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Abstract
Lasermachining is a highlyflexible non-contactmanufacturing technique that has been employed
widely across academia and industry. Due to nonlinear interactions between light andmatter,
simulationmethods are extremely crucial, as they help enhance themachining quality by offering
comprehension of the inter-relationships between the laser processing parameters. On the other hand,
experimental processing parameter optimization recommends a systematic, and consequently time-
consuming, investigation of the available processing parameter space. An intelligent strategy is to
employmachine learning (ML) techniques to capture the relationship between picosecond laser
machining parameters forfinding proper parameter combinations to create the desired cuts on
industrial-grade alumina ceramicwith deep, smooth and defect-free patterns. Laser parameters such
as beam amplitude and frequency, scanner passing speed and the number of passes over the surface, as
well as the vertical distance of the scanner from the sample surface, are used for predicting the depth,
topwidth, and bottomwidth of the engraved channels usingMLmodels. Owing to the complex
correlation between laser parameters, it is shown thatNeuralNetworks (NN) are themost efficient in
predicting the outputs. Equippedwith anMLmodel that captures the interconnection between laser
parameters and the engraved channel dimensions, one can predict the required input parameters to
achieve a target channel geometry. This strategy significantly reduces the cost and effort of
experimental lasermachining during the development phasewithout compromising accuracy or
performance. The developed techniques can be applied to awide range of ceramic lasermachining
processes.

1. Introduction

Ceramics are known for their outstanding hardness, thermal performance and corrosion resistance. These
propertiesmake them a suitable candidate for awide range of applications from automotive industry and space
applications to nuclear industry and biomedicine, see for example the review byGreil [1]. However, their
typically highly oriented crystalline structure results in brittlenessmaking themunamenable to various
processing techniques and limits theirmachinability [2]. Due to this inherent brittleness, traditional subtractive
manufacturing techniques inducemicrocracks along the cut, which greatly reduces the components’ strengths,
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especially when subjected to heating cycles [3–7]. This has slowed down their adaption in complex parts for
applications such as automobile engines, heat exchangers, rocket propulsion components, and gas
turbines [2, 8].

Lasermachining is a processing techniquewhich has attracted attention due to its convenience, efficiency
and high precision, as it overcomesmany of the problems of subtractivemanufacturing [9, 10]. In laser
processing, thematerial is exposed to a high-energy beam causing it to ablate rapidly, resulting in superior cut
quality and little to nomicrocrack formation or thermally affected zone [11–14]. This capability requires
extremely precise and reproducible processing parameter control.

Despite its advantages, lasermachining does not comewithout challenges. One particular one, and the topic
of this research, is how tofind the optimal laser processing parameters. Typically, the parameter optimization
processmust be repeated for any changes in the laser systemormaterial type, which is cumbersome and time-
consuming. To improve and systematize the search, techniques such as gradient search, simulationmethods,
andmachine learning have been developed tofind optimal processing parameters [15, 16]. In the gradient search
method, themismatch between the achieved and desiredmachining qualities isminimized by changing the
value of one processing parameter at a time. Gradient search is a deterministic optimizationmethod; thus, the
searchwill terminate when the algorithmfinds anyminimum/maximum, local or global. As a result, gradient
search also depends on the initial values and is highly unlikely tofind the global optimum; therefore, gradient
search does not eliminate the need to perform systematic experimental optimization.

The simulationmethod [16]models the complete lasermachining process to determine the optimal
combination of parameters. This requires the ability to simulate realistic experiments of light–matter
interactions, which is a very complex task. It should also be noted that oversimplification in suchmodels
through crude approximations can be detrimental to the simulation efficiency [17].

Machine learning (ML) is a new alternative to predict the behaviour of a complex system trained by a small
experimental dataset [15, 18–22]. This strategy has been shown to be effective inmodelling lasermachining
[23–28], and it is significantly faster in terms of computational speed. DifferentMLmethods have been
demonstrated to be able tomodel physical phenomena directly from experimental data without considering any
underlying physical equations [10, 26, 29].

For instance,McDonnell et al [15] appliedML techniques to grey cast iron and studied the height of the
laser-produced crown and dimple depth as a function of the laser pulse energy, its repetition rate and the
number of pulses. After comparing the performances of the different algorithms using the full range of each laser
parameter, they achievedmore accurate predictions using the neural network (NN)model. As another example,
Teixidor et al [27] usedML techniques on anothermetallic system (hardened steel) to create shallow
microchannels. They studied thematerial removal rate as a function of scanning speed, laser pulse intensity and
frequency and foundNNand decision trees algorithm to bemore efficient than their other triedmodels for
predicting channel geometry. Based on their experimental data, they declared the scanning speed and pulse
intensity themost and the pulse frequency as the least relevant parameters for predicting depths. As afinal
example, Dhupal et al [28] appliedML to ceramicsmachining using aluminum titanate and anNd:YAG laser.
They investigated the effect of input parameters such as lamp current, laser pulse frequency andwidth, as well as
the cutting speed and air pressure on creatingmicrogrooves. Limited to afixed focal position, they reported
second-order equations relating outputs to the input parameters tofind the optimized inputs required for each
target output.

