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Abstract

Laser machining is a highly flexible non-contact manufacturing technique that has been employed
widely across academia and industry. Due to nonlinear interactions between light and matter,
simulation methods are extremely crucial, as they help enhance the machining quality by offering
comprehension of the inter-relationships between the laser processing parameters. On the other hand,
experimental processing parameter optimization recommends a systematic, and consequently time-
consuming, investigation of the available processing parameter space. An intelligent strategy is to
employ machine learning (ML) techniques to capture the relationship between picosecond laser
machining parameters for finding proper parameter combinations to create the desired cuts on
industrial-grade alumina ceramic with deep, smooth and defect-free patterns. Laser parameters such
as beam amplitude and frequency, scanner passing speed and the number of passes over the surface, as
well as the vertical distance of the scanner from the sample surface, are used for predicting the depth,
top width, and bottom width of the engraved channels using ML models. Owing to the complex
correlation between laser parameters, it is shown that Neural Networks (NN) are the most efficient in
predicting the outputs. Equipped with an ML model that captures the interconnection between laser
parameters and the engraved channel dimensions, one can predict the required input parameters to
achieve a target channel geometry. This strategy significantly reduces the cost and effort of
experimental laser machining during the development phase without compromising accuracy or
performance. The developed techniques can be applied to a wide range of ceramic laser machining
processes.

1. Introduction

Ceramics are known for their outstanding hardness, thermal performance and corrosion resistance. These
properties make them a suitable candidate for a wide range of applications from automotive industry and space
applications to nuclear industry and biomedicine, see for example the review by Greil [1]. However, their
typically highly oriented crystalline structure results in brittleness making them unamenable to various
processing techniques and limits their machinability [2]. Due to this inherent brittleness, traditional subtractive
manufacturing techniques induce microcracks along the cut, which greatly reduces the components’ strengths,

© 2022 The Author(s). Published by IOP Publishing Ltd
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especially when subjected to heating cycles [3—7]. This has slowed down their adaption in complex parts for
applications such as automobile engines, heat exchangers, rocket propulsion components, and gas
turbines [2, 8].

Laser machining is a processing technique which has attracted attention due to its convenience, efficiency
and high precision, as it overcomes many of the problems of subtractive manufacturing [9, 10]. In laser
processing, the material is exposed to a high-energy beam causing it to ablate rapidly, resulting in superior cut
quality and little to no microcrack formation or thermally affected zone [11-14]. This capability requires
extremely precise and reproducible processing parameter control.

Despite its advantages, laser machining does not come without challenges. One particular one, and the topic
of this research, is how to find the optimal laser processing parameters. Typically, the parameter optimization
process must be repeated for any changes in the laser system or material type, which is cambersome and time-
consuming. To improve and systematize the search, techniques such as gradient search, simulation methods,
and machine learning have been developed to find optimal processing parameters [ 15, 16]. In the gradient search
method, the mismatch between the achieved and desired machining qualities is minimized by changing the
value of one processing parameter at a time. Gradient search is a deterministic optimization method; thus, the
search will terminate when the algorithm finds any minimum,/maximum, local or global. As a result, gradient
search also depends on the initial values and is highly unlikely to find the global optimum; therefore, gradient
search does not eliminate the need to perform systematic experimental optimization.

The simulation method [16] models the complete laser machining process to determine the optimal
combination of parameters. This requires the ability to simulate realistic experiments of light-matter
interactions, which is a very complex task. It should also be noted that oversimplification in such models
through crude approximations can be detrimental to the simulation efficiency [17].

Machine learning (ML) is a new alternative to predict the behaviour of a complex system trained by a small
experimental dataset [15, 18-22]. This strategy has been shown to be effective in modelling laser machining
[23-28], and it is significantly faster in terms of computational speed. Different ML methods have been
demonstrated to be able to model physical phenomena directly from experimental data without considering any
underlying physical equations [10, 26, 29].

For instance, McDonnell et al [15] applied ML techniques to grey cast iron and studied the height of the
laser-produced crown and dimple depth as a function of the laser pulse energy, its repetition rate and the
number of pulses. After comparing the performances of the different algorithms using the full range of each laser
parameter, they achieved more accurate predictions using the neural network (NN) model. As another example,
Teixidor et al [27] used ML techniques on another metallic system (hardened steel) to create shallow
microchannels. They studied the material removal rate as a function of scanning speed, laser pulse intensity and
frequency and found NN and decision trees algorithm to be more efficient than their other tried models for
predicting channel geometry. Based on their experimental data, they declared the scanning speed and pulse
intensity the most and the pulse frequency as the least relevant parameters for predicting depths. As a final
example, Dhupal et al [28] applied ML to ceramics machining using aluminum titanate and an Nd:YAG laser.
They investigated the effect of input parameters such as lamp current, laser pulse frequency and width, as well as
the cutting speed and air pressure on creating microgrooves. Limited to a fixed focal position, they reported
second-order equations relating outputs to the input parameters to find the optimized inputs required for each
target output.

