

NRC Publications Archive Archives des publications du CNRC

Description of seakeeping trial carried out on CCGA Roberts Sisters II: November 2004

Cumming, D.; Fleming, T.

For the publisher's version, please access the DOI link below./ Pour consulter la version de l'éditeur, utilisez le lien DOI ci-dessous.

Publisher's version / Version de l'éditeur:

https://doi.org/10.4224/8895573 Technical Report (National Research Council of Canada. Institute for Ocean Technology); no. TR-2005-09, 2005

NRC Publications Archive Record / Notice des Archives des publications du CNRC : https://nrc-publications.canada.ca/eng/view/object/?id=0b037db2-cd5b-4e1f-b7cc-14e1ed74b72d https://publications-cnrc.canada.ca/fra/voir/objet/?id=0b037db2-cd5b-4e1f-b7cc-14e1ed74b72d

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at https://nrc-publications.canada.ca/eng/copyright READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

L'accès à ce site Web et l'utilisation de son contenu sont assujettis aux conditions présentées dans le site <u>https://publications-cnrc.canada.ca/fra/droits</u> LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D'UTILISER CE SITE WEB.

Questions? Contact the NRC Publications Archive team at PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n'arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

DOCUMENTATION PAGE

REPORT NUMBER	NRC REPORT NUMBER	DATE		
TR-2005-09	.luly 2005			
REPORT SECURITY CLASSIFICAT	DISTRIBUTION			
l la sla s d'Card		L La Passitia al		
Unclassified		Unlimited		
DESCRIPTION OF SEAKER		ON CCGA RO	DBERTS	SISTERS
AUTHOR(S)	II - NOVEWIDER 2004			
D Cumming T Floming				
CORPORATE AUTHOR(S)/PERFOR	MING AGENCY(S)			
			. /	、 、
Institute for Ocean Technolog	gy (IOT), Memorial University of	Newfoundla	nd (MUN)
I OBLICATION				
N/A				
SPONSORING AGENCY(S)	av (IOT) Memorial University of	Nowfoundla	nd (MUN)
Oceanic Consulting Corp. (O	CC). Canadian Coast Guard (C	CG), the Offs	shore Saf	etv and
Survival Centre (OSSC), Ma	rine Institute, SafetyNet, Search	& Rescue (S	SAR), Nev	N
Initiatives Fund (NIF) and the	Canadian Institutes of Health	and Research	ו (CIHR)	
IOT PROJECT NUMBER		NRC FILE NUM	IBER	
KEY WORDS		PAGES	FIGS.	TABLES
		vii, 23	<u>-</u>	
Seakeeping, Motion Induced Interrupts, Fishing Vessel		App. A-J	25	4
SUMMART				
This report describes seakeepir	g experiments carried out on the 6	5 ft. (19.81 m)	long fishir	ng vessel
CCGA Roberts Sisters II off St. Project (Proj. 2017) The object	John's, NL November 15, 2004 as ive of the project is to acquire quali	part of the Fisi	ning Vesse otions data	el Safety a on fishing
vessels to validate physical mod	lel methodology as well as numeric	al simulation r	nodels un	der
development. Eventually, tools	will be developed and validated to	evaluate the n	umber of I	Motion
Induced Interrupts (MIIs), induce develop criteria to reduce MIIs	ed by sudden ship motions, and the	eir impact on c	rew accide	ents to
develop citteria to reduce withs.				
Collaborators involved in the fis	hing vessel sea trials include the In	stitute for Oce	an Techno	ology (IOT),
Memorial University of Newfoun	dland (MUN), Oceanic Consulting (aty and Survival Centre (OSSC) of t	Corp. (OCC), (the Marine Ins	Canadian	Coast SafetyNet
– a Community Research Alliance on Health and Safety in Marine and Coastal Work. Primary				
financial support for the project is provided from federal funding sources including the Search &				
Rescue (SAR), New Initiatives Fund (NIF) and the Canadian Institutes of Health and Research				arch
(on ite) in addition to significant in kind contributions from the many participants.				
This document describes the CCGA Roberts Sisters II, the trials instrumentation package, data acquisition system, test program, data analysis procedure and presents the results				
ADDRESS National Rese	arch Council			
Institute for Ocean Technology				
Arctic Avenue	, P. O. Box 12093			
St. John's, NL_A1B 315 Tel: (709) 772-5185_Fax: (709) 772-2462				
rei (703) 772-	(100) (100) $(12^{2}2402)$			

National Research Council Canada

Institute for Ocean Technology Conseil national de recherches Canada

Institut des technologies océaniques

DESCRIPTION OF SEAKEEPING TRIAL CARRIED OUT ON CCGA ROBERTS SISTERS II – NOVEMBER 2004

TR-2005-09

D. Cumming, T. Fleming

July 2005

List of	Tables	iv
List of	Figures	iv
List of	Abbreviations	V
1.0		1
2.0	BACKGROUND	1
3.0	DESCRIPTION OF THE CCGA ROBERTS SISTERS II	3
4.0	DESCRIPTION OF INSTRUMENTATION	4
4.1	Data Acquisition System (DAS)	4
4.2	Rudder Angle Measurement	5
4.3	Ship's Motion Instrumentation	5
4.4	Differential Global Positioning System Data	7
4.5	Directional Wave Buoy/Mooring Arrangement	8
4.6	Propeller Shaft Speed1	0
4.7	Directional Anemometer1	0
4.8	Sea Water Temperature/Density Measurement1	0
4.9	Electrical Power1	1
4.10) Signal Cabling1	1
5.0	TRIALS DESCRIPTION1	2
6.0	DESCRIPTION OF ONLINE DATA ANALYSIS1	3
7.0	DESCRIPTION OF OFFLINE DATA ANALYSIS1	4
7.1	Wave Data Analysis1	4
7.	1.1 Datawell Wave Buoy Data Analysis1	4
7.	1.2 Neptune Wave Buoy Data Analysis1	5
7.2	Interpreting the Raw Data1	6
7.3	Validation of MotionPak Software and Instrumentation1	7
7.4	Ship Motion Analysis1	8
7.5	Roll and Pitch Frequency Analysis1	9
8.0	DISCUSSION & RECOMMENDATIONS1	9
9.0	ACKNOWLEDGEMENTS	21
10.0	REFERENCES	22
APPE	NDIX A: Inclining Experiment Report	
APPE	NDIX B: Principle Particulars, List Of Outfit Items	
APPE	NDIX C: Instrumentation Plan	
APPE	NDIX D: Calibration Information	

TABLE OF CONTENTS

Output Files APPENDIX G: Seakeeping Trials Test Plan APPENDIX H: Seakeeping Trials Run Log

APPENDIX E: Neptune Wave Buoy Specifications and Typical Output File APPENDIX F: Datawell Wave Buoy and Mooring Description, Typical Raw

APPENDIX J: Tables of Basic Information and Statistics for Each Trial Run

APPENDIX I: Wave Statistics, Spectrum and Frequency Plots

LIST OF TABLES

MotionPak Validation	TABLE
Standard Deviations of Motions (No Anti-Roll Tank)	2
Standard Deviations of Motions (With Anti-Roll Tank)	3
Datawell/Neptune Directional Wave Data Comparison	4

LIST OF FIGURES

FIGURE

Photographs of CCGA Roberts Sisters II	1
Photograph of CCGA Roberts Sisters II – Propeller, Nozzle & Rudder	
Arrangement	2
Photograph of Data Acquisition System	3
Photograph of Rudder Angle Measurement	4
Photographs of MotionPak Installation in Fish Hold	5
Photograph of Orthogonal Linear Accelerometers in Bridge Console	6
Photograph of GPS Antenna	7
Photograph of Neptune Directional Wave Buoy	8
Photographs of Datawell Directional Wave Buoy and Anchor	9
Photograph of Shaft RPM Measurement	10
Photograph of Directional Anemometer	11
Photograph of Hand Held Salinometer	12
Example Online Data Analysis	13
Offline Data Analysis – Example Time Series Plots	14 - 19
MotionPak/Linear Accelerometer Comparison Plots	20 - 22
Plot of St. Dev. Roll, Pitch & Heave vs. Heading Angle - 4 knots	23
Plot of St. Dev. Roll, Pitch & Heave vs. Heading Angle - 8 knots	24
Photograph of Anti-Roll Tank Level Indicator	25

LIST OF ABBREVIATIONS

Accel.	Acceleration
ART	Anti-Roll Tank
AP	aft perpendicular
BOK	bottom of keel
٥C	degrees Centigrade
CAD	Computer Aided Design
CCG	Canadian Coast Guard
CCGA	Canadian Coast Guard Auxiliary
CCGS	Canadian Coast Guard Ship
CG	Centre of Gravity
CIHR	Canadian Institutes of Health and Research
cm	centimetre(s)
COG	Course Over Ground
DAS	Data Acquisition System
DC	Direct Current
deg.	degree(s)
DGPS	Differential Global Positioning System
DOT	Department of Transport
EPIRB	Emergency Position Indicating Radiobeacon
FFT	Fast Fourier Transform
FP	forward perpendicular
ft	foot, feet
Fwd.	forward
F/V	frequency/voltage
g	acceleration due to gravity
gal.	gallon(s)
GEDAP	General Data Analysis Program
GM⊤	Transverse Metacentric Height

LIST OF ABBREVIATIONS (CONT'D)

GPS	Global Positioning System
$H_{S}, H_{1/3}, H_{m0}$	Significant Wave Height
HF	High Frequency
h, hr	hour(s)
Hz	Hertz
in	inch(es)
IOT	Institute for Ocean Technology
kg	kilogram(s)
kHz	kiloHertz
km	kilometre(s)
KM _T	transverse metacentric height above keel
ΚML	longitudinal metacentric height above datum
kt(s)	knot(s)
kW	kiloWatt(s)
I	litre(s)
lb(s)	pound(s)
LCG	Longitudinal Centre of Gravity
LT, L. ton(s)	long ton(s)
m	metre(s)
mag.	magnetic
MHz	megaHertz
MII(s)	Motion Induced Interrupt(s)
MUN	Memorial University of Newfoundland
MV	Motor Vessel
mW	milliWatt(s)
NIF	New Initiatives Fund
nm	nautical mile(s)
NMEA	National Marine Electronics Association
NRC	National Research Council

LIST OF ABBREVIATIONS (CONT'D)

NSERC	Natural Sciences and Engineering Research Council of Canada
000	Oceanic Consulting Corporation
OEB	Offshore Engineering Basin
OSSC	Offshore Safety and Survival Centre
PPT	Parts Per Thousand
RF	Radio Frequency
RPM	Revolutions Per Minute
s, sec.	second(s)
SAR	Search And Rescue
SNAME	Society of Naval Architects and Marine Engineers
SOG	Speed Over Ground
Stbd.	starboard
St. Dev.	standard deviation
SWH	significant wave height
t	tonne(s)
T _{av} , T _{avg}	average period
T _{max}	maximum period
Tz	zero crossing period
UHF	Ultra High Frequency
UNESCO	United Nations Educational, Scientific and Cultural Organization
UPS	Uninterruptible Power Supply
V, VAC	volt(s)
VCG	Vertical Centre of Gravity
VHF	very high frequency

DESCRIPTION OF SEAKEEPING TRIAL CARRIED OUT ON CCGA ROBERTS SISTERS II – NOVEMBER 2004

1.0 INTRODUCTION

This report describes seakeeping experiments carried out on the 65 ft. (19.81 m) long fishing vessel CCGA Roberts Sisters II off St. John's, NL November 15, 2004 as part of the Fishing Vessel Safety Project (Proj. 2017). The objective of the project is to acquire quality full-scale motions data on fishing vessels to validate physical model methodology as well as numerical simulation models under development. Eventually, tools will be developed and validated to evaluate the number of Motion Induced Interrupts (MIIs), induced by sudden ship motions, and their impact on crew accidents to develop criteria to reduce MIIs. Although the priority was to collect seakeeping data, a manoeuvring test program was also available in the event that calm seas prevailed.

