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STRUCTURAL ANALYSIS OF A SHEAR WALL
AND FRAME STRUCTURE

by

H. S. Ward

It is common practice in the construction of multi-storey
buildings that have to withstand large vertical and horizontal loads
to use two structural systems combined together. Usually a frame
system is assumed to take most of the vertical loads and quite often
a system of shear walls is designed to take the horizontal loads. In
reality, however, the interaction of the two systems modifies the
characteristics of the individual elements to give a composite system.
The object of this paper is to present a method of structural analysis
for such systems that is both simple and direct, and which could be
readily applied as a design method.

The method consists of a procedure for deriving the flex-
ibility or stiffness matrix of a structure made up of shear walls
interconnected by frames. The method breaks the structure down
into a number of individual parts which are either frames or shear
walls., Conditions of compatibility and equilibrium are then used to
set up a system of simultaneous equations, the solutions of which
provide the deformations caused by a given loading condition.

A two-storey structure has been used to demonstrate the
method but it can obviously be extended to any number of storeys
and any configuration of shear walls and frames. Two cases of
foundation support are considered namely a rigid base and a spring
resistance; in the latter case differential movement can take place
at ground level between the main structural components. Only rigid
diaphragm action of the floors is considered here but consideration
of the spring base foundation shows how thig restriction can be
relaxed if necessary.

Two computer programs (1, 2) are available that provide
most of the information required to set up the simultaneous equations,
and any structure of the type under discussion could be analysed with-
out much delay. Eventually, however, it will be worthwhile incorporat-
ing all the individual procedures into one program that will analyse a
shear wall-frame system then calculate its modes and frequencies of
vibration.




METHOD OF ANALYSIS

Rigid-Base Structure

The procedure used is similar to the method of sections and
can be used to study any structural system made up of different
component parts. The basic idea is presented in Figure 1 for a
single shear wall connected to two frame systems, when only lateral
loads are considered. The procedure for dealing with any number of
interconnected shear walls and frames will be shown later.

As an outcome of the applied external horizontal loads, Ej,
internal forces are created in the combined system, together with
deflections and rotations of the structural members. In order for
the analysis to proceed, the frame components (i) and (iii) in Figure
I1(b) are obtained by taking sections through the beams connected to
the shear walls, When these cuts are made the internal reactions
shown in Figure 1(b) must be applied to each of the component parts
to maintain equilibrium.

The deflections and rotations of the cantilever shear wall can
now be written down in terms of the unknown reactions Pi’ Vi’ Mi g
as follows:

N

a = ) (Pyo (M Vb) v, Y cen (1)
j=1
N
5

8= ) [Py, + (M. + V) B}, 22 5l2)
j=1

In equations (1) and (2) u; and § are the horizontal displace-
ment and angular rotation respectively at the ith floor level;
6ji o Vi Qi and Bji are flexibility coefficients that are easily
derived, and b is the distance from the neutral axis to the extreme
fibre of the shear wall; N is the number of storeys in the building.

It is also possible to write down the forces and moments that
must be applied to the frame structures in order to produce given
horizontal displacements of the floors and rotations of the girders
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connected to the shear walls, Thus if w is used to represent the
lateral displacement of the floors and ( the angular rotation of the
beams which, in the combined structure, are linked to the shear
walls:

N
Fl = z wh ot ¥ st
i { jooi j Ji}
j=i
N
Vli = Z {wljt1J +01 Zl } {i=1 to N}
j=1
N
P = Lxt+ Qb ovr
MY = ) (whXel v (3)
j=1
The coefficients r',,, s*.., tr.., 2., x*.. and yl._ can readily be
A n n ji J J1

obtained, for example, by the moment dlstrlbutlon method, A similar
set of equations can also be written relating F" i v" and M" i to the

displacements w' j and Q

i

The requirement that the structure act as a combined system
introduces a set of compatibility conditions that relate the deflections
and rotations of the individual components. For most practical cases
it is valid to assume that the floors act as rigid diaphragms in which
case each component has equal horizontal deflections when the
structure is laterally loaded; it is also reasonable to assume that the
rotations of the shear wall and the interconnecting beams from the
frame are equal at a floor level. These restrictions on the deforma-
tions give rise to the equations:

u, = w, = wt,
i i i

{i=1toN} cee (4)

and 8, = Q* = o™
1 1 1

If only external lateral loads are applied to the structure then
application of the equilibrium conditions leads to