In this work, ML techniques were employed to predict the dimensions of the engraved channels on alumina
ceramics using ytterbium picosecond fiber laser. Different ML algorithms, including linear/polynomial
regressions, XGBoost (XGB) [30] which is a tree-based algorithm, and Multi-Layer Perceptron Neural Networks
(NN) [31] methods, were compared based on their success in predicting the channel dimensions as a function of
laser parameters. Based on the comparison, using industrial-grade alumina ceramics, an NN-based model was
developed to identify the laser processing parameters for fabricating high-quality channel (cut) architectures of
desired properties. The performance criteria are the channels’ depth and top and bottom widths. Although the
published literature contains studies on the use of ML techniques for material removal applications [23], the
number and scope of such studies on ceramics are limited. Furthermore, unlike previous studies [15, 28], the
current work is not restricted to a single channel but extends to predicting the dimensions of the different
channels with triangular or trapezoidal cross-sections. Finally, a reverse prediction is presented as an example of
a practical application, where target channels for a given application are manufactured with the assistance of ML
techniques in determining the required input parameters.

This paper is organized as follows. In section 2, the model and experimental procedure are briefly explained,
and the interdependencies of the laser parameters are investigated. Section 3 focuses on ML methodology, which
includes a brief explanation of the employed ML algorithms, preprocessing and model evaluation techniques. In
addition, the performances of different ML algorithms is evaluated. The ML section continues with an XGB-
determined hierarchy of laser parameters for predicting outputs (feature importance) and ends with an

2



10P Publishing

Phys. Scr. 98 (2023) 015834 R Behbahani et al

Laser chamber Laser chamber
(a ) | " Pulse compressor

/ Scannef ;

Monitor

Dust Collector
::

(b)..... . () .Jopwidth (Top-w)

Sample
XY Stage holder

Vector
speed

Bottom width (Bot-w)

Figure 1. (a) Schematic of the laser system and the equipment. (b) Schematic of the circular wobble pattern illustrating the laser pulses
and direction, wobble amplitude, wobble pitch, linear speed, and vector speed. (c) Schematic of a trapezoidal cut. The channel cross-
section is triangular when the bottom width is negligible.

exploration of the NN structure. Finally, in section 4, the performance of the NN model is evaluated by applying
it to a practical scenario, where target channel geometries are selected, and the laser input parameters are
predicted (reverse prediction). Input parameter combinations are produced through Generative Adversarial
Network (GAN) [32], and results of this practical evaluation are compared with experiments. The paper finishes
with conclusions in section 5. Supplementary Information includes more detailed graphs of figure 2—5, 10. Also,
in tables are reported the experimental data collected and used in this study and performance details of different
neural network structures.

2.Model and experimental data

In general, ML applications in laser machining studies are accomplished in three stages: (1). Collect
experimental data containing the independent variables corresponding to laser machining outputs, (2). train ML
models with experimental data to predict the output parameters as a function of inputs, and (3). provide the
trained model with a set of unseen data to predict their associated outputs [26]. In this section, a brief
explanation of the experimental setup and the procedure for data collection are explained. In addition, as a
preliminary analysis, the effect of laser parameters on the channel dimensions is investigated qualitatively. ML
models are discussed in section 3.

2.1. Experimental procedure

Thelaser used in this study is a ytterbium picosecond fiber laser (YLPP-25-3-50-R, IPG Photonics, USA),
schematically shown in figure 1(a), with a maximum average power of 50 W and a laser beam waist diameter of
17 ;o m. The laser produces a Gaussian spatial profile beam with 3 pslong 25 1] pulses of 1030 nm wavelength,
which has a repetition rate of up to 1.83 MHz.