Collaborators involved in the fishing vessel sea trials include the Institute for Ocean Technology (IOT), Memorial University of Newfoundland (MUN), Oceanic Consulting Corp. (OCC), Canadian Coast Guard (CCG), the Offshore Safety and Survival Centre (OSSC) of the Marine Institute and SafetyNet – a Community Research Alliance on Health and Safety in Marine and Coastal Work. Primary financial support for the project is provided from federal funding sources including the Search & Rescue (SAR), New Initiatives Fund (NIF) and the Canadian Institutes of Health and Research (CIHR) in addition to significant in-kind contributions from the many participants.

This document describes the CCGA Roberts Sisters II, the trials instrumentation package, data acquisition system, test program, data analysis procedure and presents the results. Other Fishing Vessel Research Project related seakeeping trials carried out are described in References 1 to 4.

2.0 BACKGROUND

The Fishing Vessel Safety Project is just a small component of the overall SafetyNet initiative to understand and mitigate the health and safety risks associated with employment in a marine environment. SafetyNet is the first federally funded research program investigating occupational health and safety in historically high risk Atlantic Canada marine, coastal and offshore industries. The Fishing Vessel Safety Project is conducting research on the occupational health and safety of seafood harvesters. Fishing is the most dangerous occupation in Newfoundland and Labrador and is increasingly so: over the past ten years, the rates of reported injuries and fatalities nearly doubled. These trends have the effect of reducing the sustainability of the fishery, increasing health care and compensation costs, and straining the available SAR resources. The development of effective solutions, to prevent or mitigate injury, fatality or

1

SAR events, has been seriously hindered by the scarcity of the research needed to understand the factors that influence seafood harvester occupational health and safety.

The Fishing Vessel Safety Project is a multi-disciplinary, inter-departmental and inter-sectorial research project. The broad-based and multi-factorial approach in investigating the inter-related factors that influence fishing safety including: fishery policy and vessel regulations, vessel safety design and modeling, human relationships on vessels and health and safety program development, implementation and evaluation. The Fishing Vessel Safety project is composed of six integrated components:

- 1) Longitudinal Analysis: A statistical analysis of all fishing injuries, fatalities and SAR incidents from 1989 to 2000 to determine trends and influencing factors of seafood harvester occupational health and safety;
- Perceptions of Risk: An interview-based study, conducted with seafood harvesters, on the perceptions of causes of accidents and near-misses and the effectiveness of existing accident prevention programs;
- Motion Induced Interruptions: Sea trials, physical and numerical modeling of the effects of MIIs, sudden vessel motions induced by wave action, on crew accidents and development of criteria to reduce MIIs;
- Delayed Return to Work: an interview-based study on the psychological and social factors that delay previously injured seafood harvesters from returning to work;
- 5) Education Program: The development of an interactive, community-based occupational safety education program for seafood harvesters; and
- 6) Comparative Analysis: A comparative analysis of accident and fatality rates, and regulatory regimes for fisheries management and fishing vessel safety in Canada, the United States, Iceland, Norway, Denmark, France and Australia.

Several of the project components will yield results that can be directly used by stakeholder organizations for designing and implementing injury and fatality prevention programs. The applied nature of the overall project will be represented by a series of recommendations that will provide accessible and applicable information needed to make informed decisions. Additional information on SafetyNet may be found by visiting their web site (Reference 5).

The effort described in this report is part of Component #3 of the overall Fishing Vessel Research Project. The plan involved carrying out seakeeping trials on a total of five Newfoundland based fishing vessels ranging in lengths from 35 ft. to 75 ft. (10.67 m to 22.86 m) over two years. Data was acquired on some of the vessels with and without roll damping devices deployed. Standard seakeeping parameters such as ship motions, speed and heading angle was recorded along with data on the ambient environmental conditions (wave height/direction, wind speed/direction). Physical models of three of the vessels (tentatively the 35, and

the two 65 ft. vessels) suitable for free-running operation in the IOT Offshore Engineering Basin (OEB) will be fabricated and tested by IOT over three years in environmental conditions emulating the full scale conditions. Project participants at the MUN Faculty of Engineering will derive numerical models of all five hull forms and run simulations using their non-linear time domain ship motion prediction codes. Validated simulation tools will then be used to predict the expected level of MIIs for different fishing vessel designs.

Additional information on human factors in ship design is provided in References 6 to 9.

3.0 DESCRIPTION OF THE CCGA ROBERTS SISTERS II

The CCGA Roberts Sisters II (Figure 1) is a typical 65' fibreglass fishing vessel and the hull was built by Universal Marine Ltd. of La Scie, NL in 2001 to a design furnished by C.E.C Marine Consultants of St. John's, NL. The vessel owner completed much of the internal finishing. The vessel primarily participates in the inshore snow crab fishery, but has the ability to harvest other species using a trawl, such as shrimp and ground fish, when the stocks are available. The vessel is usually based in St. John's.

Nominal Principal Particulars:

Length Overall:	64' 11" (19.79 m)
Beam:	23' (7.01 m)
Draft:	12' 6" (3.81 m)
Installed Power:	624 HP (354.2 kW)
Displacement:	224 L. Tons (227,594 kg)
Fuel Capacity:	4500 gal. (20457.4 l)
Fresh Water Capacity:	1300 gal. (5909.9 l)
Fish Hold Volume:	3828 ft ³ (108.4 m ³)
Accommodations:	11 berths

One of the goals of this experiment is to measure the motions of the vessel while it is harvesting its catch, therefore a "half loaded" displacement condition was simulated by adding approximately 47,186 kg. of sea water to two wing tanks normally used for live crab stowage. Once the vessel was ballasted and most of the outfit items installed, an inclining experiment was performed on November 10th by Marine Services International to identify key hydrostatic properties for the trials condition.

The inclining experiment was carried out using standard procedures whereby two pendulums (aft pendulum was 2.781 m long in the fish hold, forward pendulum was 2.54 m long in the forward accommodations) suspended with the weights in a water bath were deployed to measure roll angle. Static roll angles were induced by the shifting of two 55 gal. plastic drums filled with fresh water,

weighing a total of 1050 lbs. (476.3 kg), laterally to various locations on the main deck. The following is a summary of results:

Draft:	13.625 ft @ AP (4.153 m Aft)
	9.25 ft @ FP (2.819 m Fwd.)
Displacement:	221.85 Long Tons (225,410 kg)
Longitudinal Centre of Gravity (LCG):	0.01 feet (0.003 m) Fwd of amidships
Vertical Centre of Gravity (VCG):	11.50 feet (3.505 m) above base plane
Transverse Metacentric Height (GM _T):	3.11 feet (0.947 m)
Transverse Metacentric Height (KM _T):	14.61 feet (4.453 m) above base plane

The inclining report delivered by the contractor is included in Appendix A. Note the vessel was inclined with the anti-roll tank empty. The computation for the approximate shift in the center of gravity due to the addition of the trials working level of sea water has been added by IOT to Appendix A.

The 'Roberts Sisters II' is a round bilge, single screw (fixed pitch propeller in a fixed nozzle), single flat plate rudder vessel with a very large centreline skeg and a passive anti-roll tank fitted just aft of the Bridge. A photograph of the propeller, nozzle and rudder arrangement is provided in Figure 2. The vessel has a normal suite of navigation/ communications electronics including radar, GPS, VHF radio, depth sounder and electronic chart information as well as a ComNav 2001 autopilot. The vessel is fitted with two 12 person inflatable rafts however the lifesaving equipment was augmented with floater suits on loan from the CCG for the trials period. Further information in the vessel particulars, list of outfit items and sketches of the general arrangement can be found in Appendix B.

4.0 DESCRIPTION OF INSTRUMENTATION

IOT was tasked to provide the trials technical support, to install and maintain primary on-board instrumentation, and a data acquisition system with limited online data analysis capability for all the trials. The instrumentation plan is provided in Appendix C while the analog channel calibration information is provided in Appendix D. Note that all analog channel calibrations were verified after completion of the trial. The instrumentation, signal cabling, and data acquisition system used along with the calibration method employed for each parameter is described in this section. The standard IOT sign convention is provided in Reference 10.

4.1 Data Acquisition System (DAS)

The Data Acquisition System (DAS) used for the 'Roberts Sisters II' trial was mounted on the galley table of the vessel (see Figure 3). The data acquisition and analysis software package designed for these trials (described in detail in Reference 11) were run on two ruggedized Panasonic notebook computers, which had the following software attributes: Off-the-shelf Software:

- Windows 2000 operating system
- WinZip 8.0 data compression software
- Excel 2000 spreadsheet software
- Daqview 2000 for viewing the data graphically

Hardware:

• Daqboard 2000

Additional Devices:

- CompassPoint 2200 GPS provides position along with heading, rate of turn, etc.
- IOTech Daqbook 2000 provides analog-to-digital conversion for analog signals including rudder angle, MotionPak, accelerometers and inclinometers.
- Signal Conditioning and interfacing hardware for analog channels.
- Uninterruptible Power Supply (UPS)

Custom Software:

- FishingVesselLogger the primary program used to acquire the analog data (data rate was generally 50 Hz for each of 16 analog channels).
- CompassPointGPS a slave process to the FishingVesselLogger program. It receives data from the DGPS unit and also logs all the GPS data.
- FishingVesselCal used to post-calibrate the acquired data.
- CompassPointNMEA Parser used to post-parse the NMEA data stream from the CompassPoint 2200 GPS unit and save the resulting parsed data to ASCII.