F! + F" + P,
1 1

1
3!

v1i+v"i+vi=o {i = 1 to N}

MY + M" + M, = 0. o 548
1 1

Equations (3), (4) and (5) can then be used to express the internal
reactions acting on the cantilever in terms of the structures deforma-
tions and the stiffness coefficients of the frame components. This
leads to, ‘

N
Pi = Ei - [y {uj(rlji + r"ji) + ej (slji + s"ji 1
N 1
vV, = - [z{uj(tlji + t"ji) + ej (zlji + z"ji)}] {i =1 to N}
N
Mi = - [\Z‘ ‘{uj (lei + x"ji) + ej (Ylji + y"ji)}] . ... (6)

il

Equations (6) may be substituted now into equations (1) and (2)
whence a system of simultaneous equations are obtained with the u,
and 6; as unknowns; the coefficients of the unknowns are expressed
in terms of the stiffness and flexibility coefficients of the component
structures, and the right hand sides of the equations have known
values which are functions of the horizontal loading conditions. In
order to calculate the flexibility matrix of the combined structure,

a unit load is assumed at each floor level in turn, and the correspond-
ing deflections calculated.

Examgle

The procedure explained above can be clarified by means of
the example shown in Figure 2. In this particular case a symmetrical
structure is assumed in which the members making up the frame have
equal stiffness values, i.e. IC L = Ibl/Ll = Ibz/Lz , Where I is




i

used to represent the second moment of area of a beam or column,
If subscripts f and s are used to refer to the frame and shear walls
respectively, and E denotes Young's Modulus, then the products
Eflc and ESIS are given the symbols kf and ks respectively.

The flexibility coefficients in (i) and (iv) are easily obtained
from the analysis of a uniform cantilever structure. There is no
inherent difficulty, of course, in extending the method to include
shear walls with any variation of second moment of area. It is not
necessary to carry out a separate analysis of the effect of the vertical
shear forces acting on the shear walls, since their action is analogous
to a torque and can be described by coefficients (ii) and (iv).

In order to understand the manner in which the stiffness
coefficients in (v) and (viii) are obtained it is best to follow the moment
distribution approach used to obtain (v) and (vi). Thus in (v) one
obtains the external forces that must be applied to displace the second
floor unit distance in the horizontal direction while u;, 6, and 6,
are zero. For case (vi) 8; undergoes a unit rotation while us , uy and
8, are kept zero.

The moment distribution analyses for cases (v) and (vi) are
given in Tables I and II respectively where positive moments act
clockwise. In both of these tables the initial fixed-end moments
caused by the imposed deflection pattern are assigned a value of
100; the relaxation process is then continued until the carry-over
values are less than 1 per cent of the initial moments. The method
of obtaining coefficients xzj and Yzj is shown in the tables.

To calculate the other stiffness coefficients it is necessary
to consider the equilibrium of the structure. For example, in
case (v) the moments in columns BE and CF require equal and
opposite forces acting at the 1lst and 2nd floor level to maintain
equilibrium. The total overturning moment of the column moments,
T, is given by

T :MBE+MEB+MCF+MFC = -66,7 - 68.8 - 50 - 56,8 = 244.3

This means that there is an anticlockwise moment which must be
resisted by a force rg; acting from left to right at the second floor

eee (7)
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where
6k
h = 244, 3 £ 1'4'61(1'
T22® = o0 * %7 ° T n®
14.6kf
or P = —Tl-s_

A similar procedure leads to the determination of the vertical shear
forces that act on the cantilever when the frame is given the imposed
deflections. Because of symmetry the effect of the left hand frame
can be accounted for by doubling the coefficients in Figure 2.

