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ABSTRACT
We propose a neural evolution structure (NES) generation methodology combining artificial neural networks and evolutionary algorithms
to generate high entropy alloy structures. Our inverse design approach is based on pair distribution functions and atomic properties and
allows one to train a model on smaller unit cells and then generate a larger cell. With a speed-up factor of ∼1000 with respect to the special
quasi-random structures (SQSs), the NESs dramatically reduce computational costs and time, making possible the generation of very large
structures (over 40 000 atoms) in few hours. Additionally, unlike the SQSs, the same model can be used to generate multiple structures with
the same fractional composition.

Published under a nonexclusive license by AIP Publishing. https://doi.org/10.1063/5.0049000

I. INTRODUCTION

Multicomponent alloy systems, such as High Entropy Alloys
(HEAs) and Bulk Metallic Glasses (BMGs), have been in the physi-
cal metallurgy research spotlight over the past decade.1–3 HEAs are
particularly interesting because of their superior structural and func-
tional properties.2,4–7 In contrast to the conventional notion of alloy-
ing with a principal element (solvent) and alloying elements (solute),
HEAs have four or more principal elements in near-equiatomic
compositions.8–11

Computational modeling is necessary for targeted and rapid
HEA discovery and application.12–17 Constructing an appropri-
ate atomic structure is the first step toward reliable predictions
of materials properties. This includes predicting thermodynamic,
kinetic, electronic, vibrational, and magnetic properties18–24 with
first-principles method based simulation methodologies, such as
Density Functional Theory (DFT). Indeed, DFT modeling of com-
plex, random alloys requires defining a fixed-size cell,25–28 which

can introduce non-random periodicity. The inherent local dis-
order of HEAs makes this a non-trivial task.29–31 Special quasi-
random structures (SQSs) designed to approximate the radial dis-
tribution function of a random32,33 system is a quintessential con-
cept to generate realistic random structures when modeling dis-
ordered alloys with atomic resolution. Modern SQS generation
approaches utilize techniques such as cluster expansions (CEs) in
combination with Monte Carlo (MC) algorithms. Several codes are
available in the literature, including ICET,34 ATAT MCSQS,35,36

and Supercell,37 which can generate SQSs for multi-component
systems. Although very powerful, these approaches have signifi-
cant computational overhead. A detailed analysis of the compu-
tation time with ICET with the number of atoms is presented
in Sec. III A. Along with the computational complexity, present
SQS generating techniques require the optimization of multiple
parameters, including cluster space cutoffs, number of optimization
steps, and simulated annealing temperatures for each system.34,35

These create a serious bottleneck in exploring multi-component
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alloy systems using first-principles simulations and molecular
dynamics.

An alternative is to use machine learning models to achieve
the desired property.38–42 Recent works have used surrogate mod-
els,43,44 evolutionary algorithms40,42,45–48 (including canonical corre-
lation analysis and cuckoo search), and generative adversarial net-
works39,49 to predict crystal structures and/or optimize the high
entropy alloy composition. The inverse design framework that com-
bines artificial neural networks (ANNs) and evolutionary algorithms
(EAs) has also had success50,51 in generating structures that optimize
some objective functions.

The generated structures can be used to collect descriptors
such as structural stability, lattice vibrational property, electronic
structure, elasticity, and stacking fault energy.

In this work, we build on previous work and present a neu-
ral evolution structure (NES) generation algorithm that combines
ANNs and EAs to enable the search of HEAs that optimize the

configurational entropy. The NES generation algorithm differs from
other approaches such as the cuckoo search48 because no DFT cal-
culations are required, and it allows one to train a model on smaller
unit cells and then generate a larger cell.

In Sec. II, we outline our methodology including the general
workflow of the algorithm, the crystal representation, and the fit-
ness (or objective) functions. In Sec. III, we present our results. This
includes a comparison of our algorithm with SQS with respect to
performance and timing and analysis of the optimization parame-
ters. In Sec. IV, we summarize and propose future work based on
our findings.