Previous studies [33, 34] revealed that the optimal cut quality is achieved using a circular wobble pattern.
This scheme produces an array of circular patterns parallel to the substrate surface, as shown in figure 1(b) along
with a visualization of the wobble pitch usinga 1 mm amplitude. A schematic of the resulting channel geometry
is shown in figure 1(c), highlighting the important output parameters. The laser process parameters that govern
the geometry of this circular wobble pattern are listed in table 1. The ceramic used in this work was industrial
nonporous 96% alumina tiles (McMaster-Carr, CA) with a density and porosity of 3875 kg m > and 0%,
respectively. The effects of the laser process parameters on the quality of the cuts were studied by generating a
series of 10 mm long cuts. First, the ceramic tile was placed in a fixture inside the chamber. Then, using the laser
software, the focal position and other process parameters were set for laser machining. Once processed, the
ceramic tiles were cleaned using compressed argon gas and wiped with ethanol to remove any residual debris
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Figure 2. Dependence of the channels (a) depth, (b) top width, (c) bottom width and (d) the difference of the top and bottom widths
on the laser beam amplitude. For depth, there is no consistent trend but for the top and bottom widths the behaviour follows a pattern.
Each set of coloured symbols represents a group of experiments conducted with same values of f, F;and N as reported in figure S1.
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Figure 3. Dependence of the channels (a) depth, (b) top width (c) bottom width and (d) the difference of the top and bottom widths on
the number of times the laser beam passes over the sample. Increasing the number of passes decreases the bottom width and can turn
the trapezoidal channel into triangular. Each set of coloured symbols represent a group of experiments conducted with same values of
f, Fyand A as reported in figure S2.

Table 1. Relevant variables for laser ablation.

Parameter Symbol  Description Variable Assignment & range of values
Linear speed (mm/s) \% Speed at which the tracking stage traverses Dependent (V = f/40)
Amplitude (mm) A The diameter of the circles in the wobble Independent [0.100 — 1.200]
Wobble frequency (Hz) f Number of circular patterns per second Independent [200 — 1600]
Number of passes N Number of times the laser scans a line Independent [10 — 160]
Laser-substrate dis- F, The distance between the laser and substrate Independent [91.676 — 93.200]

tance (mm) surface

from the sample surface and within the cut geometry. The cut depth as well as the top and bottom widths were
then measured usinga KEYENCE ™ 3D Laser Scanning Confocal Microscope. These measurements were done
by choosing three regions along the cut line and averaging the surface profile by sampling 15 individual cross-
sections that were spaced 2.84 pym apart within each region.

2.2. Parameter dependence

Before applying any ML model, the dependence of channel dimensions, including the depth (D), and top (Top-
w) and bottom widths (Bot-w), on the tunable laser parameters of wobble frequency ( f), pulse amplitude (A),
number of passes over the sample (N) and vertical distance of the laser scanner from the sample surface (F;) were
studied. The range of each parameter is provided in table 1. To have a more efficient laser machining process, the
linear speed of scanning the sample surface (V') was set to be proportional to the beam frequency ( f), making Va
dependent variable.

Our experimental dataset comprises 124 different combinations of the above four independent input
parameters (as reported in tables SI-SV). The influence of varying the laser parameters on the channel
dimensions is investigated in figures 2—5. Each graph shows groups of laser combinations in which three of the
laser parameters were kept fixed and groups are distinguished with different colour symbols. Clearly, not all the
colour-coded groups cover the entire range of the changing variable. These curves attest that there is no isolated
and one-to-one correlation between the input and output parameters; that is, a comprehensive understanding
of this non-linearly coupled problem is only achieved through a more in-depth study, as explained hereafter. It is
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Figure 4. Dependence of the channels (a) depth, (b) top width, (c) bottom width and (d) the difference of the top and bottom widths
on the vertical distance of the sample from the laser beam source (F)). By fixing the sample at further distances from the beam source
the channels depth increases and the bottom width decreases so that channels cross-section is closer to a triangle than a trapezoid.
Each set of coloured symbols represent a group of experiments conducted with same values of f, A and N as reported in figure S3.
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Figure 5. Dependence of channels (a) depth, (b) top width, (c) bottom width and (d) the difference of the top and bottom widths on
the frequency of the laser beam. Each set of coloured symbols represent a group of experiments conducted with fixed values of A, F
and N, which are reported in figure S4.

noteworthy that the influence of laser parameters on the outputs varies based on the values of the parameters, the
surface material and the used laser machine, which can be different from other reported studies.

2.2.1. Amplitude

Figure 2 shows the effect of changing the pulse amplitude on the channels’ dimensions when the rest of the laser
parameters are kept constant, as reported in figure S1. Figure 2(a) demonstrates that the depth shows no
consistent trend as a function of amplitude. For the top and bottom widths in figures 2(b) and (c), there is no
linear relation between the amplitude and channel widths. In most groups, however, the width first decreases
before starting to increasing at an amplitude of around 0.5 mm. This points to the key role of amplitude in
determining the channel’s width. This is consistent with the results reported earlier [33, 34] on change of trend
for channel depth and width as a function of amplitude. The differences between the top and bottom widths are
more steady as a function of amplitude as shown in figure 2(d).