When the information from this Figure is substituted into
equations (1) through (5) the flexibility matrix of the combined
structure is defined by:

(n + 26.96) -17.10 11,18 9.25 Eha 1.333 -0.416-‘
u 0.416 0.166
6.94 (n - 2.14) 2.83 3.05 L W 32
. = "k
23.09 -18,74 (n+ 10.92) 6.31 6, kf 1.000 f |0.250
14,53 - 8.13 5.66 (n + 5.99)j| 6, 0.750 0.250
| d
L r r L . y

Where the 1st column on the right-hand side gives the deflections in
the structure caused by unit load at the second floor, and the second
column (on the right) provides the deflections caused by unit load at
the first floor; n is equal to ks/Zkf.

The lateral deflections due to a unit load at the second floor
level are shown in Figure 3 if the core wall were to stand on its own
and for the combined system. The indications from these results
are that even when the summation of column stiffness in the frame is
only 2 per cent of the shear wall stiffness there is considerable error
involved in ignoring the interaction of the frame with the core. For
values less than 1 per cent the interaction can probably be ignored.

With the information obtained from the solution of equations
(8) for different values of n it is possible to calculate the frequencies
of vibration of the combined system. If it is further assumed that the
two floor weights are equal and have the value W, then the appropriate
frequencies for different values of n are shown in Table III, It can
be seen in this particular case that as n becomes smaller the ratio of
the two frequencies of vibration, not surprisingly, approaches the
sort of value associated with a frame structure,
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Extension to More Complicated Structures

It is possible to extend this approach to any distribution of
shear walls and frames, including the case when the shear walls
are not continuous through the height of the building. The steps
involved in such an analysis are demonstrated by using the inter-
action system shown in Figure 4 which is loaded by the external
lateral loads E; , E; and E, .

All frame members connected to a shear wall are cut and
this produces three frame component systems A, ,A. and A, ;
internal reactions F,53, M3, V,5... are placed at the cut sections,
where the first subscript refers to the component number and the
second subscript to the floor level. Internal reactions Q,, , Sy,

Ry, ... also act on the shear walls where the subscripts have the
same meaning as for the frame internal reactions.

As a consequence of the internal reactions acting on the shear
walls (which are caused by the external forces) they are deflected
laterally and the cross-sections rotate. If we use u; to represent
the lateral displacement of the ith floor, and 91' torepresent the
rotation of shear wall component i at the jth floor level, it is

possible to write the following sets of equations:

[ Qs Qs

Ry, Ras

S 23 S a3

uy XAXKXKKXKK O J xxxxxxxxx | |Qas
Uy | = | xxxxxxxxx Ras = XXXXXXXXX | |Raz

Ug XXXKXXXXXX Szp XXXXXXXXX | |S 55




Qi
&, = [xxx] [Ry
S 15 ess (9¢)
Qux
R
Sz
85 XXRXRXXKKK | [Qop
B = |xxxxxxxx| R,
0. XXXXXXXXX| |S 5a
Qa
Ra
Sal «.. (9d)
o
Raa
S a3
Baa xxxxxxxxx| [Qas
By = xxxxxxxxx| |[Rag
8 xxXxxxxxx%| |S a2
Qa
Ra
‘S | coo (9e)
The crosses shown in the matrices above are flexibility coefficients of
the shear walls, which are easily obtained by such procedures as the
moment-area method. The compatibility condition that all the components
at any given floor level have the same displacement has been used in
writing down the equations for uj.
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If we now consider the frame components, and impose the
compatibility condition that at floor level i they move laterally u;,
and also that those members connected to a shear wall undergo
the same rotation of the appropriate shear wall cross-section, then
the values of the internal reactions of the frame can be written in
terms of the unknown displacements and rotations as follows:
r - f 13
F.a XXXXXKX
Via KXKKXKKXK
M, XXXKXKK ( 1
Us
F,, XXXXXKK
Uz
\2 XXXXKXX
Uy
M,, _ XXXKHXX g,
S 1
F KXKXXKKXK
1
g %3
Vi XXXKXKXXK 6
22
M,, XXXKHKX
621
1 ;
F11 KXXAXXX ’
. J
V]ZL.1 XXHXKKK
1
MY, XXXXKKK ... (10a)
. 4 . J
r %
Us
Us
Yy
F,, XXXXXKKKK 024
F = | XXXXXXXXX 82
Fo XXXKXKKXKKK 654
. . 633
Oz
o
H «.. (10Db)
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AKX XXXXXXX
XX XXXKXXX
KEXKXXHKKR
p9.9.6.0.6.6.6.6.4
P 9.9:9.9.0.6,9.0.4