II. METHODS
A. General workflow

In this work, we search for HEA structures that minimize the
segregation or the maximum-entropy configuration. To do so, we

FIG. 1. Sketch of the algorithms required for the NES generation. (a) Key steps of the NES training process. (b) Road-map of the NES generation process. From left to right:
an input structure (a template mesh with N sites), a representation of the N input arrays, the ANNs, a representation of the N output vectors, atom-type associated with each
output vector, and the generated configuration. (c) Sketch of the mutation step. Wi is a weights matrix, and 25% represent the percentage of the matrix elements mutated.
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consider configurations of HEAs that contain M different atomic
species over N lattice sites. The workflow is summarized in
Fig. 1, which combines ANNs and EAs. This methodology was
used to optimize the doping of graphene-based three-terminal
devices for valleytronic applications.51 This workflow can be
divided into two processes: the training process [Fig. 1(a)] and
the generation process [Fig. 1(b)]. After defining the crystal
structure (FCC, BCC, HCP, etc.), the fractional composition
(AαBβCγDζ Eη), and the size of the supercell, the algorithm is as
follows:

1. Place atoms randomly on the lattice following the fractional
composition for N structure copies.

2. Initialize M ANN policies for each structure copy. One could
have one ANN policy per structure or average over many
ANN policies.

3. Generate input arrays (one input array per lattice site) based
on the local environment of the lattice sites and feed the
vectors into the ANN policies.

4. Based on the outputs of the ANN policies, reassign atoms to
sites in the crystal for each structure copy.

5. Calculate the fitness function across each structure copy, sort
from least to greatest, and order the associated structures.

6. Select the top 25% best-performing structures and randomly
select and mutate the weights of the ANN policy to generate
the remaining 75% of the population.

7. Go to step 2.

The training process is repeated until convergence is reached.
The input vector is based on the environment of a lattice. The first
element is a vector describing the properties of the atom (i.e., the
atomic number, valence electrons, etc.) for the selected lattice site.
The remainder of the input vector comes from the concatenation
of the atomic properties of the neighboring and next-nearest neigh-
boring lattice sites. The input vector, therefore, changes based on the
lattice structure. The final input vector is flattened such that it can be
passed into the ANN policy. We used the Softmax activation func-
tion to convert the ANN output vector into a vector of probabilities
of assigning a certain chemical element to a certain lattice site. The
index with the highest probability is extracted and matched to the
list of elements (“A,” “B,” “C,” “D,” “E,” . . .), and the corresponding
element is assigned to the considered site of the training structure
(step 6).

Steps 3–6 are iterated over the remaining lattice sites until a new
configuration is generated [Fig. 1(b)]. For each structure, M different
policies are created, and then for each ANN policy, N configurations
are generated and the corresponding fitness functions are computed
(step 7). Finally, the average fitness of each policy is evaluated and
the averages are sorted from least to greatest.

The top performing 25% ANN policies are kept, and the rest
of the population are eliminated. To reproduce the next generation,
the ANN policies from the top performers are randomly selected,
and the weights are cloned and randomly mutated to generate the
remaining 75% [Fig. 1(c)]. New atomic configurations are gener-
ated, and the process is repeated. The random mutations consist of
adding a random matrix to the parents’ weight [see the following
equation]:

⎛
⎜⎜
⎝

w1
w2
⋮
wl

⎞
⎟⎟
⎠

new

=
⎛
⎜⎜
⎝

w1
w2
⋮
wl

⎞
⎟⎟
⎠

old

+ μ ⋅
⎛
⎜⎜
⎝

u1
u2
⋮

ul

⎞
⎟⎟
⎠

, (1)

where μ = 0.1 is a small parameter (similar to a learning rate),
ui ∈ [−1, 1] is a random number, and l is the number of weights. In
this work, the number of weights is equal to the number of elements
in an input array. All NE calculations in this report were run using a
HP Z4 G4 Workstation (Intel Xeon, 16 × 4 GB RAM), whereas the
SQS was generated using an 80 core single node (Intel Xeon Gold
6248 CPU @ 2.50 GHz) with 1 TB RAM.