In this work,ML techniqueswere employed to predict the dimensions of the engraved channels on alumina
ceramics using ytterbiumpicosecond fiber laser. DifferentML algorithms, including linear/polynomial
regressions, XGBoost (XGB) [30]which is a tree-based algorithm, andMulti-Layer PerceptronNeural Networks
(NN) [31]methods, were compared based on their success in predicting the channel dimensions as a function of
laser parameters. Based on the comparison, using industrial-grade alumina ceramics, anNN-basedmodel was
developed to identify the laser processing parameters for fabricating high-quality channel (cut) architectures of
desired properties. The performance criteria are the channels’ depth and top and bottomwidths. Although the
published literature contains studies on the use ofML techniques formaterial removal applications [23], the
number and scope of such studies on ceramics are limited. Furthermore, unlike previous studies [15, 28], the
current work is not restricted to a single channel but extends to predicting the dimensions of the different
channels with triangular or trapezoidal cross-sections. Finally, a reverse prediction is presented as an example of
a practical application, where target channels for a given application aremanufacturedwith the assistance ofML
techniques in determining the required input parameters.

This paper is organized as follows. In section 2, themodel and experimental procedure are briefly explained,
and the interdependencies of the laser parameters are investigated. Section 3 focuses onMLmethodology, which
includes a brief explanation of the employedML algorithms, preprocessing andmodel evaluation techniques. In
addition, the performances of differentML algorithms is evaluated. TheML section continues with anXGB-
determined hierarchy of laser parameters for predicting outputs (feature importance) and ends with an
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exploration of theNN structure. Finally, in section 4, the performance of theNNmodel is evaluated by applying
it to a practical scenario, where target channel geometries are selected, and the laser input parameters are
predicted (reverse prediction). Input parameter combinations are produced throughGenerative Adversarial
Network (GAN) [32], and results of this practical evaluation are comparedwith experiments. The paper finishes
with conclusions in section 5. Supplementary Information includesmore detailed graphs offigure 2–5, 10. Also,
in tables are reported the experimental data collected and used in this study and performance details of different
neural network structures.

2.Model and experimental data

In general,ML applications in lasermachining studies are accomplished in three stages: (1). Collect
experimental data containing the independent variables corresponding to lasermachining outputs, (2). trainML
models with experimental data to predict the output parameters as a function of inputs, and (3). provide the
trainedmodel with a set of unseen data to predict their associated outputs [26]. In this section, a brief
explanation of the experimental setup and the procedure for data collection are explained. In addition, as a
preliminary analysis, the effect of laser parameters on the channel dimensions is investigated qualitatively.ML
models are discussed in section 3.

2.1. Experimental procedure
The laser used in this study is a ytterbiumpicosecond fiber laser (YLPP-25-3-50-R, IPGPhotonics, USA),
schematically shown infigure 1(a), with amaximumaverage power of 50Wand a laser beamwaist diameter of
17 μm.The laser produces aGaussian spatial profile beamwith 3 ps long 25 μJ pulses of 1030 nmwavelength,
which has a repetition rate of up to 1.83 MHz.

Previous studies [33, 34] revealed that the optimal cut quality is achieved using a circular wobble pattern.
This scheme produces an array of circular patterns parallel to the substrate surface, as shown infigure 1(b) along
with a visualization of thewobble pitch using a 1 mmamplitude. A schematic of the resulting channel geometry
is shown infigure 1(c), highlighting the important output parameters. The laser process parameters that govern
the geometry of this circular wobble pattern are listed in table 1. The ceramic used in this workwas industrial
nonporous 96%alumina tiles (McMaster-Carr, CA)with a density and porosity of 3875 kg m−3 and 0%,
respectively. The effects of the laser process parameters on the quality of the cuts were studied by generating a
series of 10 mm long cuts. First, the ceramic tile was placed in afixture inside the chamber. Then, using the laser
software, the focal position and other process parameters were set for lasermachining. Once processed, the
ceramic tiles were cleaned using compressed argon gas andwipedwith ethanol to remove any residual debris

Figure 1. (a) Schematic of the laser system and the equipment. (b) Schematic of the circular wobble pattern illustrating the laser pulses
and direction, wobble amplitude, wobble pitch, linear speed, and vector speed. (c) Schematic of a trapezoidal cut. The channel cross-
section is triangular when the bottomwidth is negligible.
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from the sample surface andwithin the cut geometry. The cut depth as well as the top and bottomwidthswere
thenmeasured using a KEYENCETM3DLaser ScanningConfocalMicroscope. Thesemeasurements were done
by choosing three regions along the cut line and averaging the surface profile by sampling 15 individual cross-
sections that were spaced 2.84 μmapart within each region.