KX KXEXXKKXK

R9.9.9.0.9.6.6.9.4

KX XX XKKXK

9. 6.6.6.9.6.6.0.4
XEXXXXXKXX

PO.0.0.6.9.0.6 0.4

XXXXKX
XXXXXX
Xxxxxx
XXXXXS

KEXXXXK

XXXXHK

XXXXXX

GDWCD QCD
W
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[
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eee (10c)

... (10d)

... (10e)
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In equations (10a to 10e) the crosses represent stiffness coefficients
which can be obtained from an analysis of the frame components.

For example the number which multiplies the displacement uz in the
linear expression for F,, is obtained by finding the force that must
be applied to obtain unit displacement of the roof level of A, when u,,
ur, 6y 64, 85 and 9, are kept zero. The remaining stiffness
coefficients can be interpreted in a similar manner.

To obtain an explicit evaluation of the deflections and rotations
of the combined system in terms of the applied loading all that needs
to be done is to obtain a sufficient number of relations between the
internal reactions of the frames and the shear walls. This can be
achieved by writing down the equations of equilibrium; this is perhaps
best done by considering each shear wall in turn and writing down the
equilibrium conditions at each floor level. Thus for S,the equilibrium
conditions for only lateral loads become

1

Qpy + Fyy - Fyy = E
1
Ry '+ Vigy =0
S, + MY, = 0, ... (11)

For S; at floor level 3 the equilibrium equations are
Qxn + Fia - Fay = Eg

0

H

Rog + Vig + Vg

Sm + My, + Mgy = 0, ... (12)

Such a systematic procedure directly leads to a formulation of
the unknown shear wall internal reactions in terms of the external
loading and the unknown displacements of the combined system. The
equations for the shear wall internal reactions can now be substituted
into equations (9) in which case a system of simultaneous equations is
obtained with the combined structure displacements as the unknowns.
The coefficients of the unknowns are made up of summed products of
the stiffness and flexibility coefficients of the individual components.

It is apparent from a study of equations (9) that fourteen
equations can be written down, yet in fact there are only ten unknowns,
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Only three equations for the lateral floor displacements are indepen-
dent, however, because rigid diaphragm action has been assumed.
Care must be taken therefore to ensure that, when rigid diaphragm
action is assumed, independent equations are used in the final
determination of the building deflections, The extra equations of
course are necessary to deal with the problem of a flexible rather
than a rigid connection between shear walls. The next section,
although concerned with a compliant foundation restraint, provides
the necessary details to handle the flexible connection case should

it be required.

METHOD FOR ANALYSING THE EFFECT OF A YIELDING
FOUNDATION

Unless the structure is founded on bedrock it is most likely
that the component parts of a shear-frame building will be able to
move relative to each other at foundation level. This situation can
be dealt with quite simply if the foundation restraint can be idealized
by a spring as shown in Figure 5,

In order to reduce the structural analysis involved for
demonstration purposes it is assumed that the geometrical con-
figuration and structural properties are as shown in Figure 2, except
that here there is a frame on the right-hand side only of the shear
wall. The foundation restraint is assumed to be represented by three
springs R;, R, and R, and this introduces two extra degrees of
freedom compared with the rigid-base model. These extra degrees
of freedom are represented by the motion of the foundations of the
individual components uy and wg .

There is little change in the procedure compared with the
rigid-base analysis, except that internal forces and displacements
at the foundation level must be introduced, together with a means
of dealing with the fact that the individual components are no longer
constrained to move together at the foundation level.