4.2 Rudder Angle Measurement

The rudder angle was measured by winding the cable, with wax string extension, from a 10 inch yo-yo type potentiometer linear displacement transducer around a groove cut in a circular ½ inch (1.27 cm) thick Plexiglas plate. The plate was machined with a steel clamp at its centre so that it could be adjusted to any size rudderpost (Figure 4). The transducer was clamped to a convenient vertical frame in the steering gear compartment.

Rudder angle was calibrated with respect to a protractor, drawn using CAD software, fixed to the top of the circular plate with zero degrees from the rudder indicator on the Bridge.

4.3 Ship's Motion Instrumentation

For the seakeeping trials carried out on November 15th, a MotionPak I was used to measure ship motions with six degrees of freedom. The MotionPak was

mounted on a purpose built aluminium bracket fixed to the deckhead in the vessel's fish hold (Figure 5) and outputs the following motion channels:

Roll Rate	Surge Acceleration
Pitch Rate	Sway Acceleration
Yaw Rate	Heave Acceleration

From these six signals, dedicated MotionPak software was available to derive the following 18 channels in either an earth or body co-ordinate system, and move the motions to any point on the rigid platform:

Roll Angle/Rate/Acceleration	Surge Displacement/Velocity/Acceleration
Pitch Angle/Rate/Acceleration	Sway Displacement/Velocity/Acceleration
Yaw Angle/Rate/Acceleration	Heave Displacement/Velocity/Acceleration

The MotionPak angular rate channels were calibrated using manufacturer's specifications while the acceleration channels were physically calibrated by placing the sensors on a set of precision wedges and computing the acceleration. The accelerometers output zero m/s² when placed on a horizontal plane and –9.808 m/s² (- 1 g) when oriented with the measuring axis vertical. The intermediate accelerations are computed as follows:

Acceleration = $-9.808 \text{ m/s}^2 * \sin(\text{angle of inclination})$

In addition, orthogonal linear accelerations (sway, surge and heave, Figure 6) were measured on the Bridge, in the main console and physically calibrated using the same procedure as was used for the MotionPak accelerometers. These instruments were used primarily to validate data collected by the MotionPak. From the inclining report presented in Appendix A, the position of the centre of gravity for the sea trial condition is:

LCG = 0.003 m forward of amidships KG_{T} (fluid) = 3.505 m

One of the complications faced by IOT was the lack of detailed general arrangement drawings of the 'Roberts Sisters II' – probably due to the fact that most of the internal finishing was carried out by the ship's owner. The only information available to IOT regarding the internal layout of the ship is provided in sketches included in Appendix A and B. A sketch of the location of the motion sensors measured relative to adjacent ship's structure is provided in Appendix C. From this information, the nominal location of the

MotionPak relative to CG: 1.955 m aft, 0.04175 m to port and 0.5385 m above MotionPak relative to Helmsman's position: 6.257 m aft, 2.62 m to port, 3.475 m below MotionPak to Bridge accelerometers: 6.257 m aft, 0.2187 m to port, 2.56 m below

Note that the sketches for vessel do not include the arrangement of the Bridge so the distance from the MotionPak to the helmsman's position and Bridge accelerometers are very rough estimates.

Two inclinometers used in the measurement of the pitch and roll angle were also mounted near the DAS and physically calibrated using the series of precision wedges. It should be noted that the inclinometers have a relatively low response rate and were fitted primarily to measure angular motion in the event that manoeuvring trials in calm water were carried out.

4.4 Differential Global Positioning System Data

The Global Positioning System (GPS) is a satellite based navigation system operated and maintained by the US Department of Defence. GPS consists of a constellation of 24 satellites providing world-wide, 24 hour, three-dimensional position coverage. Although originally conceived to satisfy military requirements, GPS now has a broad array of civilian applications including becoming the standard tool for marine navigation.

GPS is currently the most accurate navigation technology available to the public. The GPS receiver computes the distance to a minimum of three GPS satellites orbiting the earth to accurately derive the ship's position. GPS receivers also output precise time, speed of the ship over the ground (SOG) as well as course over ground (COG) measurements. Additional general information on the operation of a GPS system is provided in Reference 12.

Differential GPS (DGPS) provides greater positioning accuracy than standard GPS since error corrections can be included using a GPS signal transmitted via HF from a receiver established at a known location on land. To acquire a DGPS correction, IOT installed a CompassPoint 2200 GPS (a rectangular antenna with dimensions 60 cm x 16 cm x 18 cm) with a fixed based mounting, which was clamped to the top of the aft end deckhouse (Figure 7). Once the antenna was visually aligned parallel to the ship's longitudinal centreline, the system software was initiated by having the vessel perform multiple 360 degree rotations in the harbour prior to the trial.

The DGPS correction signal was acquired from a CCG broadcast at a frequency of 315 kHz from Cape Race, NL. Using DGPS, absolute position accuracies between 3 and 10 m can be achieved along with velocity accuracies within 0.1 knots.

The following digital data channels were acquired using the DGPS receiver in standard National Marine Electronics Association (NMEA) format:

Course Over Ground (COG) – degrees TRUE Speed Over Ground (SOG) – km/hr Latitude/Longitude - degrees/minutes/seconds

4.5 Directional Wave Buoy/Mooring Arrangement

Two directional wave buoys were used during the trials:

Neptune Sciences Sentry Wave Buoy

A small (0.75 m diameter, 15.7 kg) discus shaped directional wave buoy manufactured by Neptune Sciences, Inc. of Slidell, Louisiana and procured by MUN for previous sea trials using NSERC funding was used to acquire information on the wave conditions during the seakeeping trials (Figure 8). The buoy was moored in approximately 165 metres of water at 47° 33" 42' N, 52° 26" 11' W. On the day of the trial, the buoy was manually deployed by lifting it over the side of the Roberts Sisters II. Retrieval was accomplished at the end of the trial using the vessel's crab pot hauler. Unfortunately the upper section of the mooring could not be retrieved using the pot hauler, so this section was brought in by hand which was made more difficult due to a strong surface current.

The wave buoy was configured to acquire data for 17.07 minutes (1024 s) every half hour, process and store the data in an ASCII format file on an internal non-volatile flash disk. A radio modem was used to communicate between a base station on the 'Roberts Sisters II' and the buoy over line of sight range using a spread spectrum device operating in the UHF 902-928 MHz frequency band. The buoy assembly is composed of the following components:

- <u>Instrument Housing</u>: composed of a sealed aluminium cylinder with connections for the antenna and on/off plug on top. The housing contains the instrumentation package, onboard computer and onboard radio modem. All components of motion required to transform the buoy-fixed accelerations into an earth-fixed co-ordinate system (vertical, east-west and north-south) are measured using sensors mounted in the instrument package. Earth-fixed accelerations enable determination of non-directional wave information (wave heights, periods, and non-directional spectra) as well as directional wave information (wave directions and directional spectra) with all required computations executed within the onboard computer.
- <u>Battery Housing</u>: comprises a smaller sealed aluminium cylinder fitted below the instrument housing and contains the battery pack composed of 27 disposable D-cell alkaline batteries providing a 1 to 2 week lifetime with the buoy configured for data collection every ½ hour.
- <u>Floatation Assembly:</u> a rugged urethane foam and aluminium cage designed to provide the appropriate buoyancy for the instrument and battery housing.

The floatation assembly was designed such that the instrument and battery housing combination can be removed and replaced without disturbing the mooring or recovering the entire system.

- <u>Ship Based Modem</u>: An RF modem with dedicated power supply and antenna is used to communicate from a ship based laptop computer to the wave buoy. A dedicated, windows based, user friendly software package is supplied by the buoy manufacturer to facilitate the communication between the ship board computer and the wave buoy. The data can also be retrieved using an umbilical connection to the buoy after the buoy has been recovered.
- <u>Mooring Assembly:</u> a mooring system for the wave buoy was designed for a 165 m depth of water by personnel from the MUN Physical Oceanography Group after discussions with the buoy manufacturer. The mooring is described as follows:
 - Neptune Wave Buoy with floating tether
 - 4 meter half inch nylon cord in parallel with 3 meter shock cord
 - 1/2" (1.27 cm) stainless steel shackle and swivel
 - 55 meters of ¼" (0.635 cm) jacketed wire rope and shackles
 - 183 meters 9/16" (1.4287 cm) polypropylene rope
 - 10' (3.5 m) ½" (1.27 cm) galvanized chain
 - 40 lb. (18.14 kg) Danforth® anchor

Additional information on the Neptune directional wave buoy is provided in Reference 13 while further information and a typical output file is provided in Appendix E.

Datawell Waverider Mark II Wave Buoy

In previous trials the Neptune buoy proved to be unreliable. To ensure acquisition of the required directional wave data, a 0.9 m diameter Datawell Waverider Mark II wave buoy manufactured by Datawell b.v. of the Netherlands was leased from Oceans Ltd. of St. John's, NL. Oceans Ltd. was responsible for providing the buoy and mooring, supervising its launch/recovery from MV Louis M. Lauzier, as well as acquiring the data during the trial and generating a final data product.

The buoy was deployed in 165 m of water in position 47 34.126 N, 52 26.154 W – about 10 nm east of St. John's. Directional wave data was computed hourly and transmitted to the base station at a frequency of 29.760 MHz with an output power of 150 – 200 mW. The high visibility yellow (Figure 9) buoy includes a flashing light that flashes 5 times every 20 seconds. The single point mooring provided by Oceans Ltd. was designed to ensure sufficient symmetrical horizontal buoy response with low stiffness permitting the buoy to follow waves up to a wave height of 40 m with a resolution of 1 cm, and wave periods between 1.6 and 30 s. The wave direction resolution was 1.5° while the wave frequency resolution was 0.005 Hz for frequencies less than 0.1 Hz and 0.01 Hz otherwise.

The 212 kg buoy was anchored using two railway train wheels (Figure 9) weighing a total of 1400 lbs. (635 kg). The buoy was moored for the duration of the trials period (approximately 2 months).

The following sensors/equipment was included in the wave buoy:

- Hippy-40 pitch angle/roll angle/heave displacement
- Three axis flux gate compass
- Two fixed X and Y linear accelerometers
- Sea temperature sensor
- Micro-processor

The receiving system was installed ashore at the Oceans office in St. John's and consisted of a passive 3 m long (Kathrein) whip antenna with base. A dedicated laptop computer interfaced to the wave direction receiver for storing and displaying the acquired wave data. The receiver was set up to receive at 38.760 MHz (a higher frequency than being transmitted by the buoy). The base station was only monitored on the days when sea trials occurred. The specifications for the buoy, the mooring description and a typical output data file are provided in Appendix F. Additional information on the buoy can be obtained from the Datawell b.v. web site (Reference 14) and user's manual that includes a description of the data file format provided by Oceans Ltd. (Reference 15).