2.2.2. Number of passes

The results shown in figure 3(a) show an increase in the channel’s depth when increasing the number of passes
up to around 40, beyond which the trend reaches a plateau; the top width (figure 3(b)), however, remains
constant independent of the number of passes. The behaviour of depth in figure 3(a) can be attributed to the fact
that after some passes and cutting the target’s surface, less material remains in the laser’s focal point to cut, and
the cut geometry turning into a triangular cross-section, along with possible material debris can contribute to a
lower material removal rate. This conclusion is supported by the sudden decrease in the bottom widths when the
number of passes exceeds 40, as shown in figure 3(c). This is in agreement with the observations reported by
Beausoleil et al [33] when they compare the channels’ depth and cross-section shape as a function of the number
of passes. Interestingly, the top width is almost independent of the number of passes and, as expected and shown
in figure 3(d), owing to the abrupt decrease of the bottom width, the difference between the top and bottom
width reaches a plateau beyond 50 passes.

2.2.3. Laser-substrate distance

In this part, the influence of the laser-substrate distance (F)) on the channel dimensions is investigated.
Interestingly, deeper channels are formed when the laser is further away from the sample’s surface, see

figure 4(a). This can be understood by considering the Gaussian profile of the applied laser beam. As discussed by
Esmail et al[34], the depth and widths of the channel depend on the vertical distance of the laser source from the
sample’s surface; they investigated the channel’s dimensions by fixing the laser source at six different distance
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levels from the sample’s surface and illustrated how the channel dimensions change when this distance deviates
from the optimum value. If the optimum distance is defined for the position in which the material removal is
maximized, starting a cut on a pristine surface with the optimum distance will result in an optimal material
removal rate at first. However, the active front of material removal changes with the removal of further material
(as the channel progressively deepens), resulting in deviations from the optimum material removal rate. In the
current study, the actual focal point of the laser system is set based on the substrate material, and therefore, an
estimation of the optimum laser-substrate distance was known. The values presented here vary slightly around
the optimum distance. It should also be noted that the changes applied to the laser-substrate distance are
comparable in magnitude to the range of the desired channel depths. Hence, the laser focal point is typically
somewhere between the top of the surface and the bottom of the channel. Deeper channels were achieved at
higher values of the laser-substrate distance, where the laser’s focal point was closer to the substrate’s surface.
Unlike the depth, the overall impact of the laser-substrate distance on the channel’s top width is not strong (see
figure 4(b)), whereas the bottom width decreases with increasing this distance (see figure 4(c)). Putting these
facts together, one can expect deeper triangular channels by fixing the focal point between the top and bottom
surface of the substrate, as opposed to the case for shallow trapezoids. The difference between the top and
bottom widths of the engraved channels mainly changes within the 100-300 ;zm range, as shown in figure 4(d).
The laser parameters employed for each colour group are reported in figure S3.

2.2.4. Frequency

The change of channel dimensions as a function of frequency (or equivalently speed) is illustrated in figure 5.
The overall trend, as shown in figures 5(a) and (b), is decreasing for frequencies lower than 500 Hz. This is
consistent with the results in [27, 34] which reports a decreasing trend of channel depth as a function of
frequency or linear speed. In figure 5(c), the bottom width shows no consistent trend as a function of frequency.
This means that depending on the values of other parameters, increasing the frequency can result in an increase
or decrease in the channel’s bottom width. Figure 5(d) shows the differences between the top and bottom widths
as a function of frequency, and one can conclude that for channels with trapezoidal cross-sections (where the
bottom width is not zero), increasing the frequency results in smaller differences. For cases with similar depths,
means steeper side-walls.

3. ML methodology

This section briefly explains the employed ML models, data preprocessing, and model evaluation techniques.

3.1. Software and algorithms

The Python programming language was used for all the analysis in this study, and the ML algorithms used in this
work are linear and polynomial regression models [35] via the scikitlearn package [36], a tree-based model called
XGBoost (XGB) [30] via the XGBRegressor package [37], and Multi-Layer Perceptron NN [38] via the Keras
library of the TensorFlow package [39]. They are discussed below. All the graphs were plotted using the
matplotlib library in Python [40].

3.1.1. Regression

Regression analysis is commonly used as the primary method for assessing relationships between data inputs
and outputs through analysis using first or higher order polynomials [23]. In regression (Reg.) models [35,41],a
target parameter Yis predicted by a linear combination of weighted input parameters (so-called predictors), X,
X5, ..., X, and their interactions in which the weights (w;) and intercept (b) are determined such that the mean
squared error (MSE) of the training data is minimized. The relationships of the two predictors can be described
as