For example the first step in the analysis is to determine
the flexibility matrix for deflections and rotations at the levels 0,
1 and 2 of the structure shown in Figure 6a. In this particular
instance it is assumed that the foundation elements are re strained in
such a manner that they can only move horizontally, but it is also
possible to account for rotational movements in a similar manner.
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If the foundation can only move horizontally, then many of the flex-
ibility coefficients can be obtained from Figure 2; thus the 8 i
coefficients are found merely by adding I/Rl to those of Figure 2
whereas all the other coefficients in (i) to (iv) are unaltered. The
coefficients 8,5, 8,0, 8oz, 80, and 8oy are all equal to 1/R, and
the coefficients 055, %js Yjor Yoj» Bjo and Boj are all zero.

The second step in the procedure is to determine the appro-
priate stiffness coefficients of the structural component shown in
Figure 6b. Again many of these coefficients can be found from the
analyses already performed for the rigid-base model. Thus ry is
the horizontal force acting at the foundation level of the component
when uy has unit displacement as shown in Figure 2(v). This force
can be found by summing the moments EG, GE, FH and HF then
dividing by h in this way rg, is found to equal 3.8 k¢ /h"3 .

Because the foundation elements are assumed to be
restrained so that they can only move horizontally the r:, and s;
coefficients are the only ones of interest for cases (v) to (viii)
in Figure 2. If rotation of the foundations is to be considered then
all the stiffness coefficients would have to be evaluated at the founda-
tion level. One other condition has to be investigated and that is the
stiffness coefficients mobilized when the frame foundation is given a
unit horizontal displacement with the remaining degrees of freedom
clamped. This last configuration to be analysed is shown in Figure 7
together with the details of the moment distribution analysis for this
case. The non-zero stiffness coefficients with zero as their first
subscript are shown to the right of the moment distribution table
from which they are derived in Figure 7.

The equations that lead to the definition of the flexibility
matrix for the structure can now be set up. Thus the equations for
o, uy, uy,0; and 6, are obtained from equations (1) and (2) with
the exception that the summation now takes place from j equals zero
to two. In exactly the same way the internal forces acting on the
frame are obtained from equation (3) with the summations going from
zero to two. Equation (4) remains unaltered but it is now necessary
to introduce some further equations before the problem can proceed
any further.

It has been assumed for the demonstration case that the
foundations of the structural components cannot rotate which means that

60=Qo=0- -00(13)
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We can now consider the equilibrium conditions and again equations
(5) are unaltered but we need to introduce as well the equilibrium
condition at the foundation level. The equations for equilibrium of
vertical forces and moments need not be written down in this case
because equilibrium of these reactions is automatically satisfied by
the assumed foundation restraint.

If the next step, demonstrated by equation (6), is now carried
out it is found that the internal forces acting on the cantilever can be
found in terms of the external loading and the cantilever deflections
except that w, rather than u, appears in the equations (the summations
in the corresponding equations also go from zero to two). In order to
include the effect of w, and arrange for the coupling of the components
at ground level it is necessary to consider carefully the equilibrium of
horizontal forces at the foundation level. If the external force E, is
divided into two components, E o and E¢,s» where E__ is the force
acting on the shear wall foundation and E¢, is the force on the frame
foundation, the conditions for the equilibrium of the two foundations
can be written as

F +T=E
o fo
P -T=E
o 50
T = R, (wo-uo) o0 (14)

where T is the tension in the spring connection R,.

From equation (3) an expression for Fo can be written down:

n

2
F = (w.r. +Q.s. ) = E (u.r. + 6.1, ) + wWoroo . ees (15)

Using the last two equations of (14) with (15) it is possible to express
P _in terms of the unknown structural displacements and the external

load E , - By using equations (1) and (2) we can now write down five

equations in terms of the six unknown displacements. The sixth
equation is obtained from the first equation of (14).




- 15 -

It is then possible to set up the flexibility matrix of the
composite structure shown in Figure 5, and the method is also
readily extended to analyse a number of structural components
connected by a yielding foundation. The flexibility and stiffness
coefficients of the demonstration structure are shown in Tables
IV and V, and the equations that result from the application of the
method of analysis outlined above are shown in Table VI.