2.2. Parameter dependence
Before applying anyMLmodel, the dependence of channel dimensions, including the depth (D), and top (Top-
w) and bottomwidths (Bot-w), on the tunable laser parameters of wobble frequency ( f ), pulse amplitude (A),
number of passes over the sample (N) and vertical distance of the laser scanner from the sample surface (Fl)were
studied. The range of each parameter is provided in table 1. To have amore efficient lasermachining process, the
linear speed of scanning the sample surface (V )was set to be proportional to the beam frequency ( f ), makingV a
dependent variable.

Our experimental dataset comprises 124 different combinations of the above four independent input
parameters (as reported in tables SI-SV). The influence of varying the laser parameters on the channel
dimensions is investigated infigures 2–5. Each graph shows groups of laser combinations inwhich three of the
laser parameters were kept fixed and groups are distinguishedwith different colour symbols. Clearly, not all the
colour-coded groups cover the entire range of the changing variable. These curves attest that there is no isolated
and one-to-one correlation between the input and output parameters; that is, a comprehensive understanding
of this non-linearly coupled problem is only achieved through amore in-depth study, as explained hereafter. It is

Figure 2.Dependence of the channels (a) depth, (b) topwidth, (c) bottomwidth and (d) the difference of the top and bottomwidths
on the laser beam amplitude. For depth, there is no consistent trend but for the top and bottomwidths the behaviour follows a pattern.
Each set of coloured symbols represents a group of experiments conductedwith same values of f, Fl andN as reported infigure S1.

Figure 3.Dependence of the channels (a) depth, (b) topwidth (c) bottomwidth and (d) the difference of the top and bottomwidths on
the number of times the laser beampasses over the sample. Increasing the number of passes decreases the bottomwidth and can turn
the trapezoidal channel into triangular. Each set of coloured symbols represent a group of experiments conductedwith same values of
f, Fl andA as reported infigure S2.

Table 1.Relevant variables for laser ablation.

Parameter Symbol Description Variable Assignment& range of values

Linear speed (mm/s) V Speed at which the tracking stage traverses Dependent (V = f/40)
Amplitude (mm) A The diameter of the circles in the wobble Independent [0.100 − 1.200]
Wobble frequency (Hz) f Number of circular patterns per second Independent [200 − 1600]
Number of passes N Number of times the laser scans a line Independent [10 − 160]
Laser-substrate dis-

tance (mm)
Fl The distance between the laser and substrate

surface

Independent [91.676 − 93.200]
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noteworthy that the influence of laser parameters on the outputs varies based on the values of the parameters, the
surfacematerial and the used lasermachine, which can be different fromother reported studies.

2.2.1. Amplitude
Figure 2 shows the effect of changing the pulse amplitude on the channels’ dimensionswhen the rest of the laser
parameters are kept constant, as reported infigure S1. Figure 2(a)demonstrates that the depth shows no
consistent trend as a function of amplitude. For the top and bottomwidths in figures 2(b) and (c), there is no
linear relation between the amplitude and channel widths. Inmost groups, however, thewidth first decreases
before starting to increasing at an amplitude of around 0.5 mm. This points to the key role of amplitude in
determining the channel’s width. This is consistent with the results reported earlier [33, 34] on change of trend
for channel depth andwidth as a function of amplitude. The differences between the top and bottomwidths are
more steady as a function of amplitude as shown infigure 2(d).

2.2.2. Number of passes
The results shown infigure 3(a) show an increase in the channel’s depthwhen increasing the number of passes
up to around 40, beyondwhich the trend reaches a plateau; the topwidth (figure 3(b)), however, remains
constant independent of the number of passes. The behaviour of depth infigure 3(a) can be attributed to the fact
that after some passes and cutting the target’s surface, lessmaterial remains in the laser’s focal point to cut, and
the cut geometry turning into a triangular cross-section, alongwith possiblematerial debris can contribute to a
lowermaterial removal rate. This conclusion is supported by the sudden decrease in the bottomwidthswhen the
number of passes exceeds 40, as shown infigure 3(c). This is in agreementwith the observations reported by
Beausoleil et al [33]when they compare the channels’ depth and cross-section shape as a function of the number
of passes. Interestingly, the topwidth is almost independent of the number of passes and, as expected and shown
infigure 3(d), owing to the abrupt decrease of the bottomwidth, the difference between the top and bottom
width reaches a plateau beyond 50 passes.