Linear Reg.(Y) = w1 X; + w2 X0 + w3 X0 Xo + b
O(2)Poly. Reg.(Y) = LinearReg.(Y) + wyX? + wsX;
O(3)Poly.Reg.(Y) = O(2) Poly.Reg.(Y) + weX; + w7 X5 + wsXP Xo + woX5 Xy, (1)

where, in this case, Y can be the channel’s depth, top or bottom width and the Xjs are the laser input parameters
(wobble frequency, beam amplitude, number of passes of the laser over the surface, and the laser source’s vertical
distance from the top surface). Higher order polynomial regressions follow the same trend as the set of
equations (1) by adding higher powers of parameters to the lower order terms
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2" hidden layer

15t hidden layer | 34 neurons
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Figure 6. Schematic structure of a neural network connecting the input layer neurons of laser parameters such as the beam frequency
(f), amplitude (A), number of passes (N) and laser-substrate distance (F)) to the outputs of depth (D), top (Top-w) and bottom widths
(Bot-w) of the channel through two hidden layers of 64 and 32 neurons.

3.1.2. XGBoost
XGBoost (XGB) [30], Extreme Gradient Boosting, is a decision tree ensemble [42]. Decision trees are a type of
supervised learning algorithm in which the data are constantly partitioned into subsets. Each data split is based
on a particular variable, called a node, and in a specific location, which is the value of that variable. XGB is a tree
ensemble model that finds the optimized tree by summing the predictions of multiple trees. Successive decision
trees are applied to the same dataset to optimize the previous trials and minimize the errors [30].

Feature importance through XGB is determined based on the gained information (IG score) attributed to
each split node, which provides a sorted list from the highest to the least relevant parameters for predicting an
output. Feature importance is discussed in section 3.5.

3.1.3. Neural networks

Artificial neural networks (NNs) [43] are mathematical models that allow a complex relationship between input
and output parameters. NNs are characterized by neurons connecting the independent parameters in the input
layer to dependent parameters in the output layer through neurons in hidden layers, see figure 6. Each neuron
(Ny) in ahidden layer (J) is a nonlinear function (f(z), called activation function) of a linear combination (z;) of
the neurons in the preceding layer (I — 1),

Ny = f(z1)
21 = z Wi Ni_1m + b, @)

where w,,,’s are the weights and b is a constant, called bias, in the linear term. The sum is over the number of
neurons in the preceding layer, N;_1,,,. The activation function f(z) can be in the form of an identity function,
logistic function (sigmoid), hyperbolic tangent (tanh), rectified linear unit (ReLU) or leaky ReLU. Details about
these activation functions can be found in [44].

In the current study, an NN algorithm connects four independent laser parameters to the channel’s depth,
top width and bottom width via two hidden layers with 64 and 32 neurons (the notation for thisis 4/64,/32/3).
This is a feed-forward structure in which each layer’s neurons are fully connected to the neurons in the adjacent
layers, as shown in figure 6. Weights are initialized randomly and are gradually modified in a back-propagation
scheme to reduce the loss function (defined in the next section) [45]. Since the NN predictions vary as a function
of the weights’ initial values, the NN outputs hereafter are shown within an error interval determined with the
standard deviation of the predictions through 100 different initialization.

3.2. Preprocessing techniques

As shown and discussed in section 2.2, the correlations between the laser parameters and the channel
dimensions are complicated. Therefore, ML techniques are employed to predict the set of laser parameters for
creating a channel with desired dimensions. The MSE, the loss function, and R-squared (R* score),
representative of the model performance, are defined below in equations (3) and (4), and are reported here to
establish a comparison between different ML algorithms and to evaluate their accuracy in predicting channel
dimensions (y represents either D, Top-w or Bot-w) as functions of independent variables (e.g. f, A, Nand F)).
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Table 2. Performance of the different ML algorithms for predicting the channel’s depth.

ML model 10-fold cv-MSE % 100 test-MSE x 100 Bootstrapping MSE x 100, R* calc. time(s)
Linear Regression (LR) 2.007 1.982 1.925, 67.60% 0.003
2nd order Poly.R. 1.136 1.479 1.111, 81.59% 0.004
3rd order Poly.R. 0.676 1.769 1.096, 80.80% 0.009
4th order Poly.R. 3.624 3.511 5.078,21.02% 0.022
XGBoosting 1.559 1.164 1.418,75.74% 0.084
Neural Networks — — 0.687,87.44 % 2.213

The model is trained with a training dataset. Then, to test the predicting performance of the method for cases
to which the model has not been exposed, a test dataset is used. The MSE for predicted y (shown with y’) in a test
dataset, made of n data points, is calculated as

X - )’i/)z
D—

MSE 3)

This is the mean of the squared residuals (i.e., the difference between the real and predicted values). When the
model’s predictions are close to the real values, the MSE becomes smaller. To evaluate the performance of the
model, the R? score is calculated as

_ RSS
TSS’
where  RSS = "(y, — »)%

R*=1

2
and TSS= Z(yl — &) . (4)
; n
RSS is the sum of the squared residuals. TSS is the total sum of squared residuals when the effects of other
variables are not considered, so that all the y; values are predicted to be equal to their mean ( yi' =) / n). The
R? score measures the residual decrease when a model is employed compared to the simplest case of
yi/ = mean(y,). R?is meaningful when 0 < R? < 1. Models with predictions closer to the real values of
dependent variables have higher R” scores.

