewise monotone with monotone-light factorization µMλ.

A subset K ⊂ M is a collapse set for f when K has finitely many components K1 . . . Kn, where
each Ki is closed, has nonempty interior, and λ is constant on each ∂Ki. We indicate collapse set
K’s components by writing K =

∑
Ki.

Every collapse set contains an extremum of f in each component of its interior.

Every collapse set K =
∑

Ki defines a quotient MK of M by identifying the points within each
component Ki. This quotient has natural map denoted φK : M → MK , where for any q ∈ MK ,
φ−1

K q is either singleton or equal to one of the Ki, and if q �= q′ then φ−1
K q and φ−1

K q′ are disjoint.
Note that φK is monotone. We call MK the monotone quotient of M by K.

MK admits a light function λK : MK → R defined by λKq = λ(∂φ−1
K q). Note that λK is well-defined

because λ is constant on ∂φ−1
K q. λK is light because φK is one-to-one on M � K and K has finitely

many components. We call λK the monotone quotient of λ by K

The points of MK are partially ordered: For p, q ∈ MK , p < q when there exists a path P from p to
q with λK monotone increasing on P . Consequently, we can speak of MK ’s extrema.

K is an extremal collapse set when for each component Ki such that q = φKKi is an extremum of
MK , ∂Ki is comprised entirely of extrema of f of having the same sense as q. It follows that for
every extremum q ∈ MK , the set ∂φ−1

K q is comprised entirely of of extrema of f of having the same
sense as q.

Definition 4.1. Suppose f : X → R is piecewise monotone with monotone-light factorization µMλ,
and suppose K ⊂ M is an extremal collapse set for f . Let MK , λK be the monotone quotients of
M, λ by K. Then any function g : X → R having middle space MK and light factor λK is an
extremal simplification of f generated by K.

Throughout this paper we abbreviate “extremal simplification” to “simplification”.

Suppose K =
∑

Ki is an extremal collapse set for f , let MK , λK be the monotone quotients of M, λ
by K, and let φK be the natural map M → MK .

Section 4.1.1 will show that there always exists at least one simplification of f generated by K. Every
simplification of f is piecewise monotone and has fewer monotone pieces than f ; this is proved in
appendix C.

There may be many different simplifications of f generated by K. Each simplification has its unique
monotone factor; all share the same middle space and light factor. When we say that functions
“have the same middle space”, we mean “up to homeomorphism commuting with the light factor”.

K removes some of f ’s extrema: For each component Ki, when φKKi an extremum of MK , then
the extrema of f lying in K◦

i are removed; otherwise, when φKKi is not an extremum of MK , all
extrema lying in Ki are removed. The extrema not removed by K survive K.

Suppose g is a simplification of f generated by K.

φK maps f ’s surviving extrema onto g’s extrema, with λp = λKφKp for each surviving extremum
p. Distinct surviving extrema of f are mapped to the same extremum q of g only if they lie in the
boundary a component Ki having φKKi = q.
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The number of extrema of g is less than that of f by exactly the number of extrema contained in K
minus the number of components Ki ⊂ K that are mapped by φK to extrema of g. This difference
is always nonzero.

4.1 Special Types of Simplification

Suppose f : X → R is piecewise monotone with monotone-light factorization µMλ. The following
sections discuss a variety of simplifications of f .

4.1.1 Flat Simplification

Suppose K =
∑

Ki is an extremal collapse set for f , let MK , λK be the monotone quotients of M, λ
by K, and let φK be the natural map M → MK .

K generates at least one simplification, called K’s flat simplification, denoted fK , constructed by
defining the monotone factor µK = µ ◦ φK . Thus fK(x) = µK ◦ λK (x) = λ(∂φ−1

K (φK(µx))).
Stated in words, fK is computed by first mapping x ∈ X to p = µx ∈ M , pulling p back to the set
C = φ−1

K p, and then – noting that λ is constant on ∂C – taking the value of λ on ∂C. In other words,
fK flattens each of the connected sets µ−1Ki to the constant value of f(∂Ki), and is otherwise equal
to f on X � µ−1K.

The approximation error e(f, fK) is easily determined: e(f, fK) = max
i

max
p∈Ki

|λp − λ∂Ki|. Further-

more, there exists an extremum p ∈ K◦ such that e(f, fK) = |λp − λKp|.

4.1.2 Standard Simplification

Suppose p ∈ M is an extremum of f such that p has a turnaround q. Recalling the notation
of definition 3.2, let Ip be p’s scale interval, and define half-open interval Ĩp = Ip � λq. Define

p’s standard collapse set, denoted Cp, by Cp = Cp(λ−1Ĩp). Then Cp is an extremal collapse set
having p in its interior. Now define f ’s standard simplification removing p, denoted fp, as Cp’s flat
simplification. Clearly e(f, fp) = σ(p) = |λp−λCp

p|; note that this approximation error is twice the
lower bound of theorem 3.3.

When p, q ∈ M are same-sense extrema, then σ(p) ≤ σ(q) implies that either Cp ⊂ Cq or C◦
p∩C◦

q =
∅. However, this statement is not true when p, q ∈ M are opposite-sense extrema.

Suppose extremum q ∈ M survives the standard simplification removing p; let q′ ∈ MCp
be the

extremum to which q is mapped by natural map φCp
. Then it is possible that σ(q), q’s scale in

M , is not equal to σ(q′), q′’s scale in MCp
. When p and q are opposite-sense, then this situation

arises if and only if C◦
p ∩ C◦

q �= ∅ and Cp �⊂ Cq; in this case (σ(q) − σ(p)) ≤ σ(q′) < σ(q). When
p and q are same-sense, this situation may arise when σ(p) = σ(q), λp = λq, and C◦

p ∩ C◦
q = ∅ but

∂Cp ∩ ∂C◦
q �= ∅; in this case σ(q′) > σ(q), and σ(q′) is bounded above only in relation to the values

of M ’s global extrema.

4.1.3 Optimal Simplification

Suppose g is a simplification of f removing extrema p1 . . . pm. Then g is optimal when e(f, g) =
max

i
σ(pi)/2. The theory of optimal simplification is left for future research. Two examples are

presented here.
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Example: Let X denote the graph comprised of two copies of the real interval [−1 +1] glued together
at 0. X is a Peano space. Suppose f : X → R maps each point to its corresponding point in [−1 +1].
Then f is light, so its monotone factor is the identity function, its middle space is X, and its light
factor is f . Denote the two maxima as p, q, the two minima as r, s, and the saddle as t. Thus
σ(p) = σ(q) = σ(r) = σ(s) = 1. The standard collapse set for p, Cp, is the closed arc from p to t,
and similarly for Cq, Cr and Cs. It is obvious that any simplification g removing both the maximum
p and minimum r will have e(f, g) ≥ 1, and therefore no such simplification may be optimal.