2.2.3. Laser-substrate distance
In this part, the influence of the laser-substrate distance (Fl) on the channel dimensions is investigated.
Interestingly, deeper channels are formedwhen the laser is further away from the sample’s surface, see
figure 4(a). This can be understood by considering theGaussian profile of the applied laser beam. As discussed by
Esmail et al [34], the depth andwidths of the channel depend on the vertical distance of the laser source from the
sample’s surface; they investigated the channel’s dimensions byfixing the laser source at six different distance

Figure 4.Dependence of the channels (a) depth, (b) topwidth, (c) bottomwidth and (d) the difference of the top and bottomwidths
on the vertical distance of the sample from the laser beam source (Fl). Byfixing the sample at further distances from the beam source
the channels depth increases and the bottomwidth decreases so that channels cross-section is closer to a triangle than a trapezoid.
Each set of coloured symbols represent a group of experiments conductedwith same values of f,A andN as reported infigure S3.

Figure 5.Dependence of channels (a) depth, (b) topwidth, (c) bottomwidth and (d) the difference of the top and bottomwidths on
the frequency of the laser beam. Each set of coloured symbols represent a group of experiments conductedwith fixed values ofA, Fl
andN, which are reported infigure S4.
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levels from the sample’s surface and illustrated how the channel dimensions changewhen this distance deviates
from the optimumvalue. If the optimumdistance is defined for the position inwhich thematerial removal is
maximized, starting a cut on a pristine surfacewith the optimumdistancewill result in an optimalmaterial
removal rate atfirst. However, the active front ofmaterial removal changes with the removal of furthermaterial
(as the channel progressively deepens), resulting in deviations from the optimummaterial removal rate. In the
current study, the actual focal point of the laser system is set based on the substratematerial, and therefore, an
estimation of the optimum laser-substrate distancewas known. The values presented here vary slightly around
the optimumdistance. It should also be noted that the changes applied to the laser-substrate distance are
comparable inmagnitude to the range of the desired channel depths. Hence, the laser focal point is typically
somewhere between the top of the surface and the bottomof the channel. Deeper channels were achieved at
higher values of the laser-substrate distance, where the laser’s focal point was closer to the substrate’s surface.
Unlike the depth, the overall impact of the laser-substrate distance on the channel’s topwidth is not strong (see
figure 4(b)), whereas the bottomwidth decreases with increasing this distance (see figure 4(c)). Putting these
facts together, one can expect deeper triangular channels byfixing the focal point between the top and bottom
surface of the substrate, as opposed to the case for shallow trapezoids. The difference between the top and
bottomwidths of the engraved channelsmainly changes within the 100–300 μmrange, as shown infigure 4(d).
The laser parameters employed for each colour group are reported infigure S3.

2.2.4. Frequency
The change of channel dimensions as a function of frequency (or equivalently speed) is illustrated infigure 5.
The overall trend, as shown infigures 5(a) and (b), is decreasing for frequencies lower than 500 Hz. This is
consistent with the results in [27, 34]which reports a decreasing trend of channel depth as a function of
frequency or linear speed. Infigure 5(c), the bottomwidth shows no consistent trend as a function of frequency.
Thismeans that depending on the values of other parameters, increasing the frequency can result in an increase
or decrease in the channel’s bottomwidth. Figure 5(d) shows the differences between the top and bottomwidths
as a function of frequency, and one can conclude that for channels with trapezoidal cross-sections (where the
bottomwidth is not zero), increasing the frequency results in smaller differences. For cases with similar depths,
means steeper side-walls.

3.MLmethodology

This section briefly explains the employedMLmodels, data preprocessing, andmodel evaluation techniques.

3.1. Software and algorithms
The Python programming languagewas used for all the analysis in this study, and theML algorithms used in this
work are linear and polynomial regressionmodels [35] via the scikitlearn package [36], a tree-basedmodel called
XGBoost (XGB) [30] via the XGBRegressor package [37], andMulti-Layer PerceptronNN [38] via theKeras
library of the TensorFlow package [39]. They are discussed below. All the graphswere plotted using the
matplotlib library in Python [40].

3.1.1. Regression
Regression analysis is commonly used as the primarymethod for assessing relationships between data inputs
and outputs through analysis using first or higher order polynomials [23]. In regression (Reg.)models [35, 41], a
target parameterY is predicted by a linear combination of weighted input parameters (so-called predictors),X1,
X2, ...,Xn and their interactions inwhich theweights (wi) and intercept (b) are determined such that themean
squared error (MSE) of the training data isminimized. The relationships of the two predictors can be described
as



 

( )
( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

Y w X w X w X X b

Y Y w X w X

Y Y w X w X w X X w X X

Linear Reg.