4.6 Propeller Shaft Speed

Propeller shaft speed was measured using an optical sensor acting on a piece of reflective tape on the shaft in the engine room. The pulse train from the optical pickup was fed to an IOT designed and built frequency-to-voltage (F/V) circuit that converts the digital pulse train to a linear DC voltage proportional to shaft RPM (Figure 10). This instrumentation was calibrated using a laser tachometer that acted on the reflective target, which was then verified using the vessel's RPM gauge.

4.7 Directional Anemometer

A MUN "Weather Wizard III", manufactured by Davis Instruments, provides monitoring and logging of essential weather conditions such as temperature, wind direction, wind speed and wind chill (Figure 11). This instrument was fixed to an aluminium mast furnished by IOT, which was in turn attached to a guard rail aft port side of the deck house. At dockside the directional indicator was aligned with magnetic north. Wind speed and direction were logged by hand.

4.8 Sea Water Temperature/Density Measurement

To determine whether there are any large variations in water density (which would ultimately change the draft of the vessel) between St. John's harbour

where the ship's draft is recorded and the trials area, a YSI model 30 battery powered hand-held salinity, conductivity and temperature meter was used to measure the parameters required to determine ambient water density. The YSI 30 unit, manufactured by YSI of Yellow Springs, Ohio, consists of a hand held display device and a weighted probe with 25 feet (7.62 m) of cable connecting the two (Figure 12). The required information, i.e. temperature and salinity, is collected by the probe and presented on the hand held display with an accuracy of \pm 2% or \pm 0.1 PPT (parts per thousand) for salinity and \pm 0.1°C for the temperature. The instruments range for salinity and temperature is 0 to 80 PPT and -5° to +95°C respectively.

To obtain a mean density of the sea water, the probe tested the water at about half the draft ~ 2 m. The density is then calculated using the Equation of State of Seawater given in Reference 16, which provided density as a function of temperature, salinity, and pressure. Additional information on the YSI instrument is provided in Reference 17. Note that there was never a requirement to correct the ship's displacement for a difference in water density between St. John's and the trials area.

4.9 Electrical Power

Acquiring quality 120 V electrical power was not a problem on the 'Roberts Sisters II'. IOT filtered all power used for IOT equipment through a UPS, however, to ensure that no power glitches or spikes impaired the data.

4.10 Signal Cabling

Belden 8723 two pair individually shielded cable was used to conduct signals from the MotionPak, accelerometers and inclinometers to the DAS. The inclinometers were located within the unit designed to accommodate the DAS therefore the distance for cable connection was short. The cable for the accelerometers extended from the wheelhouse console along the deckhead aft, down the stairway, and along the galley deckhead forward to the DAS. The cable to the MotionPak was fed from the DAS through an aft window in the galley, then down through the open fish hold hatch into the fish hold.

In addition, one cable was installed to accommodate the yo-yo potentiometer used to measure the rudder angle. This cable was run from the tiller flat forward to the fish hold penetrating the aft fish hold transverse bulkhead through a gland in a Plexiglas access hatch fabricated by IOT to replace the existing aluminium access hatch normally in place. This cable was simply secured to the transverse beams strengthening the top of the hold and, bundled together with the cable for the MotionPak, was passed through the open hatch cover and finally through an aft window in the galley where the DAS was located. The cable for the shaft RPM signal extended from the DAS along the galley deckhead aft and down into the fish hold. This cable was run through fish hold where it dropped down to the location of the shaft RPM instrumentation. A deck plate in the fish hold had been removed to allow access to the shaft tunnel.

The DGPS antenna and the wind anemometer were both located on top of the deckhouse of the vessel. Cabling was simply extended from the DAS aft along the galley deckhead and up the wheelhouse stairs. The cables then passed through an aft window in the wheelhouse and up to the top of the deckhouse.

5.0 TRIALS DESCRIPTION

The test plan for the trial is given in Appendix G. Prior to proceeding to the trials area, a 10 minute zero speed run was carried out in St. John's harbour in an effort to determine the ship motion natural periods. The seakeeping trials were completed on November 15, 2004 approximately 10 nm due east of St. John's. Prior to departure, all instrumentation was inspected to ensure all sensors were functioning properly. The draft of the vessel was then measured at the bow and stern of the vessel, before departing for the wave buoy located at 47 34.126 N, 52 26.154 W.

Upon arrival at the wave buoy location, the sea conditions were found to be favourable for the experiment. The significant wave height was visually estimated at approximately 2.5 m. The log of the trials events can be found in Appendix H.

Typical Procedure for a Set of Forward Speed Seakeeping Runs:

Each run pattern was carried out in the following manner for each nominal forward speed:

- The ship was first positioned in close proximity to the wave buoy and directional wave data acquired to derive the dominant wave direction.
- After reviewing the wave data from the buoy, the dominant head sea direction (degrees magnetic) was corrected using a value of approximately 21 degrees to determine the direction relative to true north.
- The forward speed over the ground for the first run sequence was adjusted to 4 knots. The heading angle was selected such that the vessel was heading directly into the sea (head sea run). The throttles were adjusted to achieve the desired course and speed. Data acquisition was initiated once steady state conditions were achieved. The course during all runs was maintained under autopilot control.
- After 25 minutes had elapsed on a steady course, data acquisition was terminated.
- The vessel then altered course by 180 degrees to complete the "following" sea run where the wave action is essentially pushing the vessel. The

engine speed was adjusted to maintain a constant speed over ground in order to compare results between runs. Data acquisition was terminated after 40 minutes.

- Course adjustment of 135 degrees was selected to correspond with the next section of the run pattern (bow sea run). The engine speed was adjusted as necessary.
- After 25 minutes had elapsed on a steady course data acquisition was terminated.
- Course adjustment of 135 degrees was selected to correspond with the next section of the run pattern (beam sea run). The engine speed was adjusted as necessary.
- After 25 minutes had elapsed on a steady course data acquisition was terminated.
- Course adjustment of 135 degrees was selected to correspond with the next section of the run pattern (quartering sea run). The engine speed was adjusted as necessary.
- After 25 minutes had elapsed on a steady course data acquisition was terminated.
- After the five runs had been completed, the vessel returned to the wave buoy to verify that the dominant wave direction had not changed and confirm that the wave buoy was working correctly. A 25 minute zero speed drift run in nominally beam seas was carried out at this time.

A second set of runs at a forward speed of 8 knots was carried out on November 15th using the same procedure as was used for the 4 knot runs. Three additional runs at 4 knots (beam, bow and quartering seas) were executed with the passive anti-roll tank filled to ~ 14.75 inches (37.465 cm) deployed.

The dedicated trials team included:

- MUN co-op student data acquisition and verification
- one IOT research staff
- one IOT electronics staff support in the event of problems with equipment at sea

In addition, there were two MUN School of Human Kinetics and Recreation staff (one researcher and one grad student) carrying out experiments in the accommodations just forward of the mess on the main deck. The nominal location of these research staff relative to the MotionPak was 8.827 m forward, 0.4628 m to port and 1.3815 m above.

6.0 DESCRIPTION OF ONLINE DATA ANALYSIS

The purpose of performing an online analysis during the trials is to ensure that all the instrumentation is working properly to identify potential problems with the various sensors that may lead to invalid results.

A network of two laptop computers was used in the Data Acquisition System. One computer logged the raw data from the data stream and, using the custom software FishingVesselCal, converted the data into a usable format stored with the appropriate physical units. The second computer was used to analyze the data from the previous acquired run to assess its integrity as well as communicate with the wave buoy. This was done to avoid overloading the computer logging the data, which could have led to program failure and potentially resulted in incomplete data files or even lost data.

Columns of acquired data were converted to Microsoft EXCEL¹ format and standard EXCEL plotting utilities were used to view the data in the time domain. An example time series plot of surge acceleration from the MotionPak and x acceleration from the accelerometers is shown in Figure 13. Note the difference in amplitude between the two signals is due to their separation on the ship.

7.0 DESCRIPTION OF OFFLINE DATA ANALYSIS

Once the trial was complete, ASCII data files were compiled for transfer to MUN Kinetics staff. The following additional data analysis was carried out.

7.1 Wave Data Analysis

Wave data was acquired from two sources during the trial. This section describes the data analysis procedure used to generate the Datawell and Neptune wave buoy data products:

7.1.1 Datawell Wave Buoy Data Analysis

Oceans Ltd. carried out the wave analysis using standard software provided by the manufacturer of the buoy. The data was processed on the buoy and both raw and processed data then transmitted to the receiver on shore.

From the accelerations measured in the X and Y directions in the moving buoy reference frame, the accelerations along the fixed north and west axes are calculated. All three accelerations (vertical, north and west) are then digitally integrated to displacements and filtered to a high frequency cut off (0.6 Hz). Finally an FFT is performed on the data.

Raw data are compressed to motion vertical, motion north and motion west. Energy density, main sea direction, directional spreading angle and the normalized second harmonic of the directional distribution for each frequency band are computed on-board the wave buoy in addition to other standard sea state parameters such as significant wave height (SWH), H_{mo} and mean wave period T_z .

¹ © Microsoft Corp.

Note that within the wave buoy, sea direction is measured using a flux gate compass and thus the data is generated in degrees magnetic. The magnetic deviation for St. John's approaches during the trials period was ~21 degrees West and this correction was applied to derive wave direction in degrees TRUE.

A summary of wave statistics acquired using the Datawell wave buoy is provided in Appendix I. Nondirectional spectrum plots as well as Mean Wave Direction (corrected to degrees TRUE) versus Frequency plots are also provided in Appendix I for each half hour measurement cycle.

7.1.2 Neptune Wave Buoy Data Analysis

Directional wave data is calculated from the motion of the buoy whereby these motions, recorded by onboard sensors for angular and vertical accelerations, accurately mimic the attitude of the ocean due to its discus shaped floatation device. The recordings are then analyzed using spectral analysis to provide directional and nondirectional wave spectra. A directional wave spectrum describes the distribution of wave energy as a function of both frequency and direction, whereas the nondirectional wave spectrum is a function of frequency only.

More precisely, as a definition:

Nondirectional Wave Spectrum (C_{11}): is a one dimensional wave energy density that has its greatest value at the frequency where the nondirectional wave energy density is greatest.

This nondirectional wave spectrum is then used for computing wave energy where:

 $S(f,\alpha) = C_{11}(f) * D(f, \alpha)$

By which, D is a directional spreading function with a dependency on both frequency f and direction α . S is a two dimensional wave energy density that has its greatest value at the frequency and direction where the directional wave energy is greatest. D(f, α) may be expanded in an infinite Fourier Series as a function of wave direction α . An approximation of the D(f, α) may be provided by computing the first two terms:

 $\mathsf{D}(\mathsf{f},\,\alpha) \approx [1/\pi]^* \left[(1/2) + \mathsf{r}_1^* \cos(\alpha - \alpha_1) + \mathsf{r}_2^* \cos(2^* \,(\alpha - \alpha_2)) \right]$

Where: alpha1 (α_1) – mean wave direction

alpha2 (α_2) – principal wave direction r_1 , r_2 – frequency dependent parameters that theoretically lie between zero and one.