Example: Suppose X is any Peano space and f : X → R a piecewise monotone function having
monotone-light factorization µMλ, where M is a graph having the form of the letter Y. M has
two maxima, p, q, one minimum r and one saddle t, with arcs from t to each of p, q, r. Suppose
λp = λq = 1, λt = 0, and λr = −1; define λ linearly between these nodes. Thus σ(p) = 1 and
Cp is the closed arc from p to t. It may not be obvious that there exist simplifications g removing
the maximum p such that e(f, g) = 1/2. However, such a simplification may be constructed as
follows. First, construct fp, the standard simplification removing p; let µpMpλp be fp’s monotone-
light factorization. Note that fp is monotone, and thus µp is constant on f−1

p z for any z ∈ [−1 1].
Next, choose any 0 < ǫ ≤ 1/2, let v : [−ǫ 0] → [−ǫ 1/2] and w : [0 (1/2+ ǫ)] → [1/2 (1/2+ ǫ)] denote
linear maps between the intervals, and define µ′ : X → Mp by the following rules:

µ′x = µpx when fpx ≤ −ǫ or fpx ≥ 1/2 + ǫ
µ′x = µp(f

−1
p (v(fpx))) when fpx ∈ [−ǫ 0]

µ′x = µp(f
−1
p (w(fpx))) when fpx ∈ [0 (1/2 + ǫ)]

Then µ′ is monotone. Let g = µ′ ◦ λp; then g has monotone-light factorization µ′Mpλp, and is thus
a simplification of f removing p. It is easily checked that e(f, g) = 1/2, and therefore g is optimal.

4.1.4 One-Dimensional Simplification

Function f : X → R is one-dimensional when its middle space has no saddles. Thus the middle
space is homeomorphic to the real unit interval or the circle. When X is a real interval or the circle
then f is one-dimensional. However, f may be one-dimensional for other domains; for example when
f is a wave train across a two-dimensional surface.

Suppose f : X → R is one-dimensional with monotone-light factorization µMλ, and p ∈ M is an
extremum having turnaround q. Then q is an opposite-sense extremum.

There may exist optimal simplifications for a one-dimensional function. We consider then case where
extremum p has turnaround q such that p is also a turnaround for q. Note that this will be the case
whenever p lies between a global maximum and a global minimum, e.g. as will be the case when
M is homeomorphic to the circle. Then |λp − λq| = σ(p) = σ(q) and Ip = Iq. Bisect Ip into closed
intervals Jp, Jq, where λp ∈ Jp and λq ∈ Jq. Let K = Cp(λ

−1Jp)∪Cq(λ
−1Jq); then K is a connected

extremal collapse set containing p and q in its interior, and K’s flat simplification fK is an optimal
simplification removing p and q.

One-dimensional simplification admits efficient computation. Brooks et al. [3] provide a linear time
algorithm that pairs each extremum with its turnaround.

4.2 Simplification Sequences

In this section we consider sequences of functions f1 . . . fn that demonstrate successively increased
simplification of an initial function f0.

A sequence f1 . . . fn might be constructed in one of two ways, where for each i > 0:

11



fi is a simplification of fi−1; or
fi is a simplification of f0 generated by extremal collapse set Ki, and Ki ⊃ Ki−1.

In appendix D we show these are equivalent.

Our goal of successively increased simplification is captured as:

Definition 4.2. Suppose f0 : X → R is piecewise monotone. A sequence of functions f1 . . . fn :
X → R is a simplification sequence for f0 when for each i > 0:

(1) fi is a simplification of fi−1;
(2) fn has only global extrema; and
(3) σ(fi) > σ(fi−1).

Suppose f1 . . . fn is a simplification sequence for f0. Then given any ǫ > 0, we can identify a
simplification g of f0 such all of g’s extrema have scale greater that ǫ, by choosing the least index j
such that fj has this property.

We show that for any f0 there exists at least one simplification sequence. Suppose fi−1 has already
been constructed for some i > 0. If fi−1 has only global extrema, then we are done. Otherwise,
determine fi by constructing a sequence of simplifications g0 g1 . . . of fi−1, as follows. Let g0 = fi−1.
Suppose gj has been constructed for some j ≥ 0. If σ(gj) > σ(fi−1), then define fi = gj . Otherwise,
construct gj+1 as follows: Choose any extremum p of gj such that σ(p) ≤ σ(fi−1), and let gj+1 be
the standard simplification of gj that removes p.

Note that this construction has the possibility of choice of extremum p when simplifying gj to gj+1.
Any simplification sequence constructed as described is called a standard simplification sequence.

It follows from the construction that for each i > 0, e(fi−1, fi) ≥ σ(fi−1)/2. This information is not
particularly useful, since the scale of a surviving extremum of fi−1 is not necessarily equal to the
scale of the extremum of fi to which it maps, as discussed in section 4.1.2.

Ideally, we would like analysis of function f0’s middle space M0 to result in a simplification sequence
map, identifying extremal collapse sets K1 . . . Kn generating the simplifications f1 . . . fn, perhaps
together with the approximation errors e(fi, f0) and or scales σ(fi), i = 1 . . . n.

For example, when f0 is one-dimensional and such that no same-sense extrema have equal values,
then each non-global extremum pi has a unique turnaround qj , which is an opposite-sense non-global
extremum. For each such pair of extrema pi, qj , we identify a collapse set Kij as follows. When pi is
qj ’s turnaround, then we define Kij be the collapse set of section 4.1.4 which when flattened gives the
optimal simplification removing pi and qj . Otherwise, we let Kij = Cpi

, pi’s standard collapse set.
It follows that the interiors of these collapse sets are pairwise either disjoint or nested. Let K1 . . . Kn

be any ordering of the collection of collapse sets Kij , such that for indices a < b, Ka �⊃ Kb. Then any
sequence f1 . . . fn of simplifications generated, respectively, by K1 . . . Kn constitutes a simplification
sequence for f0. This one-dimensional situation has been studied by Brooks [2] and Brooks et al.
[3].

5 Scalar Data

Scalar data is a collection of real-valued measurements on a finite collection D of points, i.e. a finite
function F : D → R. We refer to D as sample locations.

Scalar data may be interpolated between the sample locations D, resulting in a continuous function
f : X → R, where f |D = F . In this section we provide a topological uniqueness condition guaran-
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teeing that certain interpolations all have the same middle space and light factor, thereby allowing
assignment of this middle space and light factor to the scalar data.

5.1 Patches

Not all Peano spaces can be triangulated; it is an open question as to whether all Peano spaces may
be decomposed into a collection of patches each of which is itself a Peano space. Brick partitions
(ref Bing) suggest that they might. In any case, we restrict our attention to spaces that can be
decomposed into patches.

Definition 5.1. A finite collection P = P1 . . . Pn of subsets of X is a patch collection for X when:

(1) each Pi ∈ P is connected, and Pi = P ◦
i ;

(2) P covers X;
(3) P ◦

i ∩ P ◦
j = ∅ when i �= j; and

(4) each intersection Pi ∩ Pj has finitely many components.

Condition (1) implies each Pi ∈ P is a Peano subspace of X, since the closure of an open subset of
a locally connected space is locally connected.

Suppose H = h1 . . . hn is a collection of functions hi : Pi → R. Then H comprises patch functions
for P when hi|(Pi ∩ Pj) = hj |(Pi ∩ Pj) for all i, j. We denote by fPH the unique function such that
fPH|Pi = hi.

5.2 PD Interpolation

Scalar data may be interpolated many ways; different interpolations may have distinct piecewise
monotone structure. A priori, no one interpolation is “right”. Definition 5.2, below, relates patches,
patch functions, and sample locations, providing a uniqueness condition for interpolations’ piecewise
monotone structure.

Suppose f : X → R, D ⊂ X are sample locations, and z ∈ R. We say that D witnesses z when there
exists x ∈ D such that fx = z. Denote f ’s monotone-light factorization as µMλ, and let p ∈ M .
We may also say that D witnesses p when D ∩ µ−1p witnesses λp.