2 Poly. Reg. LinearReg.

3 Poly.Reg. 2 Poly.Reg. , 1

1 1 2 2 3 1 2

4 1
2

5 2
2

6 1
3

7 2
3

8 1
2

2 9 2
2

1

= + + +

= + +

= + + + +

where, in this case,Y can be the channel’s depth, top or bottomwidth and theXjs are the laser input parameters
(wobble frequency, beam amplitude, number of passes of the laser over the surface, and the laser source’s vertical
distance from the top surface). Higher order polynomial regressions follow the same trend as the set of
equations (1) by adding higher powers of parameters to the lower order terms
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3.1.2. XGBoost
XGBoost (XGB) [30], ExtremeGradient Boosting, is a decision tree ensemble [42]. Decision trees are a type of
supervised learning algorithm inwhich the data are constantly partitioned into subsets. Each data split is based
on a particular variable, called a node, and in a specific location, which is the value of that variable. XGB is a tree
ensemblemodel thatfinds the optimized tree by summing the predictions ofmultiple trees. Successive decision
trees are applied to the same dataset to optimize the previous trials andminimize the errors [30].

Feature importance throughXGB is determined based on the gained information (IG score) attributed to
each split node, which provides a sorted list from the highest to the least relevant parameters for predicting an
output. Feature importance is discussed in section 3.5.

3.1.3. Neural networks
Artificial neural networks (NNs) [43] aremathematicalmodels that allow a complex relationship between input
and output parameters. NNs are characterized by neurons connecting the independent parameters in the input
layer to dependent parameters in the output layer through neurons in hidden layers, see figure 6. Each neuron
(Nlk) in a hidden layer (l) is a nonlinear function ( f (zl), called activation function) of a linear combination (zl) of
the neurons in the preceding layer (l− 1),

( )
( )

N f z

z w N b, 2

lk l

l
m

m l m1å
=

= +-

wherewmʼs are theweights and b is a constant, called bias, in the linear term. The sum is over the number of
neurons in the preceding layer,Nl−1m. The activation function f (z) can be in the formof an identity function,
logistic function (sigmoid), hyperbolic tangent (tanh), rectified linear unit (ReLU) or leaky ReLU.Details about
these activation functions can be found in [44].

In the current study, anNNalgorithm connects four independent laser parameters to the channel’s depth,
topwidth and bottomwidth via two hidden layers with 64 and 32 neurons (the notation for this is 4/64/32/3).
This is a feed-forward structure inwhich each layer’s neurons are fully connected to the neurons in the adjacent
layers, as shown infigure 6.Weights are initialized randomly and are graduallymodified in a back-propagation
scheme to reduce the loss function (defined in the next section) [45]. Since theNNpredictions vary as a function
of theweights’ initial values, theNNoutputs hereafter are shownwithin an error interval determinedwith the
standard deviation of the predictions through 100 different initialization.

3.2. Preprocessing techniques
As shown and discussed in section 2.2, the correlations between the laser parameters and the channel
dimensions are complicated. Therefore,ML techniques are employed to predict the set of laser parameters for
creating a channel with desired dimensions. TheMSE, the loss function, andR-squared (R2 score),
representative of themodel performance, are defined below in equations (3) and (4), and are reported here to
establish a comparison between differentML algorithms and to evaluate their accuracy in predicting channel
dimensions (y represents eitherD, Top-wor Bot-w) as functions of independent variables (e.g. f,A,N and Fl).

Figure 6. Schematic structure of a neural network connecting the input layer neurons of laser parameters such as the beam frequency
( f ), amplitude (A), number of passes (N) and laser-substrate distance (Fl) to the outputs of depth (D), top (Top-w) and bottomwidths
(Bot-w) of the channel through two hidden layers of 64 and 32 neurons.
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Themodel is trainedwith a training dataset. Then, to test the predicting performance of themethod for cases
towhich themodel has not been exposed, a test dataset is used. TheMSE for predicted y (shownwith y¢) in a test
dataset,made of n data points, is calculated as

( )
( )

y y

n
MSE . 3i i i

2

=
å - ¢

This is themean of the squared residuals (i.e., the difference between the real and predicted values).When the
model’s predictions are close to the real values, theMSE becomes smaller. To evaluate the performance of the
model, theR2 score is calculated as

⎛
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RSS is the sumof the squared residuals. TSS is the total sumof squared residuals when the effects of other
variables are not considered, so that all the yi values are predicted to be equal to theirmean (y y n

i i i
¢ = å ). The

R2 scoremeasures the residual decrease when amodel is employed compared to the simplest case of
( )y ymean

i i
¢ = .R2 ismeaningful when 0� R2� 1.Models with predictions closer to the real values of

dependent variables have higherR2 scores.
When the input parameters have different scales, to equalize variable influence to themodel and perform

comparisons, we normalize and non-dimensionalize the parameter values to the range [0, 1] (via scikitlearn
MinMaxScaler in Python [36]). For example, feature X in the range [ ]X X,min max is scaled using

( )X
X X

X X
. 5Normalized

min

max min

=
-
-

After evaluatingmodel performances, predictions can be scaled back to their original range.