The following is a list of definitions needed to fully analyze wave data:

Significant Wave Height: Average height from wave crest to trough of the onethird highest waves measured. It is assumed that the nondirectional spectrum is relatively narrow and thus significant wave height is computed as:

Significant Wave Height = $H_{m0} = 4 m_0^{1/2}$, Where, m_0 is the area under the nondirectional wave spectrum C₁₁.

Dominant Wave Period/Frequency (Peak Wave Period/Frequency): is the period/frequency associated with center frequency of the frequency band that has the largest (peak) energy density in the nondirectional spectrum (C_{11}).

Average Wave Period/Frequency: The average wave period is computed from the spectral moments as follows:

 $T_{av} = m_0/m_1$ and $f_{av} = 1/T_{av}$ where: "m₁" – the first moment of area under the nondirectional wave spectrum C_{11} .

Dominant Wave Direction: the value of α_1 for the frequency band where the largest value of C₁₁ occurs.

Average Wave Direction: is the weighted average over all frequency bands. This wave direction is the energy density weighted vector average of α_1 over all frequency bands and is computed from:

Average wave direction = $\tan^{-1}(Y, X)$ Where: $Y = \sum [C_{11}(f) * \sin(\alpha_1(f))]$ $X = \sum [C_{11}(f) * \cos(\alpha_1(f))]$

Note that within the wave buoy, sea direction is measured using a flux gate compass and thus the data is generated in degrees magnetic. The magnetic deviation for St. John's approaches during the trials period was ~21 degrees West and this correction was applied to derive wave direction in degrees TRUE.

A summary of wave statistics acquired using the Neptune wave buoy is also provided in Appendix I. Nondirectional spectrum plots as well as Mean Wave Direction (corrected to degrees TRUE) versus Frequency plots are also provided in Appendix I for each half hour measurement cycle.

7.2 Interpreting the Raw Data

The data received by all the various instruments onboard the vessel was initially recorded as an analog DC voltage. A calibration file was then applied to the raw

data using the custom software program FishingVesselCal. The calibration file included a five point linear regression curve and instrument offsets for each instrument. A summary of the calibration file along with the regression equations is provided in Appendix D. The data was converted to GEDAP format described in Reference 18 and standard IOT software used to analyze the data.

Example time series plots are provided as follows (trawl speed, beam seas):

- Figure 14: Surge, Sway and Heave Displacement vs. Time
- Figure 15: Surge, Sway and Heave Acceleration vs. Time
- Figure 16: Roll, Pitch and Yaw Angle vs. Time
- Figure 17: Roll, Pitch and Yaw Rate vs. Time
- Figure 18: Shaft Speed and Rudder Angle vs. Time
- Figure 19: Speed Over Ground (SOG and Course Over Ground (COG) vs. Time

7.3 Validation of MotionPak Software and Instrumentation

Within the software used to analyze MotionPak data, there is the capability to translate the accelerations recorded to any position onboard the vessel. To verify the ship motions data acquired, the motions were moved from the location of the MotionPak to the accelerometers located in the wheelhouse and then analyzed in the "Body" fixed coordinate system. All acceleration values have been tared.

Table 1 shows the comparison between the data from MotionPak and the linear accelerometers in beam seas – 4 knots with the anti-roll tank empty. From the values of standard deviation computed, it is demonstrated that the accelerations recorded were very similar. Deviations are likely due to the poor quality of the documentation for the ship and resultant difficulty in determining accurately the linear displacements between the location of the MotionPak and the accelerometers.

Instrument	Parameter	Unit	Mean	St. Dev.	Minimum	Maximum
Accelerometer	Surge Accel.	m/s ²	0.0	0.3864	-1.3594	1.2187
MotionPak	Surge Accel.	m/s ²	0.0	0.3807	-1.3835	1.1690
Accelerometer	Sway Accel.	m/s ²	0.0	1.0552	-3.2601	3.2025
MotionPak	Sway Accel.	m/s ²	0.0	1.0527	-3.1838	3.1023
Accelerometer	Heave Accel.	m/s ²	0.0	0.6860	-2.3900	2.2330
MotionPak	Heave Accel.	m/s ²	0.0	0.6531	-2.3727	2.1186

Table 1: MotionPak Validation

Comparative time series plots of surge, sway and heave accelerations are provided in Figures 20 to 22 indicate a close correlation of the signals.

Note that a comparison between the MotionPak angular data and the inclinometer data was not considered valid for data collected in a seaway due to the inherently low response rate of the inclinometers.

7.4 Ship Motion Analysis

As stated above, there is the capability to translate the accelerations recorded to any position onboard the vessel using the MotionPak software. As part of this seakeeping experiment, data from the MotionPak was used to compute the motions at two positions on the vessel: the vessel's centre of gravity, and the helmsman's position.

Tables of detailed basic information and statistics (average, standard deviation, minimum and maximum) for each run for both locations of interest are provided in Appendix J. A summary of the standard deviations of the basic motions are presented for the runs without anti-roll tank deployed in Table 2 and with the anti-roll tank deployed in Table 3.

Speed	Run	Roll Angle	Pitch Angle	Yaw Angle	Surge Accel.	Sway Accel.	Heave Accel.
(knots)	Heading	(deg.)	(deg.)	(deg.)	(m/s²)	(m/s²)	(m/s²)
0	Drift1	4.895	1.599	11.376	0.175	0.231	0.398
0	Drift2	4.964	1.872	12.266	0.177	0.236	0.443
4	Head	3.922	1.912	2.203	0.193	0.188	0.513
4	Bow	4.039	1.826	2.261	0.208	0.176	0.482
4	Beam	4.696	1.607	2.376	0.156	0.239	0.502
4	Quartering	4.104	1.572	2.397	0.178	0.222	0.419
4	Following	3.565	1.796	2.717	0.199	0.155	0.405
8	Head	2.947	1.753	1.267	0.200	0.197	0.728
8	Bow	3.988	1.639	1.179	0.189	0.210	0.644
8	Beam	4.776	1.468	1.553	0.164	0.244	0.621
8	Quartering	4.114	1.466	2.150	0.180	0.199	0.443
8	Following	4.010	1.609	2.358	0.201	0.158	0.459

 Table 2: Standard Deviation of Motions – No Anti-Roll Tank

Speed	Run	Roll Angle	Pitch Angle	Yaw Angle	Surge Accel.	Sway Accel.	Heave Accel.
(knots)	Heading	(deg.)	(deg.)	(deg.)	(m/s²)	(m/s²)	(m/s²)
4	Bow	2.089	2.329	1.999	0.222	0.195	0.584
4	Beam	3.028	1.781	2.881	0.185	0.263	0.545
4	Quartering	2.747	1.645	2.624	0.185	0.238	0.461

Table 3: Standard Deviation of Motions – With Anti-Roll Tank

A plot of roll angle, pitch angle and heave acceleration standard deviation at the CG vs. heading angle is provided in Figure 23 (4 knots) and Figure 24 (8 knots).

7.5 Roll and Pitch Frequency Analysis

A variance spectral density analysis was carried out on the roll rate and pitch rate data for the zero speed run carried out in St. John's harbour prior to the trial in an effort to determine the roll and pitch period. The following values for the motion period at the spectral peak were output:

Roll Period: 6.3366 s Pitch Period: 4.0132 s

8.0 DISCUSSION & RECOMMENDATIONS

The following is a series comments on how the trial was executed with recommendations on how to improve the quality of data collected.

Ballasting Effort:

The 'Roberts Sisters II' is fitted with two water tight 'live hold' wing tanks used for live crab storage and transportation. These tanks were filled with approximately 47,186 kg of sea water to simulate a partially loaded condition. The tanks were pressed up to the hatches to reduce free surface affects. This proved to be a much easier ballasting strategy than filling fish holds with ice or water bags as was used for some of the previous seakeeping trials.

Overall Outfit:

Overall the outfit of the 'Roberts Sisters II' went well with few complications. Not having to install a portable generator to power IOT electronics certainty reduces the complexity of the outfit and operational risks. Since the vessel was less than 3 years old, it afforded a clean, attractive work environment. The existing aluminium Lazarette access hatch in the aft fish hold bulkhead was temporarily replaced with an IOT fabricated Plexiglas hatch with integral cable gland. Installing a Plexiglas hatch was preferable to fitting a gland in the aluminium hatch to be sealed up after the trial as this would minimize potential damage to the ship.

The initial location chosen for the GPS antenna (on the arch above the wheelhouse) was found to be unsatisfactory during alignment of the GPS magnetic compass. The antenna was moved to a new location with a less obstructed view of the sky, and aligned satisfactorily.

Equipment Security:

A number of dedicated components fabricated specifically for this sea trial were missing and substitutes had to be fabricated at the last minute. Security at IOT was an ongoing concern throughout these trials and it is recommended that trials equipment be stored in a secure facility in future.

Environmental Conditions:

The trial was delayed for several days due to inappropriate wave conditions. The trial was eventually carried out Monday November 15, 2004 in ~ 2.5 m SWH however the surface current was exceptionally strong - estimated at 4 to 5 knots for most of the day. This high current likely had a negative impact on the performance of both wave buoys. This resulted in high speed drift runs, delays in returning to the wave buoy position, and higher than desired forward speeds for the trawl speed runs with the current behind us (2 to 3 knots was desired whereas the vessel was traveling at ~ 4 to 5 knots speed over ground with the engines idling).

Wave Buoys

Because of problems found during trials carried out in 2003, a Work Instruction was written to instruct users of the Neptune directional wave buoy (Reference 19). This was fortunate, as several previously unseen anomalies were discovered. Although the Neptune operation manual (Reference 13) lists a 10 nm range, in practice, unless the buoy was in visual line of sight, there were no radio communications. This may be due to the small vessel size (low elevation of buoy antenna) or the seas being outside of the buoy capabilities. It was discovered during the CCGA Miss Jacqueline IV trial (Reference 3) that the Neptune buoy would lose data if communications were occurring during the time period when the buoy normally performed it's on board data analysis. This lost data file was not recoverable. The Work Instruction was thus amended (V2.0) to address this problem and outline the correct communication time periods.

The Neptune buoy appeared to be submerged early in the morning due to the very strong current. The mooring deployed was not designed for the high current. As with previous trials, there were concerns regarding the integrity of the wave direction data. As well it is assumed that the strong current had a negative impact on the acquired wave height data.