Definition 5.2. Given patch collection P = P1 . . . Pn for X and sample locations D ⊂ X, a function
f : X → R is a PD function when f = fPH for patch functions H = h1 . . . hn such that:

(1) each hi is monotone;
(2) D ∩ Pi witnesses min hiPi and max hiPi for each i = 1 . . . n; and
(3) for each component K of Pi∩Pj, D∩K witnesses min hiK and max hiK for each i, j ∈ 1 . . . n.

Suppose f : X → R is PD. Then f is piecewise monotone. Let µMλ denote f ’s monotone-light
factorization and let p ∈ M be any node; then D witnesses p. These results are proved in appendix
F. The following theorem is proved in Appendix G.

Theorem 5.3. Suppose P is a patch collection for X and F : D → R is scalar data. Then any two
PD functions f, f ′ interpolating F have identical middle spaces and light factors.

When P is a triangular mesh and D comprises the triangles’ vertices, then the piecewise linear
interpolation is PD.
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When P is an n-dimensional cubic mesh and D comprises the cubes’ vertices, then n-linear interpo-
lation is PD only when each cube’s interpolation is monotone. Cubes that are not monotone may be
triangularly subdivided and perhaps additional samples defined on the triangles’ vertices, resulting
in patch collection P ′ and samples locations D′. Then n-linear interpolation on the monotone cubes
together with linear interpolation on the triangles gives a P ′D′ interpolation.

We now consider the special case of X being a smooth manifold and f being a Morse-Smale function.
In two dimensions, each cell of the Morse-Smale complex [10] is a quadrilateral having a critical
point at each corner. We note that the scalar field is topologically monotone on each cell and
numerically monotone on each cell edge. This statement generalizes to Morse-Smale complexes of
higher dimension. Thus, when D includes all critical points of f then f ’s Morse-Smale complex
constitutes a patch collection P such that f is a PD interpolation of the critical points.

5.3 Piecewise Monotone Data

There are four principal ingredients upon which Extremal Simplification positions the definition of
simplification for scalar data:

1. A Peano space X.
2. A patch collection P covering X.
3. A finite set of sample locations D ⊂ X.
4. Scalar data F : D → R.

In differing application contexts these four ingredients may arise in various orders. For example, one
might start with D and X, choose P to be a particular triangulation of D, and then consider the
data F . Alternatively, one might start with X, and then be given both D and F , and then choose
a suitable patch collection P. In any case, the four ingredients are bound together by:

Definition 5.4. Suppose X is a Peano space, P is a patch collection covering X, and D ⊂ X is
a finite set of sample locations. Scalar data F : D → R is piecewise monotone when F has a PD
interpolation f : X → R.

Note that use of the term “piecewise monotone” assumes a context where X, P and D are given.

Theorem 5.3 states that all PD interpolations of piecewise monotone F share the same middle space
and light factor. Therefore, we may speak of F ’s middle space and light function without reference
to a particular interpolation. Similarly, we may speak of F ’s extrema, including the number of
extrema, and the scale of each extremum. We may define F ’s scale σ(F ) as the scale of F ’s least
significant extremum. Likewise, F ’s extremal collapse sets are well-defined.

Example: Suppose X is a smooth n-manifold, P is an n-dimensional triangular mesh on X, and
D comprises all vertices of the mesh. Then any scalar data F is piecewise monotone, since linear
interpolation within each patch results in a PD function.

5.4 Approximation Error for Piecewise Monotone Data

Given two sets of piecewise monotone data F, G, and thinking of G as approximating F , we measure
the approximation error as e(F, G) = max

x∈D
|Fx − Gx|. Appendix H proves the following theorem:
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Theorem 5.5. Let Peano space X, patch collection P, and finite sample locations D ⊂ X be given.
Suppose F, G : X → R are piecewise monotone data, where G has fewer extrema than F . Then
e(F, G) ≥ σ(F )/2.

6 Simplification of Piecewise Monotone Data

We simplify piecewise monotone data F by simplifying a PD interpolation.

Definition 6.1. Suppose X is a Peano space, P is a patch collection covering X, D ⊂ X is a finite
set of sample locations, and F : D → R is piecewise monotone data. Let F ’s middle space be denoted
by M , and suppose K ⊂ M is an extremal collapse set. Then piecewise monotone data G : D → R

is an extremal simplification of F generated by K when there exist PD interpolations f, g : X → R

of, respectively, F, G such that g is a simplification of f generated by K.

Theorem 5.3 makes the choices of f and g irrelevant in definition 6.1.

Suppose f is a PD interpolation of F . Given an arbitrary simplification g of f , it may not always be
the case that g is a PD function. Only simplifications of f that are PD give rise to simplifications
of F .

There always exists at least one simplification of F generated by extremal collapse set K, namely
K’s flat simplification, denoted FK , and defined as fK |D, where fK is K’s flat simplification of f
(section 4.1.1). We prove fK is PD in appendix I. It follows that for any extremum p of F , the
standard simplification of f removing p is PD; we denote fp|D as Fp.

To see the practical significance of this result, suppose P and D comprise a triangulation of X having
samples at the vertices. Let f be the piecewise linear interpolation of data F , having middle space
M . Choose any extremal collapse set K ⊂ M . Then the flat simplification fK is typically not linear
on each triangle of P. Nevertheless, the piecewise linear interpolation of FK has the same middle
space and light factor as fK .

In general, when G is a simplification of F , with PD interpolations g and f , respectively, then
approximation error e(F, G) �= e(f, g) since e(f, g) may vary over the choices of f and g. However,
for the flat simplification FK , e(F, FK) = e(f, fK), since there exists an extremum p ∈ K◦ such
that e(f, fK) = |fp − fKp| and p is witnessed by D. Similarly, for Fp, the standard simplification
removing p, e(F, Fp) = σ(p).

6.1 Simplification Sequences for Piecewise Monotone Data

We may construct simplification sequences in exact analogy to the continuous case:

Definition 6.2. Suppose X is a Peano space, P is a patch collection covering X, and D ⊂ X is a
finite set of sample locations, and F0 : D → R is piecewise monotone data. A sequence of piecewise
monotone data F1 . . . Fn : D → R is a simplification sequence for F0 when for each i > 0:

(1) Fi is a simplification of Fi−1;
(2) Fn has only global extrema; and
(3) σ(Fi) > σ(Fi−1).

Construction of standard simplification sequences for piecewise monotone data goes through in exact
analogy to continuous functions (section 4.2).
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7 Analysis of Related Methods

In this section we analyze and comment on the Reeb graph simplification method of Carr [4], Carr
et al. [5] and Weber et al. [28], the Morse-Smale simplification method of Bremer et al. [1], and the
persistence diagram simplification of Edelsbrunner et al. [11, 9].

7.1 Reeb Graph Simplification

Carr [4] describes how to compute the Reeb graph, represented as a contour tree, from an arbitrarily
interpolated mesh of any dimension. In practice, Carr [4], Carr et al. [5] and Weber et al. [28]
interpolate triangulated and cubic two- and three-dimensional meshes. A simple rule set simplifies
the contour tree, a proper subset of Extremal Simplification, as as will be shown shortly. The flat
simplification is used to generate the sampled scalar field for a simple running example ([4], Chapter
11); however, implementation-dependent methods are used when visualizing isosurfaces. Weber et
al. [28] prefer a smooth alternative to the flat simplification, with the flat simplification being used
only when this alternative is not possible. The order in which extrema are removed is determined
by pruning contour tree leaves in preference order, using any one of a variety of local geometric
measures or persistence. We note that local geometric measures could be straightforwardly and
beneficially introduced into Extremal Simplification sequences (section 4.2).