3.3.MLmodel evaluation
ForML, the data was split into two parts: (1) to train themodel using the train-dataset (viz. 80%of the
experimental data), and (2) to test themodel performancewith the test-dataset (viz. the remaining 20%).When
the number of data points is limited, results can depend on the choice of the training set. Therefore, to compare
themodels’ performances, a k-fold cross validation (cv) technique [46]was used to assure that the test and train
datasets are representative of the same population of data and also to track possible over- or under-fitting. In this
technique, the training set is divided into k-folds, of which (k− 1) folds are used for training themodel, and the
remaining fold is used to validate themodels’ predictions. The validation fold is chosen one-by-one until all the k
folds have been tested once, and the reported cv-MSE is the average of theMSEs for k different validation folds.

Table 2 shows the cv-MSE for differentmodels. The table also reports the calculated test-MSE based on
predictions of the cv-trainedmodel and the initial test-split that was set aside at the beginning. The results in
table 2 provide a comparison of the linear and polynomial regressionmodels, alongwith theXGB algorithm
through their cv-MSE and test-MSE. The difference between these twoMSEs shows the tolerance of themodel
performance on the different sets of unseen data.

Once amodel’s cv-MSE is considerably smaller than its test-MSE, themodel has overfitted, as is the case for
the 3rd order polynomial regression. Themodel underfits if both cv-MSEs and test-MSE are high, as is the case
for the 4th order polynomial regression, whichmeans themodel has not learned the correlations between
the data.

Another technique to evaluate the robustness of amodel is bootstrapping. In this case, an algorithm is
trainedmultiple timeswithmultiple random train-test splits [47], and the average value of theirMSE andR2

Table 2.Performance of the differentML algorithms for predicting the channel’s depth.

MLmodel 10-fold cv-MSE×100 test-MSE×100 BootstrappingMSE×100,R2 calc. time(s)
Linear Regression (LR) 2.007 1.982 1.925, 67.60% 0.003

2nd order Poly.R. 1.136 1.479 1.111, 81.59% 0.004

3rd order Poly.R. 0.676 1.769 1.096, 80.80% 0.009

4th order Poly.R. 3.624 3.511 5.078 , 21.02% 0.022

XGBoosting 1.559 1.164 1.418, 75.74% 0.084

NeuralNetworks — — 0.687, 87.44% 2.213
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score are calculated. Table 2 also reports the bootstrappedMSE andR2 score and the calculation time permodel
training for the above differentmodels and anNNalgorithm.

According to table 2,NN shows the lowest bootstrappingMSE and the highestR2 score. It is followed by the
2nd and 3rd order polynomial regressionmodels. The 3rd order polynomial regression, however, is prone to
overfitting as discussed above. AlthoughNN requires a longer computation time compared to the other
methods, the time is short (≈2 seconds). This supports the assertion in [23] thatNNpredictions are to be
preferred owing to their higher accuracy compared to otherMLmethods’ for lasermachining.

3.4. Comparison of predictionmethods
After comparing the general performance of the differentMLmethods using the experimental data, the best
threemethods (i.e., theNN, 2nd order and 3rd order polynomial regressions)were trainedwith 80%of data and
used to predict the channel dimensions of the test dataset (the remaining 20%). The results are presented in
figure 7. The predicted values of the differentmodels are distinguishedwith different colours and symbols, and
the diagonal black lines show the perfect prediction limit when the predicted valuesmatch the real dimensions.
The data infigure 7 show that although the performance of the regressionmodel for thewidths is remarkable,
the threemodels are at their best when predicting the depth (R2> 90%). This can be explained by noting the fact
that the 2nd and the 3rd order polynomial regressionmethods aremodifying 15 (4 for parameters’first power, 4
for second power, 6 for interactions and one for intercept) and 35 (viz. 2nd order’s plus 4 for the third powers
and 16 higher-order interactions) coefficients, respectively, as explained in equations (1), tominimize the loss
(viz. MSEhere as in equation (3)), but the selectedNN structuremodifies at least
4× 64+ 64× 32+ 32× 3= 2400 coefficients, whichmeansmore degrees of freedom to capture the
correlations between the input laser parameters.

3.5. Feature importance
TheXGB algorithmprovides a quantity called feature importance, a score indicating how valuable each feature
is in constructing the boosted tree [46]. The score is the average of the IG scores attributed to each feature-based
split over all the decision trees within the XGBmodel. A feature has a higher importance scorewhen the splits
based on its values lead tomore accurate predictions.

Although theXGB is not the highest performancemodel for this data, it is worth looking at the feature
importance hierarchy it prescribes for predicting channel dimensions. Figure 8 shows theXGB-determined
feature importance for predicting the channel’s depth, top and bottomwidthswith respect to the laser
parameter inputs.