Comparison of Neptune and Datawell Wave Buoy Data:

A comparison of wave data acquired from both wave buoys for the same time period is provided in Table 4 below.

					Buoy Data			
Hs (m)	Tmax (s)	Tavg (s)	DirMax (deg. TRUE)		Hs (m)	Tz (s)	DirMax (deg. TRUE)	
2.58	12.34	8.24	38.90		2.38	7.018	118.3	
2.44	12.34	8.04	54.00		2.24	6.78	114.1	
2.34	10.89	7.76	52.00		2.26	6.667	102.9	
2.63	10.89	8.13	37.20		2.29	6.667	122.5	
2.61	10.89	8.24	20.00		2.4	6.78	116.9	
2.55	12.34	7.82	40.00		2.26	6.78	119.7	
2.82	12.34	8.47	13.80		2.26	6.667	108.5	
2.25	10.89	7.67	223.20		2.21	6.557	100	
2.04	12.34	6.99	43.70		2.48	6.557	125.4	
1.98	9.75	6.81	43.90		2.18	6.349	126.8	
					2.28	6.452	126.8	
1.99	10.89	6.84	64.50		2.33	6.667	118.3	
2.08	10.89	7.04	116.20		2.22	6.452	132.4	
2.10	9.75	7.00	49.10		2.28	6.349	108.5	
1.90	9.75	6.63	243.90		2.34	6.557	118.3	
					2.33	6.557	121.1	
2.17	10.89	6.99	226.50		2.28	6.452	119.7	
2.25	9.75	6.95	60.10		2.24	6.25	112.7	
2.24	10.89	7.17	349.60		2.17	6.061	121.1	
2.25	10.89	7.09	38.60		2.25	5.97	122.5	
	Hs (m) 2.58 2.44 2.34 2.63 2.61 2.55 2.82 2.25 2.04 1.98 1.99 2.08 2.10 1.90 2.17 2.25 2.24 2.25	HsTmax(m)(s)2.5812.342.4412.342.3410.892.6310.892.6110.892.5512.342.8212.342.2510.892.0412.341.989.751.9910.892.109.751.909.752.1710.892.259.752.2410.892.2510.89	Hs (m)Tmax (s)Tavg (s)2.5812.348.242.4412.348.042.3410.897.762.6310.898.132.6110.898.242.5512.347.822.8212.348.472.2510.897.672.0412.346.991.9910.896.842.0810.897.042.109.757.001.909.756.632.1710.896.992.259.756.952.2410.897.172.2510.897.09	Hs (m)Tmax (s)Tavg (s)DirMax (deg. TRUE)2.5812.348.2438.902.4412.348.0454.002.3410.897.7652.002.6310.898.1337.202.6110.898.2420.002.5512.347.8240.002.8212.348.4713.802.2510.897.67223.202.0412.346.9943.701.989.756.8143.901.9910.896.8464.502.109.757.0049.101.909.756.63243.902.1710.896.99226.502.259.756.9560.102.2410.897.17349.602.2510.897.0938.60	Hs (m)Tmax (s)Tavg (s)DirMax (deg. TRUE)2.5812.348.2438.902.4412.348.0454.002.3410.897.7652.002.6310.898.1337.202.6110.898.2420.002.5512.347.8240.002.8212.348.4713.802.2510.897.67223.202.0412.346.9943.701.989.756.8143.901.9910.896.8464.502.109.757.0049.101.909.756.63243.902.1710.896.99226.502.259.756.9560.102.2410.897.17349.602.2510.897.0938.60	Hs Tmax Tavg DirMax Hs (m) 2.58 12.34 8.24 38.90 2.38 2.44 12.34 8.04 54.00 2.24 2.34 10.89 7.76 52.00 2.26 2.63 10.89 8.13 37.20 2.29 2.61 10.89 8.24 20.00 2.4 2.55 12.34 7.82 40.00 2.26 2.82 12.34 8.47 13.80 2.26 2.82 12.34 8.47 13.80 2.26 2.25 10.89 7.67 223.20 2.21 2.04 12.34 6.99 43.70 2.48 1.98 9.75 6.81 43.90 2.18 1.99 10.89 6.84 64.50 2.33 2.08 10.89 7.04 116.20 2.22 2.10 9.75 6.63 243.90 2.34 1.90 9.75 <	Hs Tmax Tavg DirMax Hs Tz (m) (s) (s) DirMax (deg. TRUE) (m) (s) 2.58 12.34 8.24 38.90 2.38 7.018 2.44 12.34 8.04 54.00 2.24 6.78 2.34 10.89 7.76 52.00 2.26 6.667 2.63 10.89 8.13 37.20 2.29 6.667 2.61 10.89 8.24 20.00 2.4 6.78 2.55 12.34 7.82 40.00 2.26 6.667 2.82 12.34 8.47 13.80 2.26 6.667 2.25 10.89 7.67 223.20 2.21 6.557 2.04 12.34 6.99 43.70 2.48 6.557 1.98 9.75 6.81 43.90 2.18 6.349 1.99 10.89 7.04 116.20 2.22 6.452 2.10	

Datawell Directional Wave

Neptune Directional Wave Buoy Data

 Table 4: Neptune/Datawell Directional Wave Data Comparison

The results for both buoys were computed using spectral data. Minor differences can be expected for any two wave buoys moored 0.5 nm apart. The significant wave heights are comparable however the Neptune buoy output a higher wave period probably due to the influence of the high current on the mooring. It is apparent that there is a major discrepancy in the wave direction between the two buoys.

Passive Anti-Roll Tank

The passive anti-roll tank was filled to the normal operating level (37.465 cm) for the last three runs. This is less than the level recommended in the tank operating instructions in the ship's Stability Booklet (recommended level: 48.26 cm). It was difficult to determine the operating level using the sight glass (Figure 25) on the moving ship. The Master also stated that the level is normally adjusted to provide optimum results according to the direction of the vessel with respect to the incident waves. The level was maintained at a constant value for all the trial runs, however.

9.0 ACKNOWLEDGEMENTS

The authors would like to thank Capt. Glen Winslow and the crew of the CCGA Roberts Sisters II for their enthusiastic support during the trial, the CCG for the loan of survival equipment, Jack Foley of MUN Oceanography for assistance designing the wave buoy mooring, and IOT technical staff for their efforts

throughout the planning and execution of the trial. Support from the crew of the MV Louis M. Lauzier to deploy the Datawell wave buoy was much appreciated. Funding support from the Search & Rescue (SAR) New Initiatives Fund (NIF) and the Canadian Institutes of Health and Research (CIHR) is gratefully acknowledged.

10.0 REFERENCES

- Barrett, J., Cumming, D., Hopkins, D., "Description of Seakeeping Trials Carried Out on CCGA Atlantic Swell – October 2003", IOT Report TR-2003-28, December 2003.
- Cumming, D., Hopkins, D., Barrett, J., "Description of Seakeeping Trial Carried Out on CCGS Shamook – December 2003", IOT Report TR-2004-01, January 2004.
- Cumming, D., Fleming, T.," Description of Seakeeping Trial Carried Out on CCGA Miss Jacqueline IV – October 2004", IOT Report TR-2004-15, December 2004.
- Cumming, D., Fleming, T.," Description of Seakeeping Trial Carried Out on CCGA Nautical Twilight – November 1, 2004", IOT Report TR-2004-13, December 2004.
- "SafetyNet a Community Research Alliance on Health and Safety in Marine and Coastal Work", <u>www.SafetyNet.MUN.ca</u>, December 2003.
- Stevens, S.C., Parsons, M.G., "Effects of Motion at Sea on Crew Performance: A Survey", SNAME Publication Marine Technology, Vol. 39, No. 1, January 2002, pp. 29 – 47.
- Boccadamo, G., Cassella, P., Scamardella, A., "Stability, Operability and Working Conditions Onboard Fishing Vessels", 7th International Conference on Stability of Ships and Ocean Vehicles, Launceston, Tasmania, Australia, February 7-11, 2000.
- Crossland, P., Rich, K.J.N.C., "A Method for Deriving MII Criteria", Conference on Human Factors in Ship Design and Operation, London, UK, September 27 – 29, 2000.
- 9. Graham, R., "Motion-Induced Interruptions as Ship Operability Criteria", <u>Naval</u> <u>Engineers Journal</u>, March 1990.
- 10. "Model Test Co-ordinate System & Units of Measure", IOT Standard Test Methods GM-5, V3.0, February 14, 2001.

- Janes, G., Cumming, D., "Fishing Vessel Sea Trial Stand-Alone Data Logging System", Institute for Marine Dynamics Report LM-2003-27, September 2003.
- 12. Hofmann-Wellenhof, B.,"Global Positioning System: Theory and Practice", Wein: Springer, 2001.
- 13. Sentry Wave Buoy Operation Manual, Neptune Sciences, Inc., Slidell, Louisiana, USA.
- 14. Datawell b.v. web site: http://www.datawell.nl/documentation/directional_waverider_mkii_brochure. pdf - January 2004.
- 15. "Wave Data Collection Directional Waverider Buoy User Manual", Oceans Ltd., June 2004.
- 16. Fofonoff, P., Millard Jr., R.C., "Algorithms for Computation of Fundamental Properties of Seawater", UNESCO Technical Papers in Marine Science, 1983, pp. 44-53.
- YSI Model 30/YSI Model 30M Handheld Salinity, Conductivity and Temperature System Operations Manual, YSI Inc., Yellow Springs, Ohio, DRW #A30136D, May 1998.
- 18. Miles, M.D., "The GEDAP Data Analysis Software Package", NRC Institute for Mechanical Engineering, Hydraulics Laboratory Report No. TR-HY-030, August 11, 1990.
- 19. "Operation of Neptune Sentry Directional Wave Buoy", IOT Quality System Work Instruction TRL-13, V1.0, September 30, 2004.