7.1.1 Failure to be Piecewise Monotone

Because the trilinear interpolant may generate a non-monotone function on a cubic patch, the
sampled scalar field may fail to be piecewise monotone in the sense of definition 5.4. This means
that if one generates a sampled scalar field from the simplified Reeb graph, then in fact the simplified
data may not have this same Reeb graph.

This phenomenon is easily illustrated in two dimensions. Consider a square patch having the fol-
lowing sample values at the corners, in clockwise order from top-left: +1, -1, +1, -1. The bilinear
interpolation is non-monotone, having a saddle in the centre with value 0. Thus the Reeb graph, i.e.
middle space, has the form of the letter X. Carr’s branch prune rule [4] simplifies the middle space
by removing one of the minima; the simplified middle space has the form of the letter Y, where the
maxima have light-factor value +1, the minimum value -1, and the saddle value 0. When we create
a new sampled function by flattening, the samples now read, in clockwise order: +1, -1, +1, 0. Note
that the middle space of these samples’ bilinear interpolation is again an X, not the desired Y.

This problem can be avoided by further subdividing cubes into tetrahedrons. Only those cubes
having non-monotone interpolation need to be subdivided; theorem 5.3 guarantees that the flat
simplification used by Carr [5] will not require subdivision of other cubes.

Carr’s [4] running simple example, which also appears in Carr et al. [5], does not suffer from this
problem, because it is built on a triangulation. In his thesis’ “Future Work” section, Carr [4] reflects
on the problem: “ ... (for the simple example) we constructed equivalent surfaces to the simplified
surface by hand. This is straightforward for simplicial meshes, where we can change the isovalues at
vertices without altering the contour tree. It is less trivial to do this for non-simplicial meshes with
complex interpolants, and we would like to examine this problem in more detail.”
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7.1.2 Carr’s Simplification Rules

Rules for Reeb graph simplification are defined by Carr [4]. Since their domain is simply connected,
the Reeb graph is a tree [7]. The basic operations are: prune a leaf; and, remove a vertex having
order two. Furthermore, a leaf is defined as prunable only when the vertex to which it attaches also
has another branch going in the same direction.

Pruning a leaf is clearly a quotient having collapse set as kernel. Prunability ensures that this
collapse set is extremal. Therefore, Carr’s rules provide a subset of the simplifications allowed by
Extremal Simplification. Two examples illustrate that the subset is proper:

Example W: Consider a one-dimensional Reeb graph having the form of the letter W. The mid-
dle maximum is not a leaf, and therefore cannot be removed by Carr’s rules, whereas Extremal
Simplification can remove the middle maximum, simplifying the W to a V.

Example K: Consider any function with middle space having the form of the letter K, with light
factor as follows. The left maximum and minimum have, respectively, light-factor values +10 and
-10; the right maximum has light-factor value +2, the right minimum -2, the left saddle 0, and the
right saddle +1. Carr’s rules do not allow removal of the top-right maximum, whereas Extremal
Simplification does, resulting in a middle space having form of the letter λ with saddle light-factor
value 0.

7.2 Morse-Smale Complex Simplification

Bremer et al. [1] use piecewise linear interpolation of samples at triangulated sample locations on
a 2-manifold. The continuous function’s Morse-Smale complex is simplified as per Edelsbrunner
et al. [10]. Morse-Smale simplification in two dimensions is extrema removal. Although Bremer
et al. [1] state that extrema are removed in persistence order [11], they do not guarantee that
the persistence of surviving extrema is preserved; their statement must be understood accordingly.
Heuristic application of smoothing techniques are used to fit data to the simplified Morse-Smale
complex while maintaining a specified target error, which they state (without proof) must be greater
than half the removed extremum’s persistence.

7.3 Persistence Diagram Simplification

Edelsbrunner et al. [11, 9] use the persistence diagram [11] to guide simplification of a piecewise
linear scalar field defined by interpolation of triangulated sample locations on a two-dimensional
manifold. Direct manipulation of the triangulation is used to the simplify scalar field f to a scalar
field g such that g’s persistence diagram is a subset of f ’s, missing exactly those critical points
having persistence no more than any given constant ǫ.

In the method of [11], all surviving extrema have persistence reduced by ǫ, whereas in the ǫ-
simplification method of [9], all surviving extrema have unchanged persistence. Extremal Sim-
plification does not typically admit an ǫ-simplification; however, neither does it typically change the
scale of all surviving extrema (section 4.1.2).

To see that Extremal Simplification cannot do ǫ-simplification, consider Example K from section
7.1.2. Because any collapse set must have boundary upon which f ’s light factor is constant, removal
of the top-right maximum necessarily results in a middle space having a single saddle with light-
factor value 0. Therefore, the persistence in the simplified middle space of the right minimum must
be 2, as opposed to its original value 3. We leave it to future research to determine how Extremal
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Simplification might be extended to encompass ǫ-simplification.

Edelsbrunner et al. [9] show that approximation error for ǫ-simplification must in some cases exceed
half the removed extremum’s persistence. The function used to demonstrate this result in Part 5 of
[9] has the middle space of Example K (see section 7.1.2).

8 Appendices

The remainder of this paper consists of nine appendices, providing proofs for all the theorems. Each
proof can be read individually. It is noteworthy that all results of Extremal Simplification follow
straightforwardly from simple definitions of point-set topology, with the exception of Appendix A.

A Appendix: Historical Context: Monotone-Light Factor-

izations

This work considers continuous functions defined on a compact, connected manifold1 or metric
space X. f : X → Y is called monotone whenever f−1(y) is connected, and light whenever f−1(y)
is discrete (equivalently, dim

(
f−1(y)

)
= 0).

In 1934, Eilenberg [12] and Whyburn [30] introduced monotone-light factorizations independently2.
A complete proof of the following theorem can be found in Whyburn’s book Analytic Topology [31].

Theorem (Eilenberg-Whyburn). Every continuous function f : X → Y admits a factorization

X
f

��

μ ����
��

Y

Mf
λ

������

where µ is monotone and λ is light. This factorization is unique in the sense that the middle space
Mf is unique up to homeomorphism.

It is often convenient to denote the monotone-light factorization of f as a triple (Mf , µ, λ) where
f = λµ. It should be noted that there are no restrictions on the topological space Y (f ’s target),
however if we require Y to be a manifold then the monotone-light factorization gives a unique
factorization system on the category of manifolds and continuous maps3 [survey reference needed,
Joyal].

Both authors used these factorizations for arguments involving dimension (see [18] for a survey of
results). For example, the following result is found in [12] (see also [18]):

Theorem (Eilenberg). Suppose f : S2 → Y is non constant and π1

(
f−1(y)

)
= 1 for each y ∈ Y .

Then dim
(
f(S2)

)
≥ 2.

In 1946, Reeb [24] gives another point of view in the case Y = R, athough he was not making use
of monotone-light factorizations, or any of the existing literature cited above. Assuming Y = R and
f ∈ C2 we have:

1In fact, we could work more generally on Peano spaces. For the most general setting see [31].
2It is noted in [6] that it had already been observed in some cases by Kerékjártó [15].
3Or, more generally, on the category of Peano spaces and continuous maps.
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Theorem (Reeb). Mf is a graph where π1Mf is a quotient of π1X.