B. Representation of crystal structures
We now describe the generation of the input vectors for each

lattice site. The central idea of our approach is to use the pair dis-
tribution function (PDF) to characterize a crystal structure. Indeed,
for crystals, the number of nearest neighbors and their positions
depend on the crystal structure and the lattice parameters, respec-
tively. In the FCC structure, each atom has 12 nearest neighbors
(coordination number) at a distance d = a

√
2/2, 6 nearest neigh-

bors at d = a, and 24 nearest neighbors at d = a
√

3/
√

2. In the
BCC structure, each atom has 8 nearest neighbors at a distance
d = a

√
3/2, 6 nearest neighbors at d = a, and 12 nearest neighbors at

d = a
√

2.
The number of a-type atoms around an b-type atom is

given by

Nab(rmin, rmax) = 4πcbρ0∫
rmax

rmin

r2gab(r)dr, (2)

where rmin and rmax are the two radii values between which the coor-
dination number is to be calculated and cb is the fractional composi-
tion of b. The partial PDF gab(r) between types of particles a and b
reads

gab(r) =
N

ρ0NaNb

Na

∑
i=1

Nb

∑
j=1
⟨δ(∣ri − rj∣ − r)⟩, (3)

where δ is a Dirac δ-function and ρ0 = N/V is the average density.
Each crystal site is represented by an array in which the ele-

ments are the atomic properties of the chemical element occupying
the site and those of its nearest neighbors (Fig. 2). The number of
rows corresponds to the number of nearest neighbors (NNs) plus
1 (NN + 1), and the number of columns is equal to the number of
atomic properties describing each chemical element (P1, P2, . . . , Pn).
The number of input vectors is equal to the number of sites in the
crystal structure. The properties of the chemical element occupying
the ith site are always stored in the first row of the ith input vector.
These atomic properties can be classified into quantitative and qual-
itative variables. The quantitative variables include the atomic num-
ber, the number of valence electrons, the electronegativity, the oxi-
dation state, and the atomic radius. The qualitative variables include
the row and the group (metal, transition metal, alkali, and metalloid)
in the Periodic Table. They are represented by integer and Boolean
numbers, respectively.
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FIG. 2. Sketch of the NES input vector for a single crystal site. The Pi column
corresponds to the i-property and NN is the number of nearest neighbors.

C. Fitness functions
Our objective is to reduce the segregation of chemical ele-

ments or to maximize the entropy of the configuration. Examples
of equiatomic two- and four-component high entropy configura-
tions are presented in Fig. 3 (top row) along with an equiatomic
two-component random configuration (bottom row). Character-
istics of four-component high entropy configurations have been
studied using a 4 × 4 × 4 supercell (64 atoms), and four func-
tions characterizing the disorder in the crystal structures have
been derived. For a site occupied by an A-type atom, we note the
following:

● The first fitness function minimizes the number of A-type
atoms occupying the nearest neighbor site in the first coor-
dination shell Naa. Knowing that the target is 0, the fitness
defined as the root-mean-square deviation from 0 is

F1
AA =∑

a

¿
ÁÁÀ∑Na

i=1 (N i
aa − 0)2

Na
. (4)

● The second fitness function maximizes the number of A-
type atoms occupying the nearest neighbor site in the
second coordination shell Naa. If NN2 is the number of

FIG. 3. Example of configurations for equiatomic two- and four-component sys-
tems. Top: high entropy configurations. Bottom: random configurations.

nearest neighbors in the second coordination shell, then the
fitness function reads

F2
AA =∑

a

¿
ÁÁÀ∑Na

i=1 (N i
aa −NN2)2

Na
. (5)

● The third fitness function equalizes the number of other
types of atoms occupying the nearest neighbor site in the first
coordination shell Nab and reads

FAB =∑
a≠b

¿
ÁÁÀ∑Nb

i=1 [N i
ab − (c ⋅NN1)]

2

Nb
, (6)

where c = ca + [cb/(s − 1)]. ca and cb are the target fractional
compositions of a and b, respectively, and s is the number of
atom-types. NN1 is the number of nearest neighbors in the
first coordination shell.