FIGURES

Figure 1: CCGA Roberts Sisters II

Figure 2: CCGA Roberts Sisters II – Propeller, Nozzle & Rudder Arrangement

Figure 3: Data Acquisition System

Figure 4: Rudder Angle Measurement

Figure 5: MotionPak Installation in Fish Hold

Figure 6: Orthogonal Linear Accelerometers in Bridge Console

Figure 7: DGPS Antenna on Bridge Top

Figure 8: Neptune Directional Wave Buoy

Figure 9: Datawell Directional Wave Buoy and Anchor

Figure 10: Shaft RPM Measurement

Figure 11: Directional Anemometer

Figure 12: Hand Held Salinometer

Figure 13: Example Online Data Analysis

Figure 15: Offline Data Analysis – Surge, Sway and Heave Acceleration

Figure 17: Offline Data Analysis - Roll, Pitch and Yaw Rates

Figure 19: Offline Data Analysis – Speed Over Ground (SOG) and Course Over Ground (COG)

[PJ032017.FV_C1.DATA_C1.ACCEL] 28-JUN-2005 09:02

Figure 20: Comparison of MotionPak Surge Acceleration @ CG & Accelerometer Surge Acceleration on Bridge

[PJ032017.FV_C1.DATA_C1.ACCEL] 28-JUN-2005 09:04

Figure 21: Comparison of MotionPak Sway Acceleration @ CG & Accelerometer Sway Acceleration on Bridge

[PJ032017.FV_C1.DATA_C1.ACCEL] 28-JUN-2005 09:06

Figure 22: Comparison of MotionPak Heave Acceleration @ CG & Accelerometer Heave Acceleration on Bridge

CCGA Roberts Sisters II Seakeeping Results - 4 knots

Figure 23: Seakeeping Results @ CG (Standard Deviations) – 4 knots

CCGA Roberts Sisters II Seakeeping Results - 8 knots

Figure 24: Seakeeping Results @ CG (Standard Deviations) – 8 knots

Figure 25: Anti-Roll Tank Level Indicator

Appendix A Inclining Experiment Report

Roberts Sisters II

,

.

Incling Experiment Report

	mound cybennieur veboir
Date:	10-Nov-04
Vessel:	Roberts Sisters II
Location:	St. John's Harbour, Fort Amherst Small Boat Basin
Conditions:	
	Weather: Overcast
	Wind: Slight on the starboard bow
	Sea: calm
Specific gra	avity of water: 1.021
Vessel f	ree to incline: yes
Mannal Canalitians	
vessel Condition:	Vessel in Sea Trial Condition
	FU tks full Anti Roll Tank empty
,	PVV (KS TUI)
·	
Persons Onboard:	
	Tim Flemming - NRC
	Greg Wiggins - MSI
	Two crew members
an de general de la companya de la c	
Incline Weights:	Eight 55 gallon plastic drums were used pressed full of fresh water.
	Two barrels were moved for each move for a weight of 1050 lbs.
	Weights were moved through a distance of 18 feet 6 inches.
	Weights located on the main deck
Penduli	
	Forward: 100 inches located in the forward accompositions
	Aft: 109.5 inches located in the dish hold
• .	
Drafts:	
Forward ma	irks on stem: <u>9'-3"</u>
Aft marks	on transom: 13'-7 1/2"
Escaboard	
rteepoards;	Fund at atoms 10
V 41	rwu al stelli, 13
. An	at itansum. 0-1 1/2
and the second secon	

Marine Services International

Roberts Sisters II Incline

General Information Hydrostatic values interpolated from: Roberts Sisters II Stability Booklet Prepared January 2004 Trim: 2/61.58, No heel, VCG = 0 Hydrostatics, Page 54 Draft Marks Forward at stem 111 " Aft at transom 163.5 " Draft Above BL Forward at stem 111 " -34 145 Aft at transom 163.5 " 34 51 129.5 H Trim of vessel 15.5 " of trim in length overall 2 % of length Mean Draft = 11.44 ft From Hydrostatics: @ draft of ft in salt water. 11.44 Displacement = 224.95 L.Tons At time of inclining ship was in water of 1.021 specific garavity True displacement is: 1.021 X ∆ = 224.07 L.Tons 1.025 $KM_T =$ 14.65 ft $KM_{i} =$ 56.26 ft Inclining Data length pendulums: Forward : 100 ins. Aft 109.5 ins. Move Direction Distance weight of Applied Deflection as recorded Change in Change in of each each each moment for forward and aft deflection deflectionp move weight is move pendulums. per unit moved change of moment (ft) (lbs) FWD (ins) AFT (ins) (ins) 1 P-S 18.5 1050 1 1.250 1.292 1.25 2 P-S 18.5 1050 1 1.250 1.560 1.25 3 S-P 18.5 2100 -2 -2.500 -2.875 1.25 4 S-P 18.5 1050 -1 -1,000 -1.167 1.00 5 S-P 18.5 1050 -1 -1.375 -1.580 1.38 6S-P 18.5 2100 2 2.250 2.750 1.13 7.25 sum

average

1

er unit

change of

moment

(ins)

1.29

1.56

1.44

1.17

1.58

1.38

8.41

1.40

1.21

DRAFT AND BASELINE PARTICULARS

CCGA Roberts Sisters II

Shift in Center of Gravity due to adding an estimated mass of 14.75 inches (37.465 cm) of sea water to the anti-roll tank. Estimated location of center of gravity of tank:

Displacement of Ship (no sea water) from Inclining Experiment: 225.4 t Longitudinal Position of Center of Gravity from Inclining Experiment: ~0 m

Vertical Position of the Center of Gravity from Inclining Experiment: 3.505 m above keel

Estimated Mass of Sea Water in Anti-Roll Tank – from Stability Booklet: 3.39 t Longitudinal Position of Center of Gravity of Anti-Roll Tank (assuming no trim angle): 0.67 m aft of amidships. Vertical Position of Center of Gravity of Anti-Roll Tank:

6.91 m above keel

Transverse Position of Center of Gravity of Anti-Roll Tank (assuming no heel angle): 0.0 m

Shift of Longitudinal Center of Gravity – taking moments about amidships:

New LCG = (0.67 m *3.39 t)/(225.4 t + 3.39 t) = 0.01 m aft of amidships

Shift of Vertical Center of Gravity – taking moments about keel:

New VCG = (225.4 t * 3.505 m + 3.39 t * 6.91 m)/(225.4 t + 3.39 t)= 3.555 m

VCG shift = 3.505 m - 3.555 m = -0.0505 m up

Appendix B Principle Particulars, List of Outfit Items & General Arrangement Sketches

7

CCGA Roberts Sisters II

Principal Particulars:

Length Overall: Beam: Draft: Depth (BOK): Installed Power: Displacement: Fuel Capacity: Fresh Water Capacity: Fish Hold Volume: Accommodations: Permanent Ballast:	64' 11" (19.79 m) 23' (7.01 m) 12' 6" (3.81 m) 13' 6" (4.11 m) 624 HP (354.2 kW) 224 L. Tons (227,594 kg) 4500 gal. (20457.4 l) 1300 gal. (5909.9 l) 3828 ft ³ (108.4 m ³) 11 berths 11.0 m ³ of cement on fish hold floor & under fwd. accommodation
Built Builder:	2001 Universal Marine Ltd., La Scie, NL
Machinery Description:	
Engine: Propulsion Power: Trawl Speed: Cruising Speed: Maximum Rudder Angle: Electrical Power:	Caterpillar 624 HP 2 knots 9 knots ± 38° (nominal) 120 VAC
Life Saving Equipment:	
Life raft: Epirb Full suite DOT approved firefighting a	2 X 12 person and emergency equipment

GENERAL ARRANGEMENT

MAIN DECK PLAN

FUEL OIL

Appendix C Instrumentation Plan

,

.

CCGA Roberts Sisters II Seakeeping Trials

Instrumentation Plan for Fishing Vessel Trials

See Proj PIP for additional info on instrumentation requirements incl. critical levels.

Proj. 2017

Proj. 2017		Nov. 15, 2004	V2.0	
Signal	Device	Calibrated Range	Units	Comments
Vertical Acceleration	MotionPak	+/- 20	m/s ²	
Lateral Acceleration	MotionPak	+/- 20	m/s ²	
Longitudinal Acceleration	MotionPak	+/- 20	m/s ²	
Yaw Rate	MotionPak	+/- 50	deg./s	
Roll Rate	MotionPak	+/- 50	deg./s	
Pitch Rate	MotionPak	+/- 50	deg./s	
Vertical Acceleration	Linear accelerometer	+/- 20	m/s ²	
Lateral Acceleration	Linear accelerometer	+/- 20	m/s ²	
Longitudinal Acceleration	Linear accelerometer	+/- 20	m/s ²	
Roll Angle	Inclinometer	+/- 30	deg.	only required in manoeuvring trials are to be carried out
Pitch Angle	Inclinometer	+/- 20	deg.	low critical parameter
Forward Speed	DGPS	0-20	knots	
Heading Angle	DGPS	0-360	deg. TRUE	
Planar Position	DGPS	ı	E	
Rudder Angle	yo-yo potentiometer	+/- 45	deg.	required if manoeuvring trials to be carried out,
Shaft RPM	freq./volt. converter	0 - 1000	RPM	outerwise inteasure in convenient low critical parameter
Wind Speed/Direction	Directional anemometer			Signal noted by hand – not acquired

Roberts Sisters II Equipment Positions

Appendix D Calibration Information

CCGA Roberts Sisters II Seakeeping Trial

Ch. 01 Surge Acceleration, MotionPak

S/N 0689

Gravity	1				
Angle	Sin(angle)	Acceleration	Voltage	slope	offset
0	0	0.0000	-0.023	0.4038	0.0099
29.994	0.499909307	0.4999	1.213		
45.016	0.707304215	0.7073	1.726		
59.9	0.865151421	0.8652	2.118		
-59.9	-0.865151421	-0.8652	-2 .17		
-45.016	-0.707304215	-0.7073	-1.774		
-29.994	-0.499909307	-0.4999	-1.261		

CCGA Roberts Sisters II Seakeeping Trial

Ch 02 Sway Acceleration, MotionPak

S/N 0689

Gravity	1				
Angle	Sin(angle)	Acceleration	Voltage		
0	0	0.0000	0.02	slope	offset
29.994	0.499909307	0.4999	1.27	0.3993	-0.0072
45.016	0.707304215	0.7073	1.788		
59.9	0.865151421	0.8652	2.185		
-59.9	-0.865151421	-0.8652	-2.152		
-45.016	-0.707304215	-0.7073	-1.753		
-29.994	-0.499909307	-0.4999	-1.231		

Gravity 1 wedge Angle -Sin(angle) Acceleration Voltage 0 90 -1 -1.0000 -1.321 slope offset 60.006 -0.866077759 -1.118 29.994 -0.8661 0.6741 -0.1137 45.016 44.984 -0.706909292 -0.879 -0.7069 59.9 30.1 -0.501510737 -0.5015 -0.570 90 0 0.0000 0.179 0 -30.1 -59.9 0.501510737 0.5015 0.905 -45.016 -44.984 0.706909292 0.7069 1.216 -29.994 -60.006 0.866077759 1.454 0.8661 y = 0.67406x - 0.11371 Series1 $R^2 = 0.99997$ Linear (Series1) 1.0 0.5 0.0 -1.5 -1.0 0.5 -0.5 1.0 1.5 20 Ω T 0.5 1.0 4.5

Ch 03 Heave Acceleration, MotionPak

S/N 0689

D-3

	C	Ch. 04	
Roll	Angular	Rate,	MotionPak

S/N 0689

Scale Factor	24.94	1mV/deg/s		
Universal Source	16964	4		
Deg/second	injected voltage Volts	Output, Volts		
45	1.1223	4.127	slope	offset
25	0.6235	2.292	10.9010	0.0127
15	0.3741	1.375		
-15	-0.3741	-1.377		
-25	-0.6235	-2.295		
-45	-1.1223	-4.129		