Corollary A.1. In particular, whenever π1X = 1, Mf is a tree.

It is interesting to note that Kronrod [16] (see [17, 21]) made use of the fact that real valued functions
on R2 and S2 could be studied by way of a tree structure.

Monotone-light factorizations have been applied in the study of surface area [6, 23]. For example (see
[19]) it is known that two parametrizations f, g : I2 → Σ of a surface Σ give rise to the same surface
area whenever f and g share the same light factor4. Another nice and very explicit application can
be found in Micheal’s paper5 Cuts [20].

More recently, the study of monotone-light factorizations has spread to more general categories [find
a survey reference], while the graph from Reeb’s Theorem (known as the Reeb graph) has found
applications among computational geometers (in man cases, without the C2 requirement). In fact,
de Berg and van Krevald [8] prove that Mf is a tree for piecewise linear functions f : R2 → R, while
Bajaj et al. [27] state that continuous f : Rn → R gives a tree structure to Mf in general (in in
both cases f is defined on compact, simply connected regions of Rn).

For completeness, we include the following.

Proposition A.2. For continuous f : X → R, H1X = 0 implies Mf is a tree.

To prove this fact we will apply the following lemma.

Lemma A.3. Suppose Y
⊂

closed U ⊂
open X where H1X = 0. Then if U � Y is disconected, X � Y must

be disconected as well.

proof of lemma A.3. By assumption, H1X = 0. There is a long exact sequence

· · · �� H1X �� H1(X, U) �� H0U �� H0X

which gives

· · · �� 0 �� H1(X, U) �� Z
∼= �� Z

and hence H1(X, U) = 0. Excision tells us that

H1(X, U) ∼= H1(X � Y, U � Y ),

and applying this in the long exact sequence

· · · �� H1(X � Y, U � Y ) �� H0(U � Y ) �� H0(X � Y )

we have

· · · �� 0 ��
Z ⊕ · · · ⊕ Z︸ ︷︷ ︸

m

�� H0(X � Y )

and hence H0(X �Y ) contains Z ⊕ · · · ⊕ Z︸ ︷︷ ︸
m

as a subgroup. In particular, if U �Y has m components

then X � Y has at least m components.

4This is known as Kerékjártó equivalence or K-equivalence.
5See theorem 1-1 concerning nowhere cutting subsets in Tychonoff spaces.
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proof of proposition A.2. Suppose for a contradiction that Mf is not a tree. In particular, let
v1, . . . , vn be a sequence of one or more distinct vertices of Mf such that vi is connected to vi+1 by
an edge ei of (Mf ) where vn+1 = v1. In particular, γ = �n

i vi ∪ �n
i ei is an embedding S1 →֒ Mf (a

cycle in the graph).

For any v among the vi, consider the open set U containing v consisting of v together with the set of
edges Ui of Mf that meet v (it the case that the cycle contains only one edge we should be careful
to choose this open set as some small ǫ-neighborhood of v). Now µ−1U is open and connected, while
µ−1U � µ−1v = {µ−1Ui} is disconnected.

Now v
⊂

closed U ⊂
open Mf however Mf �v is necessarily connected due to γ ⊂ Mf . Therefore µ−1(Mf �

v) = µ−1(Mf ) � µ−1(v) is connected which by lemma A.3 is impossible since H1X = 0.

Therefore no such γ exists, and Mf is a tree.

In particular, since the abelianization of π1X gives H1X proposition A.2 gives an alternative proof
of corollary A.1 without making use of the C2 hypothesis of Reeb’s theorem.

B Approximation Error for Piecewise Monotone Functions

Theorem 3.3. Suppose f, g : X → R are piecewise monotone, where g has fewer extrema than f .
Then e(f, g) ≥ σ(f)/2.

Proof. Consider the special case where g is constant. Then e(f, g) ≥ (max fX−min fX)/2 ≥ σ(f)/2.
We continue with the assumption that g is not constant.

Suppose g has fewer maxima than f . Since g is not constant, f has at least two maxima. Let
p1 . . . pm ∈ Mf be f ’s maxima, and let δ = min

i
σ(pi). We show e(f, g) ≥ δ/2. Since δ ≥ σ(f), the

theorem follows.

Denote the monotone-light factorizations of f, g, respectively, as µfMfλf , µgMgλg.

For each of f ’s maxima pi, define Ui ⊂ Mf to be the largest neighborhood of pi such that pi �= q ∈ Ui

implies pi > q. The sets U1 . . . Um are pairwise disjoint. Each ∂Ui �= ∅, because ∂Ui = ∅ only when
Ui = Mf , in which case pi would be f ’s only maximum. Note that each q ∈ ∂Ui is a branch point
of Mf such that for some j �= i the maximum pj > q.

Choose any maximum pi ∈ Mf . We claim λfpi − λfq ≥ δ for all q ∈ ∂Ui. Choose a q ∈ ∂Ui such
that λfpi − λfq is minimal over all such choices, and choose any j �= i such that pj > q. Then
λfpi ≤ λfpj implies q is a turnaround of pi and hence λfpi − λfq = σ(pi), whereas λfpi > λfpj

implies that λfpi − λfq ≥ σ(pj). In either case, λfpi − λfq ≥ δ.

For each i = 1 . . . m, define Yi = µ−1
f Ui. Each Yi is open and connected, and has ∂Yi �= ∅. The sets

Y1 . . . Ym are pairwise disjoint.

µf maps each set ∂Yi onto ∂Ui. Therefore, fx − fy ≥ δ for any x ∈ µ−1
f pi and y ∈ ∂Yi.

Suppose that for each i = 1 . . . m there exists a maximum qi ∈ Mg such that µ−1
g qi ⊂ Yi. Then g

would have at least m maxima, a contradiction. Therefore we may choose an index k such that for
each of g’s maxima q ∈ Mg, µ−1

g q �⊂ Yk.

We now identify points x, y ∈ X such that |fx − fy| ≥ δ/2. First, for f ’s maximum pk choose any
x ∈ µ−1

f pk. Next, let q ∈ Mg be any maximum of g such that µgx ≤ q; then there exists r ∈ Mg,
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µgx ≤ r ≤ q such that (µ−1
g r ∩ ∂Yk) �= ∅. Finally, choose any y ∈ (µ−1

g r ∩ ∂Yk); then gx ≤ gy. But
fx − fy ≥ δ, so at least one of |fx − gx| ≥ δ/2 or |fy − gy| ≥ δ/2.

C Appendix: Every Simplification of a Piecewise Monotone

Function is Piecewise Monotone

Theorem C.1. Suppose f : X → R is piecewise monotone with monotone-light factorization µMλ.
Suppose K ⊂ M is an extremal collapse set, and suppose g is a simplification of f generated by K.
Then g is piecewise monotone. Furthermore, g has fewer monotone pieces than f .

Proof. Notation: g’s middle space and light factor are denoted MK and λK ; φK is the natural map
from M to MK .

We show that g satisfies definition 3.1, using the notation from that definition. In particular, we
show that MK � M∗

K is finite, i.e. that λK fails to be locally monotone at only finitely many points.