The variable importance identified byXGB can be understood fromfigures 2 and 3. As shown infigure 3, the
channel depth sharply increases when the number of passes exceeds 40. This is consistent with the XGB result on
assigning the number of passes (N) as themost important parameter for depth prediction, as shown in
figure 8(a). Similarly, figure 2 shows that the behaviour of the channel’s topwidth changes when the amplitude is
around 0.5 mm. This supports the XGB assertion that data split based on the amplitude (A) improves thewidth
predictions themost, see figures 8(b) and (c). Preliminary experimental investigations show thatmore efficient
lasermachining is achieved viamaintaining a constant ratio of the frequency to the linear speed. This is why this
ratio has been kept fixed for all the experimental data. As a result, only one is considered independent between
frequency and linear speed.

Figure 7.Comparison of themeasured and predicted values for the channel (a) depth, (b) topwidth, and (c) bottomwidthwith the
2nd and 3rd order polynomial regressionmodels and neural network (NN). All of the input and output parameters were renormalized
to [0,1] interval (see equation (5)).Models were trainedwith 80%of the experimental observations and testedwith the remaining
20%. The diagonal line is the limit of perfect prediction.
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3.6. NN structure
Tofind themost efficientNN structure for this problem, different structures with the ReLU activation function
were examined by varying the number of hidden layers and neurons per layer, as indicated in the label offigure 9
(The results are shown infigure 9 andmore exploration of different activation functions are provided in
table SVI).

Owing to the limited number of observations, the bootstrapping techniquewas used, and themean values of
R2 scores andMSEs (based on equations (3) and (4)) are reported. The error bars indicate the standard deviation
interval for each arrangement. The average calculation time for each case, printed above itsMSE error bar, shows
roughly similar values for all the tried structures. Increasing the number of hidden layers or neurons per layer
providesmore degrees of freedom,which can result inmore accurate predictions, but beyond a certain point,
the effect diminishes. As shown infigure 9, themean values of theR2 scores andMSEs for depth predictions as
well as the calculation time are not significantly different for the structures investigated here. As a result, the
hidden layer structure of /64/32/ and the ReLu activation functionwith higherR2 score and smallerMSE is
used for the rest ofNNpredictions.

4. Performance evaluation and application

SinceNNproved to be themost successful approach for predicting the channel dimensions, 20 new laser
combinations, in the same range as previous experiments, were used to compare the predictions of the best-
performingNNalgorithmwith the experimental values (see figure 10). For brevity, exploring otherMLmodels’

Figure 8.Variable importance in predicting the channel’s depth andwidths by theXGBmethod [30]. Themost important factor for
predicting the channel depth is the number of passes (N), while for the channel width it is the laser beam amplitude (A).

Figure 9.Comparing 10 different structures of NN,with the ReLU activation function, by changing the number of hidden layers and
neurons per layer (as printed in the legends) for predicting the channel’s depth using four independent laser parameters. Owing to the
limited number of datapoints, theNNpredictions’ performances depend on the training and test datasets. To avoid this problem 100
independent 80-20 splits (bootstrapping)were run and themean values ofR2 andMSE are shownwithin ± std deviation as error bars.
The calculation time per run for each structure is printed on the bottompanel above theirMSE error bars.
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predictions is provided infigure S5 in Supplementary Information. The consistency of the experiments was
evaluated by repeating the lasermachining tests withfixed laser parameters tofind the variations in dimensions.
Given the distribution of themeasured dimensions, the experimental uncertainty was found to be about 10%.

NNpredictions depend on the neurons’ initial weights, which are beingmodified through backpropagation.
This dependence was negated by running theNN for 100 random initializations. Themean of these 100
predictions is shownwithin error bars (standard deviation) of the predictions infigure 10. Thisfigure also
indicates that in 17 out of 20 test cases, at least two out of threemeasured dimensions overlap theNNprediction
(except for cases 2, 8 and 17). Comparing the laser parameters for the different test cases, one can see that the
employed frequency for the cases with the largest variations from the predicted values, case number 8 and 17, is
around 400 Hz, whereas for the rest of the cases, it is in the range of [897, 1600]Hz.Moreover, the laser-substrate
distance for cases 8 and 17 is roughly 91.7 μmwhile for the rest, it is between 92 to 93.2 μm.

Detecting correlations between laser parameters and reliably predicting the channel dimensions enables the
designer tofind the proper input parameters for the desired channel with ease. In order to achieve this, one needs
tomake a collection of applicable laser parameters and feed it to anMLmodel that is trainedwith all the available
experimental observations. One can capture the parameter combinations that lead to target outputs by filtering
the target dimensions among themodel predictions. Laser parameter combinations can bemade as afine grid
sweeping the range of the parameter values used in experiments [15, 27, 28].