● The last fitness function checks how the maximum num-
ber of each type of atom (Na, Nb, . . .) deviates from the
target composition. These numbers are proportional to the
fractional composition

FN =
√
∑a[Na − (ca ⋅N)]2

s
. (7)

The minimum of the total fitness [Eq. (8)] depends on
both the fractional composition and the number of compo-
nents, and it is not necessarily equal to 0. As an example, for
a two-component system, the minimum will never be equal
to 0,

F = F1
AA + F2

AA + FAB + FN . (8)

III. RESULTS AND DISCUSSION
A. NES computation time

All calculations were carried out on equiatomic CuαNiβCoγCrζ
FCC alloy structures. Important aspects of the algorithm are the
optimization and generation times, which depend on three param-
eters: (i) the number of policies optimized simultaneously, (ii) the
size of the input structures, and (ii) the number of ANNs included
in each policy. The three parameters have been investigated, and the
results are presented in Fig. 4.

First, the average training time per generation as a function of
the size of the input structure is shown in Fig. 4(a). This figure shows
that the training time increases slowly with the size of the input
structure (ratio of 1.4).

Second, Fig. 4(b) shows the average training time per genera-
tion as a function of the number of policies optimized. One observes
a linear increase (r = 0.99). In addition, the slope also increases with
the number of ANNs reaching 0.04, 0.05, and 0.06 for 1, 5, and 10
ANNs, respectively.

Finally, the average time per generation as a function of the size
of the input structure is shown in Fig. 4(c). It increases slowly with
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FIG. 4. NES computation time. (a) Average training time vs the size of input
structure. Calculations were carried out using one policy made with one ANN. (b)
Average training time per generation vs the number of policies. Calculations were
carried out using a structure of 64 atoms. (c) Average NES generation time as a
function of the size of the system. (d) ICET-SQS generation time as a function of
the size of the system.

the size of the structures, going from a few tens of seconds (up to
256 atoms) to a few hundreds of seconds around 8000 atoms (ratio
of 0.3).

Moreover, by comparing Figs. 4(a)–4(d), we observe that the
SQSs scale up linearly [Eq. (9)] with time, whereas the NESs fol-
low a x2 polynomial behavior (but with a very low value of a and
b) [Eq. (10)]. Knowing that the number of steps toward convergence
increases with the increase in the number of atoms, and taking into
account that the NE is trained on small clusters, it will always require
fewer steps. Additionally, NESs can be sped up with multiprocess-
ing. Taking into account all the previous remarks, we can derive a

FIG. 5. NES training curves. (a) Optimization of the scaling factor μ. (b) Opti-
mization of the number of policies trained simultaneously. (c) Optimization of the
number of ANNs considered in each policy. Calculations were carried out on the
input structure of 64 atoms and for an equiatomic CuαNiβCoγCrζ .
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FIG. 6. Histogram of the root-mean-square deviations (RMSDs) from the target
fractional composition. The RMSD values were computed with Eq. (11) derived
from Eq. (7).

speed-up factor of ∼1000 by comparing the x2 coefficients in the
following equations:

SQSs: y = 1.1 ⋅ 10−2x2 + 1.2 ⋅ 101x + 3.0 ⋅ 102, (9)

NESs: y = 5.5 ⋅ 10−5x2 + 6.5 ⋅ 10−4x + 2.1 ⋅ 10−2. (10)

B. Convergence of NESs
In addition to the computation time, we now analyze the con-

vergence of our algorithm. We show the results of optimizations
with different parameters in Fig. 5. These parameters include μ
[Fig. 5(a)], the number of policies trained [Fig. 5(b)], and the num-
ber of ANNs considered in each policy [Fig. 5(c)]. First, we inves-
tigated three values of μ (0.01, 0.1, and 1) and found that the best
convergence is reached with 0.1. Second, the increase in the num-
ber of policies considered accelerates the convergence. Finally, in
Fig. 5(c), we see that increasing the number of ANNs per policy does
not improve the convergence rate but improves the quality of the
solution.