φK is one-to-one on M � K. Since M � K is open, and since λq = λKφKq for all q ∈ (M � K), it
follows that λ is locally monotone at q ∈ (M � K) if and only if λK is locally monotone at φKq. φK

maps each component Ki ⊂ K to a unique point pi ∈ MK ; λK may or may not be locally monotone
at pi. In any case, MK � M∗

K is finite, since K has only finitely many components.

Having shown that g is piecewise monotone, we now show that g has fewer monotone pieces than f .

Suppose U ⊂ M is a component of M∗ such that U ∩ (M � K) �= ∅. Since φK is one-to-one on
(M � K), there exists exactly one component UK ⊂ M∗

K such that φ−1
K UK ⊃ U . Furthermore, since

φK is monotone, for every component UK ⊂ M∗
K there exists at least component U ⊂ M such that

φ−1
K UK ⊃ U . Therefore, M∗

K has no more components than M∗.

Consider any component Ki ⊂ K. We claim that Ki contains at least two nodes of M ; therefore Ki

contains at least one component of M∗, and consequently M∗
K has strictly fewer components than

M∗. Suppose to the contrary that Ki contains only one node q ∈ M . Since λ is constant on ∂Ki,
q must be an extremum and must lie in K◦

i . But then φKKi is an extremum of MK , which means
that ∂Ki must be comprised entirely of extrema, contradicting the assumption that q is the only
node in Ki.

D Appendix: Transitivity of Simplification

Theorem D.1. Suppose f0, f1, f2 : X → R are piecewise monotone with, respectively, monotone-
light factorizations µiMiλi for i = 0, 1, 2. Suppose also that K1 ⊂ M0 and K2 ⊂ M0 are extremal
collapse sets such that f1 is a simplification of f0 generated by K1, and f2 is a simplification of f0

generated by K2. Then f2 is a simplification of f1 if and only if K2 ⊃ K1.

The theorem follows from the two lemmas below. Lemma D.2 implies that when f2 is a simplification
of f1 then K2 ⊃ K1; lemma D.3 states the converse.

Lemma D.2. Suppose f0, f1, f2 : X → R are piecewise monotone with, respectively, monotone-light
factorizations µiMiλi for i = 0, 1, 2. Suppose also that J ⊂ M0 and K ⊂ M1 are extremal collapse
sets such that f1 is a simplification of f0 generated by J , and f2 is a simplification of f1 generated
by K. Then J ∪ φ−1

J K is an extremal collapse set of M0, and f2 is a simplification of f0 generated
by J ∪ φ−1

J K.
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Proof. Suppose J =
∑

Ji and K =
∑

Kj . Let L = φ−1
J K and H = J ∪L. Let ψ = φJ ◦φK : M0 →

M2. We prove the lemma by showing that H is an extremal collapse set; MH = M2, and ψ = φH .

For any component Kj ⊂ K, denote Lj = φ−1
J Kj . Lj has nonempty interior since Kj does, and Lj is

connected since φJ is monotone. Thus the components of L are the Lj , in one-to-one correspondence
with the components of K.

For each component Ji ⊂ J , let pi = φJJi ∈ M1. Then, either: (1) there exists no component
Kj ⊂ K such that pi ∈ Kj ; or, (2) there exists a unique Kj such that pi ∈ K◦

j ; or, (3) there exists
a unique Kj such that pi ∈ ∂Kj . In cases 2 & 3, Lj ⊃ Ji. Thus the components of H comprise all
the Lj plus those Ji such that case 1 obtains.

To see that H is a collapse set, we show that λ0 is constant on the boundary of each component
Hk ⊂ H. This follows immediately when Hk = Ji such that case 1 holds, and when Hk = Lj such
that no pi ∈ ∂Kj . So, suppose Hk = Lj such that some pi ∈ ∂Kj . Note that λ0 is constant on ∂Ji,
with λ0∂Ji = λ1pi. Since λ1 is constant on ∂Kj , that constant value must be λ1pi. Therefore, λ0 is
constant on ∂Lj .

Since H is a collapse set, we may form the monotone quotient MH , identifying all points within
each component Hk ⊂ H; denote the natural map φH : M0 → MH .

Let h : M2 → MH be defined as follows: For p ∈ M2, note that φH is constant on ψ−1p; define
h(p) = φHψ−1p. Then h is a homeomorphism. Thus, we may identify MH = M2; this implies
φH = ψ.

To complete the proof, we must show that H is an extremal collapse set. Suppose component
Hk ⊂ H is such that p = φHHk is an extremum of M2. Then every q ∈ ∂φ−1

K p is an extremum of
M1 having the same sense as p, and for each such q, every r ∈ ∂φ−1

J q is an extremum of M0 having
this same sense.

Lemma D.3. Suppose f0, f1, f2 : X → R are piecewise monotone with, respectively, monotone-light
factorizations µiMiλi for i = 0, 1, 2. Suppose also that K1 ⊂ M0 and K2 ⊂ M0 are extremal collapse
sets such that f1 is a simplification of f0 generated by K1, and f2 is a simplification of f0 generated
by K2. Then f2 is a simplification of f1 when K2 ⊃ K1.

Proof. Let φ : M0 → M1 be the natural map, and let K = φK2. It follows that K is an extremal
collapse set of M1, and hence f2 is a simplification of f1.

E Appendix: Iterative Construction of Monotone-Light Fac-

torization for PD Functions

Given patch collection P = P1 . . . PN for X, and given sample locations D ⊂ X, suppose f : X → R

is PD; i.e. f = fPH for patch functions H = h1 . . . hN satisfying the conditions of definition 5.2.
We construct f ’s monotone-light factorization in N steps, incorporating one patch per step.

Denote the monotone-light factorization of each hi as µhi
Mhi

λhi
. For each n ≤ N denote Pn =

P1 . . . Pn, Xn = ∪Pn, and fn = f |Xn. Assume the Pi are indexed so that each Xn is connected.
Thus Xn is a Peano space; denote the monotone-light factorization of fn as µfn

Mfn
λfn

.

Step 1: The monotone-light factorization of f1 is µh1
Mh1

λh1
.

Step n > 1: Assume we have already constructed fn−1’s monotone-light factorization µfn−1
Mfn−1

λfn−1
.

Our goal is to construct fn’s monotone-light factorization µfn
Mfn

λfn
.
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A space Mn – which eventually proves to be fn’s middle space Mfn
– may be constructed from

the two middle spaces Mfn−1
and Mhn

in two steps. First, construct the topological disjoint union
Mfn−1

⊕ Mhn
. Second, define Mn as a quotient of this disjoint union: For every x ∈ Pn ∩ Xn−1,

identify the points µfn−1
x ∈ Mfn−1

and µhn
x ∈ Mhn

. Note that Pn ∩ Xn−1 is nonempty, since we
assume Xn = Pn ∪ Xn−1 connected.

Each point p ∈ Mn corresponds to a unique equivalence class p̃ of points from Mfn−1
⊕ Mhn

. The
equivalence class p̃ may be singleton, containing a point from either Mfn−1

or from Mhn
; or, the

equivalence class may be non-singleton, containing one point from Mhn
– only one, since hn is

monotone – and one or more points from Mfn−1
.

Consider any set S ⊂ Mn; denote S̃ = ∪
p∈S

p̃. Then S is open in Mn if and only if both Mfn−1
∩ S̃ is

open in Mfn−1
and Mhn

∩ S̃ is open in Mhn
.