Parameter combinations are applicable to the lasermachinewhen the restrictions on the input parameters
are known.However, generating synthesized laser combinations is an alternative when the constraints are
unknown.Different techniques of data generation are categorized into the oldermethods such as synthetic
minority over-sampling technique (SMOTE) [48] and variational autoencoder [49] focusing on balancing the
data distribution close to theminority classes, and the recent innovation of generative adversarial networks
(GANs) [32], which is used here owing to the high quality of the synthesized data. In this technique, twoNNs are

Figure 10.Comparison of the predicted values of channel dimensions to the experimental results for 20 laser combinations.
Experimental results are shownwith 10%uncertainty andNNpredictions are presented as themean value of 100 different
initializationwith one standard deviations above and below, represented as error bars. The laser parameters for test cases are printed
in the table.
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coupled and trainedwith actual experimental observations to generate laser combinations similar to the training
data [50]. Based on the type of training data, the standardGAN algorithm can be adjusted to improve the
convergence problems [51].

Instead of using a grid of 54,000 combinations, a set of 5,000 parameter combinationswas generated using
theGANalgorithm and fed to the trainedNN tofind the laser parameters for target channels. Two target
channels with triangular and trapezoidal cross-sections were specified; their 3Dprofiles and 2D scans are shown
infigure 11. The required laser parameters corresponding to these target channels were found byfiltering back
theNNpredictions on theGANdata. To engrave the first target channel, having a triangular cross-sectionwith a
depth of 635± 50 μmand topwidth of 500± 50 μm (seefigure 11(a)),five different laser combinations were
tested as shown infigure 12. Given the limited number of training data and the diversity of the prescribed laser
combinations, the agreement between the predicted andmeasured dimensions for different test cases is
impressive.

Similarly, figure 13 shows themeasured and predicted dimensions for ten different laser combinations,
printed in the enclosed table, corresponding to the second target channel with a depth of 444.5± 50 μm, top
width of 500± 50 μmandbottomwidth of 100± 50 μm (see figure 11(b)). Same as thefirst target set, the
disparity of the prescribed laser combinations and their significant agreement proves theNNalgorithm’s
capability and efficiency for ceramicmachining applications.

As a potential limitation of thismethod, generated laser combinations are bound to the range of initial
experiments used as training data. Consequently, the lasermachined channels are predicted not to be deeper
than 1.2 mmwithmostly triangular cross sections andwall angles within 17 to 25 degrees. This type ofML
provided information enlighten restrictions of the experimental set up for engraving deep channels.

5. Conclusion

In the present study, we report a comparison and application ofMLmethods to capture the interconnections
and dependencies between the picosecond laser parameters for engraving channels on alumina ceramics.
Systematic brute force laser parameter exploration is not feasible due to costly experiments and time-consuming
simulations.

Here,MLmodels were applied to the tunable parameters of the laser system. The parameters include the
beam frequency and amplitude, the number of laser passes over the substrate and the vertical distance of the light
source from the substrate.

This studywas performed in three stages. Stage onewas the collection of experimental data on the produced
channels created by ytterbiumpicosecond lasermachining of industrial alumina ceramics. In stage two, the
experimental data were used to trainMLmodels for predicting channel dimensions. For this purpose, the

Figure 11.Three and two dimensional representations of typical engraved channels with target dimensions printed having (a)
triangular and (b) trapezoidal cross-sections.
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performances of differentML algorithms, including linear/polynomial regression, XGB andNN,were
compared. Although second or third order linear relationships between the input and output parameters are not
excluded (considering the fairly highR2 score of predictions via 2nd and 3rd-order polynomial linear regression
models), the complex relation suggested by theNNmodel provides a higherR2 score and lowerMSE. As theNN
predictions depend on the coefficient initialization, themean values of the predicted geometries of 20 test sets
were exhibited to bewithin one standard deviation ofNNpredictions from100 different initialization and
demonstrated an overlap inmost cases with their experimental uncertainty. The preferred structure of theNN
model (4/64/32/3)was justified by testing the performances of the differentNN structures on the experimental
data. The feature importancewas studied via the XGBmethod, which showed that the number of passes and
amplitudes were themost important parameters for predicting the channels’ depths andwidths, respectively.
These results are supported by experimental data in section 2.2.

In the third stage, a collection of unseen laser parameters was fed to the trainedmodel tomake a table of
required parameters for engraving target channels. Generative adversarial networks (GAN)were used to collect
the parameter sets, owing to the unknown correlations between the parameters. By choosing a handful of
parameter combinations corresponding to two individual target channels with triangular and trapezoidal cross-
sections, themodel’s performance for general applications was examined. Good agreement between the target
geometries and the experimental cuts (based on predictedML input parameters) demonstrated the success of
theMLprogram for the lasermachining of ceramics.
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