The flexibility matrix of the structure shown in Figure 5
is obtained by equating each of the external loads to unity in turn
when the other remaining external loads are zero. Four such
loading conditions have to be investigated, namely, E;=1, E; =1,
E o =1and Eg, = 1. Values of n equal to 10 and 50 have been
investigated as they cover the range of most practical interest. The
majority of results presented in this note refer to the case when
R,/R; = 1.0, Ry /Ry = 2.0 and r = 0.1, The manner in which the
flexibility coefficients vary as a function of a, which is a parameter
defining the ratio of structure to foundation stiffness, is shown in
Figure 8. It is interesting to note that the coefficients are linear
functions of a, since this feature is not predictable beforehand.
When the modes and frequencies of the structure are to be calculated
the further parameters of weightdistribution and damping have to be
introduced. Modes and frequencies of vibration have been obtained
by assuming there was no damping and that the weight of the first
and second floor were equal to W, whereas the weights at the
foundation level of the shear wall and frame were both W/2. Values
of the fundamental frequency are given in Table VII and the ratios
of the higher mode frequencies to the fundamental are plotted in
Figures 9and 10, A single example of a mode shape is shown in
Figure 11.

The results for the ratio of the second to the first frequency
of vibration show that there is a minimum for a value of a that appears
to depend on n, but is in the vicinity of a = 1.5, For values of
a = 0.1 there is a decrease in the fundamental frequency from the
rigid-base curve of only 3 to 4 per cent but the second mode frequency
decreases by almost 30 per cent., It is possible therefore that founda-
tion compliance can exert an appreciable effect on modes and
frequencies of vibration of a structure even if the foundation stiffness
is quite high.

One set of results when r = 0,25 indicates that this parameter
has an insignificant effect on the flexibility coefficients as did decreas-
ing the value of Ry/R, from 2 to 1, Nevertheless it would be necessary
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to consider a larger range of values of these parameters before any
general conclusions could be drawn.

Inclusion of Other Factors

Two factors that could have an appreciable effect on the dynamic
characteristics of tall shear-frame structures are axial deformations
and the compliance at foundation level due to base rotation. Both of
these factors are easily incorporated in the method of analysis outlined
in this note, and will be the subject of a future study concerned with
applying this analysis procedure to a study of the dynamic character-
istics of taller shear-frame structures.

CONCLUSIONS

A structural analysis procedure is described which breaks a
shear-frame structure into component parts in a manner that permits
well known analysis techniques such as the Moment-Area method and
Moment distribution to be used in calculating the action of the composite
structure. This approach gives a good physical insight into the nature
of the interaction between shear walls and frames.

The results for the frequency ratios of a two-storey structure
show that they are affected by the relative stiffness of both the com-
ponent parts of the structure and the foundation compliances. It is
now worth investigating these two basic parameters in taller shear-
frame structures.
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TABLE 1. MOMENT DISTRIBUTION ANALYSIS FOR CONDITIONS IN
FIGURE 2(V).

Joint AB BA BE BC CB CF
Fixed End -100 -100
Moments
Balance 33.3 33.3 33.3 50 50
Carry Over 16.6 12.5 25 16.6 16,6
Balance -12.5 - 12.5 -12.5 -16,6 - 16.6
Carry Over - 6.2 - 4.1 - 8.3 - 6.2 - 6.2
Balance 4,1 4.1 4.2 6.2 6.2
Carry Over 2.0 1.5 .l 2.0 2.1
Balance - 1.5 - 1.5 ~ 1,6 - 2.0 - 2.1
Z Columns 12.4 23.4 - 66.7 43,2 50 - 50

Joint DE ED EB EF EG FE FC FH
Fixed End -100 -100
Moments
Balance 25 25 25 25 33.3 33.3 33.3
Carry Over 12.5 16,6 16. 6 12.5 25
Balance - 8.3 - 8.3 - 8.3 - 8.3 -12.5 -12.5 -12.5
Carry Over - 4.1 - 6.2 - 6.2 - 4.1 - 8.3
Balance 3.1 3.1 3.1 3.1 4.1 4.2 4.1
Carry Over 1.5 2.0 2.0 1.5 3.1
Balance - 1.0 - 1,0 - 1,0 - 1,0 - 1.5 - 1.6 - 1.5
Z Columns 9.9 18.8 -~ 68.8 31.2 18,8 33.3 -56.8 -23.4