We now construct fn’s monotone and light factors µfn
: Xn → Mn and λfn

: Mn → R. By
uniqueness of the monotone-light factorization it follows that Mn is in fact fn’s middle space.

Construct fn’s monotone factor µfn
as follows. Define µfn

: Xn → Mn by letting µfn
x be the unique

p ∈ Mn such that when x ∈ Xn−1 then µfn−1
x ∈ p̃, and/or when x ∈ Pn then µhn

x ∈ p̃. Now choose

any p ∈ Mn; then µ−1
fn

p is connected, and hence µfn
is monotone.

Construct fn’s light factor λfn
as follows. For each p ∈ Mn:

When p̃ = {q} with q ∈ Mhn
, then λfn

p = λhn
q.

When p̃ = {r} with r ∈ Mfn−1
, then λfn

p = λfn−1
r.

When p̃ = {q r1 . . . rm}, where q ∈ Mhn
and each ri ∈ Mfn−1

, then λfn
p = λhn

q = λfn−1
r1 =

· · · = λfn−1
rm.

It follows that λfn
is light.

F Appendix: PD Interpolation

We use the iterative construction of appendix E to prove the two results referred to in section 5.2.

Theorem F.1. Given patch collection P = P1 . . . PN for X, and given sample locations D ⊂ X,
suppose f : X → R is PD. Then:

(1) f is piecewise monotone.
(2) Every node of f ’s middle space is witnessed by D.

Proof. For result (1), we show by induction that f satisfies definition 3.1, using notation from both
that definition and from the iterative construction. In particular, for each n = 1 . . . N we show that
Mfn

� M∗
fn

is finite, i.e. that λfn
fails to be locally monotone at only finitely many points. Result

(2) also utilizes this induction.

Suppose f = fPH for patch functions H = h1 . . . hN .

For n = 1, both results follow immediately from definition 5.2. For n > 1, assume fn−1 is piecewise
monotone and every node of Mfn−1

is witnessed by D ∩ Xn−1.

p ∈ Mfn
is an extremum if and only if every point in p̃ is an extremum of Mhn

or Mfn−1
. It follows

that each extremum of Mfn
is witnessed by either D ∩ Pn or D ∩ Xn−1.

Choose any p ∈ Mfn
such that p̃ = {q} with q ∈ Mhn

. Then λfn
is locally monotone at p, since hn

is monotone.
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Choose any p ∈ Mfn
such that p̃ = {r} with r ∈ Mfn−1

. Then λfn
is locally monotone at p if and

only if λfn−1
is locally monotone at r. Since fn−1 is piecewise monotone, there exist only finitely

many such p for which λfn
fails to be locally monotone. Note that each such failure is witnessed by

D ∩ Xn−1.

Let p ∈ Mfn
be such that p̃ = {q r1 . . . rm}, where q ∈ Mhn

and each ri ∈ Mfn−1
. Then λfn

fails
to be locally monotone at p when λfn−1

fails to be locally monotone at one or more of r1 . . . rm.
Note that there are only finitely many p ∈ Mfn

such this failure occurs; note also that each such
failure is witnessed by D∩Xn−1. We continue the analysis with the assumption that λfn−1

is locally
monotone at each r1 . . . rm.

Because p̃ = {q r1 . . . rm}, it must be the case that µ−1
hn

q ∩ (Pn ∩ Xn−1) �= ∅. Let Q ⊂ P be all

patches Pj with j < n such that µ−1
hn

q ∩ (Pn ∩Pj) �= ∅, and let K be the collection of all components

K ⊂ (Pn ∩Pj) for any and all Pj ∈ Q such that µ−1
hn

q∩K �= ∅. Then K is finite; denote its elements
as K1 . . . Kk.

For each Ki, let Ii be the real closed interval fKi. When λhn
q ∈ I◦i for each i = 1 . . . k, then it

follows that λfn
is locally monotone at p. Therefore λfn

may fail to be locally monotone at p only
if there exists an index j such that λhn

q = min Ij or λhn
q = max Ij . Note that this condition is not

sufficient for failure of local monotonicity: additionally, we would need that for every neighborhood
U ⊂ Mhn

of q, µ−1
hn

q �⊂ (Pn ∩ Xn−1). However, the condition is sufficient to conclude that there are
only finitely many points p ∈ Mfn

upon which λfn
may fail to be locally monotone, and that each

failure is witnessed by D ∩ Xn.

G All PD Interpolations Have Identical Middle Spaces and

Light Factors

Theorem 5.3. Let D ⊂ X be sample locations, let F : D → R be scalar data, and let P be a patch
collection for X. Then any two PD functions f, f ′ interpolating F have identical middle spaces and
light factors.

Proof. Suppose f = fPH and f ′ = fPH′ , where P = P1 . . . PN , H = h1 . . . hN and H′ = h′
1 . . . h′

N .
Denote the monotone-light factorization of each hi and h′

i as, respectively, µhi
Mhi

λhi
and µh′

i
Mh′

i
λh′

i
.

For each n ≤ N denote Pn = P1 . . . Pn, Xn = ∪Pn, and fn = f |Xn and f ′
n = f ′|Xn. Assume the Pi

are indexed so that each Xn is connected. Xn is a Peano space and fn, f ′
n are piecewise monotone;

denote the monotone-light factorization of fn and f ′
n as, respectively, µfn

Mfn
λfn

and µf ′

n
Mf ′

n
λf ′

n
.

The theorem is proved by exhibiting a homeomorphism between f ’s and f ′’s middle spaces that
commutes with their light factors. The proof proceeds by induction, using the notation from the
iterative construction in Appendix E. We show that Property Z, below, holds for each of P1 . . .PN .
Since PN = P, this completes the proof.

Property Z. Suppose Q ⊂ P. Denoting XQ = ∪Q, suppose XQ is connected. Then XQ is a
Peano space; denote the monotone-light factorization of f |XQ and f ′|XQ as, respectively, µMλ and
µ′M ′λ′. Then Q has property Z when there exists a homeomorphism φ : M → M ′ such that:

(1) λ′ = φ ◦ λ
(2) Suppose patch P ∈ (P � Q) and patch Q ∈ Q are such that P ∩ Q �= ∅:

(2a) f(P ∩ Q) = f ′(P ∩ Q)
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(2b) µ′x′ = φµx for each x, x′ ∈ (P ∩ Q) such that fx = f ′x′.

We claim that for every Pi ∈ P the singleton patch collection {Pi} has Property Z. This follows
directly from the definition 5.2, because f |D = f ′|D.

In particular, P1 has Property Z, starting the induction with n = 1.

Suppose n > 1, and assume by induction that Pn−1 has Property Z; let φP(n−1) : Mfn−1
→ Mf ′

n−1

be the relevant homeomorphism. {Pn} also has Property Z; let φ{Pn} : Mhn
→ Mh′

n
be the relevant

homeomorphism.

We define homeomorphism φPn : Mfn
→ Mf ′

n
using the two homeomorphisms φP(n−1) and φ{Pn}.

Let p ∈ Mfn
; then φPnp = p′, where:

When p̃ = {q} with q ∈ Mhn
, then p′ ∈ Mh′

n
is the unique point having p̃′ = {φ{Pn}q}.

When p̃ = {r} with r ∈ Mfn−1
, then p′ ∈ Mfn−1 is the unique point having p̃′ = {φP(n−1)r}.