When the input parameters have different scales, to equalize variable influence to the model and perform
comparisons, we normalize and non-dimensionalize the parameter values to the range [0, 1] (via scikitlearn
MinMaxScaler in Python [36]). For example, feature X in the range [Xiin, Xmax] is scaled using

X — X
XN rmalized = —mm' (5)
ormae Xmax - Xmin

After evaluating model performances, predictions can be scaled back to their original range.

3.3. ML model evaluation

For ML, the data was split into two parts: (1) to train the model using the train-dataset (viz. 80% of the
experimental data), and (2) to test the model performance with the test-dataset (viz. the remaining 20%). When
the number of data points is limited, results can depend on the choice of the training set. Therefore, to compare
the models’ performances, a k-fold cross validation (cv) technique [46] was used to assure that the test and train
datasets are representative of the same population of data and also to track possible over- or under-fitting. In this
technique, the training set is divided into k-folds, of which (k — 1) folds are used for training the model, and the
remaining fold is used to validate the models’ predictions. The validation fold is chosen one-by-one until all the k
folds have been tested once, and the reported cv-MSE is the average of the MSEs for k different validation folds.

Table 2 shows the cv-MSE for different models. The table also reports the calculated test-MSE based on
predictions of the cv-trained model and the initial test-split that was set aside at the beginning. The results in
table 2 provide a comparison of the linear and polynomial regression models, along with the XGB algorithm
through their cv-MSE and test-MSE. The difference between these two MSEs shows the tolerance of the model
performance on the different sets of unseen data.

Once amodel’s cv-MSE is considerably smaller than its test-MSE, the model has overfitted, as is the case for
the 3rd order polynomial regression. The model underfits if both cv-MSEs and test-MSE are high, as is the case
for the 4th order polynomial regression, which means the model has not learned the correlations between
the data.

Another technique to evaluate the robustness of a model is bootstrapping. In this case, an algorithm is
trained multiple times with multiple random train-test splits [47], and the average value of their MSE and R*
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Figure 7. Comparison of the measured and predicted values for the channel (a) depth, (b) top width, and (c) bottom width with the
2nd and 3" order polynomial regression models and neural network (NN). All of the input and output parameters were renormalized
to [0,1] interval (see equation (5)). Models were trained with 80% of the experimental observations and tested with the remaining
20%. The diagonal line is the limit of perfect prediction.

score are calculated. Table 2 also reports the bootstrapped MSE and R* score and the calculation time per model
training for the above different models and an NN algorithm.

According to table 2, NN shows the lowest bootstrapping MSE and the highest R* score. It is followed by the
2nd and 3rd order polynomial regression models. The 3rd order polynomial regression, however, is prone to
overfitting as discussed above. Although NN requires alonger computation time compared to the other
methods, the time is short (=2 seconds). This supports the assertion in [23] that NN predictions are to be
preferred owing to their higher accuracy compared to other ML methods’ for laser machining.

3.4. Comparison of prediction methods

After comparing the general performance of the different ML methods using the experimental data, the best
three methods (i.e., the NN, 2nd order and 3rd order polynomial regressions) were trained with 80% of data and
used to predict the channel dimensions of the test dataset (the remaining 20%). The results are presented in
figure 7. The predicted values of the different models are distinguished with different colours and symbols, and
the diagonal black lines show the perfect prediction limit when the predicted values match the real dimensions.
The data in figure 7 show that although the performance of the regression model for the widths is remarkable,
the three models are at their best when predicting the depth (R* > 90%). This can be explained by noting the fact
that the 2nd and the 3rd order polynomial regression methods are modifying 15 (4 for parameters’ first power, 4
for second power, 6 for interactions and one for intercept) and 35 (viz. 2nd order’s plus 4 for the third powers
and 16 higher-order interactions) coefficients, respectively, as explained in equations (1), to minimize the loss
(viz. MSE here as in equation (3)), but the selected NN structure modifies at least

4 X 64+ 64 x 32 + 32 x 3 = 2400 coefficients, which means more degrees of freedom to capture the
correlations between the input laser parameters.

3.5. Feature importance

The XGB algorithm provides a quantity called feature importance, a score indicating how valuable each feature
is in constructing the boosted tree [46]. The score is the average of the IG scores attributed to each feature-based
split over all the decision trees within the XGB model. A feature has a higher importance score when the splits
based on its values lead to more accurate predictions.