However, it is worth noting that the minimum never reaches
0 for all three figures. For an equiatomic four-component system,
the total fitness of the maximum-entropy configuration is equal
to 0. The NES training process does not always converge to this
maximum-entropy configuration, thus introducing imperfections
that can be characterized by evaluating the deviation from the target

FIG. 7. Example of the Cu0.234Ni0.320Co0.226Cr0.220 NES structure (40 000 atoms).
The model was trained on an eight-atom input-structure, and the generation was
completed in 328 min.

composition. One hundred equiatomic CuαNiβCoγCrζ structures
with 256 atoms were generated using the same NES model, and
the root-mean-square deviation (RMSD) from the target fractional
composition was computed as

RMSD =
√
∑a[c′a − ca]2

s
, (11)

where ca and c′a are the target fractional composition of the a-type
atom and the fractional composition of the a-type in the NESs and

FIG. 8. NES vs SQS. (a) Selected 64-atom equiatomic CuαNiβCoγCrζ NES struc-
tures. (b) Comparison of partial PDFs [Eq. (2)]. Each bar corresponds to the
average over ten structures of the area under the first peak of gab(r). (b) Selected
computed properties. C11 and C12 are the elastic constants (GPa), B is the bulk
modulus (GPa), and v is Poisson’s ratio (×100). Properties were computed using
the classical molecular dynamics.
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s is the number of atom-types. The result is plotted in Fig. 6. The
RMSD values vary from 0.03 to 0.18, and fractional composition
associated with the minimum value is Cu0.234Ni0.258Co0.258Cr0.250.
The true value in this example is Cu0.25Ni0.25Co0.25Cr0.25. To this
end, multiple structures should be optimized in parallel and one
should select the structure with the highest score (low fitness
function).

C. FCC multicomponent alloys
NES generation was applied to build equiatomic CuαNiβCoγCrζ

FCC alloy structures, and the performance was then evaluated by
generating a structure with 40 000 atoms (Fig. 7). The model was
trained with a 2 × 2 × 2 cell (eight atoms), and the generation was
completed in 328 min. In addition, a number of 64-atom structures
were generated and selected properties were compared to ICET-
SQS34 (Fig. 8). Figure 8(a) shows selected structures used for the
comparison.

The partial PDFs of the structures are compared in Fig. 8(b).
Each bar corresponds to the average of the area under the first
peak of gab(r) (coordination numbers). The standard deviations are
plotted in red. The purple bars represent NES, and the blue bars
represent SQS. The analysis of the chart shows that NES is almost
equivalent to SQS. Indeed, for each pair, the values of gab(r) for
NES are almost always within one standard deviation of the SQS
values.

Second, the elastic constants, the bulk modulus, and Pois-
son’s ratio were also investigated using classical molecular dynamics.
These simulations were carried out using the LAMMPS molec-
ular dynamics simulator,52 and an Embedded Atom Method
(EAM) potential was used to define the inter-atomic interac-
tions.53 ICET-SQS and NES of equiatomic CuαNiβCoγCrζ were
systematically deformed, and the change in virial stress tensor
was used to calculate the elastic constants. Each deformed struc-
ture was energetically minimized using the conjugate gradient
algorithm54 before performing the stress calculations. All simu-
lations were performed at 0 K. The bar chart of these prop-
erties is plotted in Fig. 8(b). All of the calculated values from
the NES structure are within one standard deviation of the SQS
method.

IV. CONCLUSIONS
We introduce and utilize a neural evolution structure (NES)

generation methodology combining artificial neural networks
(ANNs) and evolutionary algorithms (EAs) to generate High
Entropy Alloys (HEAs). Our inverse design approach based on pair
distribution functions and atomic properties dramatically reduces
computational cost, allowing for the generation of very large struc-
tures with over 40 000 atoms in few hours. The computation time
is reduced with a speed-up factor of about 1000 with respect to
the SQSs. Unlike the SQSs, the same model can be used to gen-
erate multiple structures with the same fractional composition. A
number of NE structures have been used to compute selected prop-
erties, such as the elastic constants, the bulk modulus, and Poisson’s
ratio, and the results are similar to those of structures generated with
SQSs.
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