Joint GE HF
Carry Over 12.5 16,6
Balance
Carry Over - 4.1 - 6,2
Balance
Carry Over 1.5 2.0
Balance
z Columns 9.9 12.4

6Eflcuz
A moment value of 100 = 1 " TRE

Thus the coefficients Xy, and X, can be obtained directly from the numbers above since

they are the moments M

By considering equilibrium of the structure it is possible to calculate r

Thus X5 =

AB

and MDE respectively when ugy

12,
10

4

6k

£
0 * h? T

0. 744kf
h>
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TABLE III. FREQUENCIES OF THE RIGID BASED STRUCTURE.

ks
E = n 10 50 100 300

Fundamental Frequency, Hz

kf Wh

0.42 0. 60 0.76 1.20

Fundamental Frequency
Second Mode Frequency

4,10 5.40 6.06 6.45
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TABLE VII FUNDAMENTAL FREQUENCIES OF THE SPRING
BASED STRUCTURE OF FIGURE 5,

n=k [k a = k_/Rh°
10 |3 1 0.5 0.1 0.001 | o0
10 0.128 | 0.175 | 0.352 | 0.472 | 0.556 | 0.579 |o0.580
50 0,271 ] = 0,643 | — 0.819 | —  |0.835

[k g
The 3-digit numbers in the table when multiplied by —W-fL-é- give the

value of the fundamental frequency in Hz, for the corresponding values

of a and n.
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FIGURE 1 A SHEAR-FRAME STRUCTURE AND ITS COMPONENT PARTS
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FIGURE 3

FLEXIBILITY COEFFICIENTS OF THE COMPOSITE STRUCTURE IN FIGURE 2 COMPARED
WITH THOSE OF THE SHEAR WALL COMPONENT

IR~




x EJ___ ~F13 (A ~—\ 23
N N i3 ‘v23 m\ﬂ
N N " M;23
§ N E2_ i (22 r‘_zizz
N 5 M2 l"zz —l\"zz
M i
L N €1 ~ NGT ’\;2.' /M31F22
Y - |
N ::' Fﬁl ‘VH £V2] ‘Vﬁl
\ N ih
7 AT AT T m&vm\wlmmvi:wm TSI

COMPOSITE STRUCTURE Ay A,y

Fiz — Q23 Q
33
Myl Vo | ) i/ S33
23 33

Fag ~— Q Q
22
N} Va2 | S P S3p 2

M3 R Ry
F31 > Q Q Q
Vst PS.II " IJ 21 % /53 =
Mai R Ry Ry
R S e A
Ag 51 Sy S3
FIGURE 4

EXTENSION OF THE METHOD OF STRUCTURAL ANALYSIS TO MORE COMPLEX STRUCTURES
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FIGURE 5

A COMPOSITE STRUCTURE WITH EXTRA DEGREES OF FREEDOM
AT THE FOUNDATION LEVEL
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FIGURE 7

MOMENT DISTRIBUTION ANALYSIS TO DETERMINE THE STIFFNESS COEFFICIENTS
FOR THE CASE WHEN THE FOUNDATION OF THE FRAME COMPONENT MOVES UNIT
DISTANCE
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FIGURE 8

SOME OF THE FLEXIBILITY COEFFICIENTS FOR THE STRUCTURE IN FIGURE 5

snsiva-o




RATIO OF FREQUENCIES
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FIGURE 9

RATIO OF THE SECOND MODE FREQUENCY TO THE FUNDAMENTAL FREQUENCY FOR THE
STRUCTURE IN FIGURE 5
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RATIO OF FREQUENCIES
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FIGURE 10

RATIO OF THE HIGHER MODE FREQUENCIES TO THE FUNDAMENTAL FOR THE STRUCTURE
IN FIGURE 5
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