Although the XGB is not the highest performance model for this data, it is worth looking at the feature
importance hierarchy it prescribes for predicting channel dimensions. Figure 8 shows the XGB-determined
feature importance for predicting the channel’s depth, top and bottom widths with respect to the laser
parameter inputs.

The variable importance identified by XGB can be understood from figures 2 and 3. As shown in figure 3, the
channel depth sharply increases when the number of passes exceeds 40. This is consistent with the XGB result on
assigning the number of passes (N) as the most important parameter for depth prediction, as shown in
figure 8(a). Similarly, figure 2 shows that the behaviour of the channel’s top width changes when the amplitude is
around 0.5 mm. This supports the XGB assertion that data split based on the amplitude (A) improves the width
predictions the most, see figures 8(b) and (¢). Preliminary experimental investigations show that more efficient
laser machining is achieved via maintaining a constant ratio of the frequency to the linear speed. This is why this
ratio has been kept fixed for all the experimental data. As a result, only one is considered independent between
frequency and linear speed.
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Figure 8. Variable importance in predicting the channel’s depth and widths by the XGB method [30]. The most important factor for
predicting the channel depth is the number of passes (N), while for the channel width it is the laser beam amplitude (A).
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Figure 9. Comparing 10 different structures of NN, with the ReLU activation function, by changing the number of hidden layers and
neurons per layer (as printed in the legends) for predicting the channel’s depth using four independent laser parameters. Owing to the
limited number of datapoints, the NN predictions’ performances depend on the training and test datasets. To avoid this problem 100
independent 80-20 splits (bootstrapping) were run and the mean values of R” and MSE are shown within + std deviation as error bars.
The calculation time per run for each structure is printed on the bottom panel above their MSE error bars.

3.6. NN structure

To find the most efficient NN structure for this problem, different structures with the ReLU activation function
were examined by varying the number of hidden layers and neurons per layer, as indicated in the label of figure 9
(The results are shown in figure 9 and more exploration of different activation functions are provided in

table SVI).

Owing to the limited number of observations, the bootstrapping technique was used, and the mean values of
R?scores and MSEs (based on equations (3) and (4)) are reported. The error bars indicate the standard deviation
interval for each arrangement. The average calculation time for each case, printed above its MSE error bar, shows
roughly similar values for all the tried structures. Increasing the number of hidden layers or neurons per layer
provides more degrees of freedom, which can result in more accurate predictions, but beyond a certain point,
the effect diminishes. As shown in figure 9, the mean values of the R scores and MSEs for depth predictions as
well as the calculation time are not significantly different for the structures investigated here. As a result, the
hidden layer structure of /64/32/ and the ReLu activation function with higher R?score and smaller MSE is
used for the rest of NN predictions.

4. Performance evaluation and application

Since NN proved to be the most successful approach for predicting the channel dimensions, 20 new laser
combinations, in the same range as previous experiments, were used to compare the predictions of the best-
performing NN algorithm with the experimental values (see figure 10). For brevity, exploring other ML models’
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Figure 10. Comparison of the predicted values of channel dimensions to the experimental results for 20 laser combinations.
Experimental results are shown with 10% uncertainty and NN predictions are presented as the mean value of 100 different
initialization with one standard deviations above and below, represented as error bars. The laser parameters for test cases are printed
in the table.

predictions is provided in figure S5 in Supplementary Information. The consistency of the experiments was
evaluated by repeating the laser machining tests with fixed laser parameters to find the variations in dimensions.
Given the distribution of the measured dimensions, the experimental uncertainty was found to be about 10%.

NN predictions depend on the neurons’ initial weights, which are being modified through backpropagation.
This dependence was negated by running the NN for 100 random initializations. The mean of these 100
predictions is shown within error bars (standard deviation) of the predictions in figure 10. This figure also
indicates that in 17 out of 20 test cases, at least two out of three measured dimensions overlap the NN prediction
(except for cases 2, 8 and 17). Comparing the laser parameters for the different test cases, one can see that the
employed frequency for the cases with the largest variations from the predicted values, case number 8 and 17, is
around 400 Hz, whereas for the rest of the cases, it is in the range of [897, 1600] Hz. Moreover, the laser-substrate
distance for cases 8 and 17 is roughly 91.7 pm while for the rest, it is between 92 to 93.2 ym.

Detecting correlations between laser parameters and reliably predicting the channel dimensions enables the
designer to find the proper input parameters for the desired channel with ease. In order to achieve this, one needs
to make a collection of applicable laser parameters and feed it to an ML model that is trained with all the available
experimental observations. One can capture the parameter combinations that lead to target outputs by filtering
the target dimensions among the model predictions. Laser parameter combinations can be made as a fine grid
sweeping the range of the parameter values used in experiments [15, 27, 28].