When p̃ = {q r1 . . . rm}, where q ∈ Mhn
and each ri ∈ Mfn−1

, then p′ ∈ Mfn−1 is the unique
point having p̃′ = {φ{Pn}q φP(n−1)r1 . . . φP(n−1)rm}.

We complete the proof by showing that φPn satisfies the conditions of Property Z.

(Z.1) By construction.
(Z.2) Suppose m > n such that patch Pm has nonempty intersection with patch Pi, where 1 ≤

i ≤ n.
(Z.2a) Since Property Z.2a holds for {Pi}, f(Pm ∩ Pi) = f ′(Pm ∩ Pi).
(Z.2b) Choose any x, x′ ∈ (Pm ∩ Pi) such that fx = f ′x′. When i = n then φ{Pn}µhn

x =
µh′

n
x′, since Property Z.2b holds for {Pn}. When i < n then φP(n−1)µfn−1

x = µf ′

n−1
x′,

since Property Z.2b holds for {Pn−1}. In either case, when µfn
x = p ∈ Mfn

, then
µf ′

n
x = φPnp, where p′ = φPnp ∈ Mf ′

n
is the unique point such that φ{Pn}µhn

x ∈ p̃′

and/or φP(n−1)µfn−1
x ∈ p̃′.

H Appendix: Approximation Error Bound for Piecewise Mono-

tone Data

Theorem 5.5. Suppose F, G : X → R are piecewise monotone data, where G has fewer extrema
than F . Then e(F, G) ≥ σ(F )/2.

Proof. The proof is similar to the proof of theorem 3.3. Denote F ’s middle space as MF . Suppose
G has fewer maxima than F . Let p1 . . . pm ∈ MF be F ’s maxima, and let δ = min

i
σ(pi). We show

e(F, G) ≥ δ/2. Since δ ≥ σ(F ), the theorem follows.

Let f, g be PD interpolations of, respectively, F, G. Denote the monotone-light factorizations of
f, g, respectively, as µfMfλf , µgMgλg. Note that Mf = MF , and so f ’s maxima are p1 . . . pm.

For each of f ’s maxima pi, define Ui ⊂ Mf to be the largest neighborhood of pi such that pi �= q ∈ Ui

implies pi > q, and define Yi = µ−1
f Ui. As in the proof of theorem 3.3, the sets Y1 . . . Ym are pairwise
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disjoint, and for each index i: ∂Yi �= ∅; f is constant on each component of ∂Yi; and fx − fy ≥ δ
for any x ∈ µ−1

f pi and y ∈ ∂Yi.

Choose any Yi and suppose there exists a patch P ∈ P is such that Yi ∩ P ◦ �= ∅ and ∂Yi ∩ P ◦ �= ∅.
We note the following properties: Choose any component C ⊂ (∂Yi ∩ P ) such that C ∩ P ◦ �= ∅. f
is constant on C. Since f |P is monotone, P � f−1fC comprises at least one component K1 and
perhaps a second component K2, where x ∈ K1 implies fx > fC and x ∈ K2 implies fx ≤ fC.
Note that Yi ∩ P ◦ ⊂ K1. It follows that the component C is unique, i.e. no other component of
∂Yi ∩ P intersects P ◦.

For each i, define Zi as the interior of the union of all patches P ∈ P such that Yi ∩ P ◦ �= ∅.

Choose any maximum pi of f . We claim fx− fy ≥ δ for any x ∈ µ−1
f pi and any y ∈ ∂Zi. Let P be

any patch such that Yi ∩P ◦ �= ∅ and ∂Zi ∩P �= ∅. Then either Yi ⊃ P ◦ or ∂Yi ∩P ◦ �= ∅. In the first
case ∂Yi ⊃ (∂Zi ∩ P ), so y ∈ (∂Zi ∩ P ) implies y ∈ ∂Yi and so fx − fy ≥ δ. In the second case, let
C be the unique component of ∂Yi ∩ P such that C ∩ P ◦ �= ∅; then y ∈ (∂Zi ∩ P ) implies fy ≤ fC,
and thus fx − fy ≥ δ.

We claim the sets Z1 . . . Zm are pairwise disjoint. To see this, suppose that for some patch P ∈ P
there exist indices i �= j such that Yi ∩ P ◦ �= ∅ and Yj ∩ P ◦ �= ∅. It follows that ∂Yi ∩ P ◦ �= ∅ and
∂Yj ∩ P ◦ �= ∅. Let Ci be the unique component of ∂Yi ∩ P such that Ci ∩ P ◦ �= ∅ and let Ki be
the component of P � Ci containing Yi ∩ P ◦; define Cj and Kj similarly. Then fCi ≤ fCj implies
Ki ⊃ Kj , and fCj ≤ fCi implies Kj ⊃ Ki, neither of which is possible since Yi ∩ Yj = ∅.

Suppose that for each i = 1 . . . m there exists maximum qi ∈ Mg such that µ−1
g q ⊂ Zi. Then g

would have at least m maxima, a contradiction. Therefore we may choose an index k such that for
each of g’s maxima q ∈ Mg, µ−1

g q �⊂ Zk.

We now identify points x, y ∈ D such that |fx − fy| ≥ δ/2. First choose any x ∈ (D ∩ µ−1
f pk).

Next, let q ∈ Mg be any maximum of g such that µgx ≤ q; then there exists r ∈ Mg, µgx ≤ r ≤ q
such that µ−1

g r∩ ∂Zk �= ∅. Choose any z ∈ µ−1
g r∩ ∂Zk; then there exist patches P, Q ∈ P such that

z ∈ P ∩Q, Yk ∩P ◦ �= ∅ and Yk ∩Q◦ = ∅. Note that P ∩Q ⊂ ∂Zk. Let K be the component of P ∩Q
containing z, and let y ∈ (D ∩ K) be such that gy = max gK. Then gx ≤ gy. But fx − fy ≥ δ, so
at least one of |fx − gx| ≥ δ/2 or |fy − gy| ≥ δ/2.

I Appendix: Every Flat Simplification of Piecewise Mono-

tone Data is Piecewise Monotone

Theorem I.1. Let D ⊂ X be sample locations, and let P be a patch collection covering X. Choose
any PD function f , and let K be any extremal collapse set for f . Then K’s flat simplification fK

is PD.

Proof. Suppose K =
∑

i=1...n

Ki. Then the flat simplification fK can be sequentially derived by

flattening the components Ki one at a time: Letting K ′ =
∑

i=2...n

Ki, then fK = (fK1
)K′ . Therefore

it suffices to prove the theorem for K connected.

Denote f and fK ’s monotone-light factorizations, respectively, as µMλ and µKMKλK .

Consider any patch P ∈ P; we show that fK |P satisfies definition 5.2, utilizing three cases regarding
P ’s intersection with µ−1K.

When P ∩ µ−1(K) = ∅ then fK |P = f |P , so definition 5.2 is satisfied.
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When P ⊂ µ−1(K◦) then fK is constant on P , so definition 5.2 is satisfied.

When P ⊂ µ−1(∂K) is nonempty, then f |P monotone and f constant on µ−1(∂K) imply P �

µ−1(∂K) has either one or two components. Since f |P �= fK |P , f and fK differ on exactly one
these components; denote this component as R. f is non-constant on R, whereas fK is constant
on R. Therefore fK |P is monotone, and the points of D ∩ P that witnessed f |P ’s minimum and
maximum also witness fK |P ’s minimum and maximum, and similarly for the components of P ’s
intersections with other patches in P.
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