Parameter combinations are applicable to the laser machine when the restrictions on the input parameters
are known. However, generating synthesized laser combinations is an alternative when the constraints are
unknown. Different techniques of data generation are categorized into the older methods such as synthetic
minority over-sampling technique (SMOTE) [48] and variational autoencoder [49] focusing on balancing the
data distribution close to the minority classes, and the recent innovation of generative adversarial networks
(GANSs) [32], which is used here owing to the high quality of the synthesized data. In this technique, two NNs are
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Figure 11. Three and two dimensional representations of typical engraved channels with target dimensions printed having (a)
triangular and (b) trapezoidal cross-sections.

coupled and trained with actual experimental observations to generate laser combinations similar to the training
data [50]. Based on the type of training data, the standard GAN algorithm can be adjusted to improve the
convergence problems [51].

Instead of using a grid of 54,000 combinations, a set of 5,000 parameter combinations was generated using
the GAN algorithm and fed to the trained NN to find the laser parameters for target channels. Two target
channels with triangular and trapezoidal cross-sections were specified; their 3D profiles and 2D scans are shown
in figure 11. The required laser parameters corresponding to these target channels were found by filtering back
the NN predictions on the GAN data. To engrave the first target channel, having a triangular cross-section with a
depth 0of 635 + 50 pm and top width of 500 £ 50 pm (see figure 11(a)), five different laser combinations were
tested as shown in figure 12. Given the limited number of training data and the diversity of the prescribed laser
combinations, the agreement between the predicted and measured dimensions for different test cases is
impressive.

Similarly, figure 13 shows the measured and predicted dimensions for ten different laser combinations,
printed in the enclosed table, corresponding to the second target channel with a depth 0f444.5 4 50 pt m, top
width of 500 £ 50 pm and bottom width of 100 £ 50 pm (see figure 11(b)). Same as the first target set, the
disparity of the prescribed laser combinations and their significant agreement proves the NN algorithm’s
capability and efficiency for ceramic machining applications.

As a potential limitation of this method, generated laser combinations are bound to the range of initial
experiments used as training data. Consequently, the laser machined channels are predicted not to be deeper
than 1.2 mm with mostly triangular cross sections and wall angles within 17 to 25 degrees. This type of ML
provided information enlighten restrictions of the experimental set up for engraving deep channels.

5. Conclusion

In the present study, we report a comparison and application of ML methods to capture the interconnections
and dependencies between the picosecond laser parameters for engraving channels on alumina ceramics.
Systematic brute force laser parameter exploration is not feasible due to costly experiments and time-consuming
simulations.

Here, ML models were applied to the tunable parameters of the laser system. The parameters include the
beam frequency and amplitude, the number of laser passes over the substrate and the vertical distance of the light
source from the substrate.

This study was performed in three stages. Stage one was the collection of experimental data on the produced
channels created by ytterbium picosecond laser machining of industrial alumina ceramics. In stage two, the
experimental data were used to train ML models for predicting channel dimensions. For this purpose, the
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Figure 12. Model predictions for a triangular cut with depth 635 + 50 yzm and top width 500 & 504 m. The laser parameters for each
case is printed in the table.

performances of different ML algorithms, including linear/polynomial regression, XGB and NN, were
compared. Although second or third order linear relationships between the input and output parameters are not
excluded (considering the fairly high R* score of predictions via 2" and 3"-order polynomial linear regression
models), the complex relation suggested by the NN model provides a higher R* score and lower MSE. As the NN
predictions depend on the coefficient initialization, the mean values of the predicted geometries of 20 test sets
were exhibited to be within one standard deviation of NN predictions from 100 different initialization and
demonstrated an overlap in most cases with their experimental uncertainty. The preferred structure of the NN
model (4/64/32/3) was justified by testing the performances of the different NN structures on the experimental
data. The feature importance was studied via the XGB method, which showed that the number of passes and
amplitudes were the most important parameters for predicting the channels’ depths and widths, respectively.
These results are supported by experimental data in section 2.2.

In the third stage, a collection of unseen laser parameters was fed to the trained model to make a table of
required parameters for engraving target channels. Generative adversarial networks (GAN) were used to collect
the parameter sets, owing to the unknown correlations between the parameters. By choosing a handful of
parameter combinations corresponding to two individual target channels with triangular and trapezoidal cross-
sections, the model’s performance for general applications was examined. Good agreement between the target
geometries and the experimental cuts (based on predicted ML input parameters) demonstrated the success of
the ML program for the laser machining of ceramics.
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