CCGA Roberts Sisters II Seakeeping Trial

Ch. 05
Pitch Angular Rate, MotionPak

S/N 0689

Scale Factor	25.05	i1mV/deg/s		
Universal Source	16964	4		
Deg/second	injected voltage, V	Output, Volts		- 55 1
45	1.1273	4.189	siope	onset
25	0.6263	2.328	10.7406	0.0036
15	0.3758	1.396		
-15	-0.3758	-1.397		
-20	-0.0203	-2.328		,
-40	-1.1273	-4.190		
y = 10.74064x + 0.00 R ² = 1.00000	358	◆ Series1	eries1)	
	<i>c</i> o			
	40	/		
	40			
	20			
		/		
	20	*		
	20	<u> </u>		
	10			
		1	¢.	
		.		
	<u> </u>			
	40			
	<u> </u>			

	C	h. 06	
Yaw	Angular	Rate,	MotionPak

-1.384

-2.306

-4.150

offset 0.0163

S/N 0689

-15

-25

-45

Scale Factor	24.89)mV/deg/s	
Universal Source	169644	1	
Deg/second	injected voltage	Output, Volts	
45	1.1201	4.146	slope
25	0.6223	2.304	10.8481
15	0.3734	1.381	

-0.3734

-0.6223

-1.1201

y = 10.84814x + 0.01627 $R^2 = 1.00000$ Series1 Linear (Series1) 50 40 30 20 10 Ð -3 -2 2 3 -5 -4 -1 1 4 ſ 5 -10 -20--30 40 50

D-6

Ch. 07 Internal Temperature, MotionPak

S/N 0326

1.00E-06	A/°K
13.91	Kohms

Temperature	injected voltage	Output, Volts	1	
Celsius	V	Volts		
-10	3.660	3.652	slope	offset
0	3.800	3.792	72.0978	-273.4525
20	4.078	4.070		
30	4.217	4.209		
40	4.356	4.348		
50	4.495	4.486		

D-8

CCGA Roberts Sisters II Seakeeping Trial

Ch 10									
Heave Linear Acceleration									
Model serial #	QA1400 149								
	Gravity	1							
wedge	Angle	SIN(angle)	Acceleration	Voltage					
0	90	-1	-1.0000	1.267					
29.994	60.006	-0.866077759	-0.8661	1.097	slope offse	et			
45.016	44.984	-0.706909292	-0.7069	0.892	-0.7862 -0	0.0044			
59.9	30.1	-0.501510737	-0.5015	0.632					
90	0	0	0.0000	-0.005					

CCGA Roberts Sisters II Seakeeping Trial

y = 200.305461x - 4.157380 Series1 ÷ $R^2 = 0.999997$ Linear (Series1) Ũ Appendix E Neptune Wave Buoy Specifications and Typical Output Files

Typical Neptune Wave Buoy Output File:

NSI-Na Sun Oa VBat : Signi: Domina Domina	eptune ct 17 1 = 13.29 ficant ant and ant and	Sciences, Inc 1:00:00 2004 , Leak = DRY, wave height average frequ average perio	- Wave Sentr Temp = 9.1 = ency = d =	ry Data Proc 2.40 m 0.09 Hz 10.89 s	essing S 0.12 Hz 8.04 s	oftware	Version 1.33
Wave o Domina Averag	directi ant wav ge wave	ons are compas e direction = direction =	s headings f 84.8 deg m 48.8 deg m	rom which w agnetic agnetic	aves app:	roach.	
bnđ	ofra	c11	r 1	r?	0	- l n'	
1	0.038	0.0000	999,9000	999.9000	0	999.9 999.9	999.9
2	0.049	0.0000	999.9000	999.9000	ő	999.9	999.9
3	0.060	0.0000	999.9000	999.9000	0	999.9	999.9
4	0.070	4.7444	0.3753	0.2412	0	14.5	91.7
5	0.081	6.0094	0.2542	0.5294	0	92.3	108.6
6	0.092	7.2636	0.3818	0.7142	0	84.8	99.0
7	0.103	5.8444	0.3488	0.5637	0	302.8	278.3
8	0.113	3.0552	0.4300	0.6603	0	77.8	92.4
9	0.124	1.8820	0.3787	0.6811	0	292.8	273.5
11	0.135	0.6413	0.1445	0.2893	0	348.1	292.0
12	0.146	0.5313	0.5062	0.1294	0	110.1	88.4 E2 1
13	0.167	0.4211	0.1975	0.4023	0	229 7	269 1
14	0.178	0.3438	0.2008	0.3688	0	301.0	277.8
15	0.188	0.2643	0.4430	0.1492	0	343.2	281,5
16	0.199	0.0693	0.5855	0.2870	0	282.2	274.0
17	0.210	0.1496	0.2919	0.1041	0	335.1	330.1
18	0.221	0.0604	0.1283	0.5735	0	309.0	269.5
19	0.231	0.0652	0.2153	0.3479	0	186.6	171.4
20	0.242	0.0772	0.2703	0.3877	0	227.1	258.7
21	0.253	0.1055	0.4117	0.3117	0	204.8	163.0
22	0.264	0.0760	0.3987	0.0691	0	215.4	146.3
23	0.2/4	0.1702	0.0032	0.3541	0	176 /	194.6
25	0.205	0.1658	0.7562	0.4358	0	185.8	181 0
26	0.307	0.1659	0.7884	0.5085	0	177.7	174.3
27	0.317	0.0671	0.5157	0.2361	0	196.9	227.9
28	0.328	0.1472	0.8236	0.6080	0	197.1	194.6
29	0.339	0.0456	0.7009	0.5243	0	189.4	191.6
30	0.350	0.0844	0.7218	0.3789	0	196.3	183.9
31	0.360	0.0555	0.7693	0.5303	0	197.7	198.8
32	0.371	0.0463	0.7093	0.3606	0	156.8	160.2
33	0.382	0.0457	0.7396	0.3248	0	197.2	204.1
35	0.393	0.0245	0.6522	0.0597	0	100 2	105.4
36	0.414	0.0412	0.8284	0.6495	0	184 6	189 0
37	0.425	0.0363	0.7614	0.5169	0	173.3	168.9
38	0.436	0.0197	0.6973	0.3496	0	172.0	168.2
39	0.446	0.0173	0.7455	0.4232	0	183.7	183.3
40	0.457	0.0217	0.7924	0.5352	0	181.4	179.9
41	0.468	0.0178	0.6057	0.3783	0	168.1	143.9
42	0.479	0.0135	0.5434	0.1797	0	195.6	231.4
43	0.489	0.0151	0.8104	0.4948	0	180.0	183.4
44	0.500	0.0095	0.6900	0.3071	0	182.7	182.2
Mean	min m	ax acc (q)	= -0.01 -0	51 0 35			
Mean.	min, ma	ax pitch (deg)	= -0.0 -12	.0 9.9			
Mean,	min, ma	ax roll (deg)	= -0.0 -12	.3 12.8			
Maxim	um tilt	(deg)	= 15.0				

Sentry Wave Buoy Specifications

Physical

- Weight in air with batteries 15.7 kg (42 lb.)
- Mooring varies with location and deployment duration
- Hull size, 0.75 m (2.5 ft.) diameter
- Housing Material, PVC and aluminum
- Discus Hull, Urethane foam collar
- O-ring waterproof seal on battery and instrument housing

Power / Batteries

27 Alkaline D cells provide an approximately 2-3 week lifetime with hourly data collection and processing. When not deployed, the buoy may be powered optionally by an external connector.

Operating Temperature Range

0°C to 60°C (32°F to 140°F)

Sensors

- Accelerations along antenna vertical, bow, starboard axes
- Magnetic field along vertical, bow, starboard axes
- Water Temperature (internal hull-contacting thermistor)
- Leak detector
- Sampling rate, 4.0 Hz.

SENTRY WAVE BUOY

• Record length, 4096 samples (17.1 min)

Onboard Computer

Embedded 32-bit processor

Radio Frequency

Spread spectrum, 902-928 MHz

Outputs

- Nondirectional wave spectra
- Directional wave spectra
- Wave parameters: Significant wave height, dominant wave period, average wave period, dominant wave direction
- Data Quality Assurance (DQA) parameters: for measured time series, buoy internal temperature, leak detector

Accuracies and Ranges

- Significant Wave Height ±0.03 m, 0-9 m (±0.10 ft., 0-30 ft.)
- Dominant and average wave period: ±0.5 s, 0 25 s
- Dominant wave direction: ±2°, 0° 360°
- Nondirectional and directional spectra are limited by statistical confidence related to record length rather than the instrumentation.

Appendix F Datawell Wave Buoy Specifications and Typical Output Files

ł

1. General Description of the Datawell Directional Waverider Mark II

The directional waverider buoy is a spherical, 0.9 m diameter buoy which measures wave height and wave direction. The buoy is manufactured by Datawell bv of the Netherlands. The buoy used in the NRC trials transmitted on 29.760 Mhz. Output power is 150-200 mW. The buoy is powered by 85 Leclanche zinc-carbon batteries, 80 Wh per cell. The buoy contains a flashing light that flashes 5 times every 20 seconds.

The direction measurement is based on the translational principle which means that horizontal motions instead of wave slopes are measured. As a consequence the measurement is independent of buoy roll motions and therefore a relative small buoy can be used.

A single point vertical mooring ensures sufficient symmetrical horizontal buoy response also for small motions at low frequencies.

The buoy comes standard with sea surface temperature measurement.

Installed Sensors

The buoy contains:

- heave-pitch-roll sensor Hippy-40
- three axis fluxgate compass
- two fixed "x" and "y" accelerometers
- temperature sensor
- micro-processor

Directional Measurement

From the accelerations measured in the x and y directions of the moving "buoy reference frame" the accelerations along the fixed, horizontal, north and west axis are calculated. All three accelerations (vertical, north and west) are digitally integrated to get filtered displacements with a high frequency cut-off at 0.6 Hz.

Finally, every half hour, FFT transforms of 8 series of 256 data points (200 sec) are summed to give 16 degrees of freedom on 1600 seconds of data.

Data Compression

To save transmitting power the real time data are compressed to motion vertical, motion north and motion west.

Data Reduction

Onboard data reduction computes energy density, main direction, directional spread and the normalized second harmonic of the directional distribution.

Frequency resolution: 0.005 Hz from 0.025 to 0.1 Hz and 0.01 Hz from 0.1 to 0.59 Hz.

Standard Transmission

The Directional Waverider transmits HF in the 27-40 Mhz band continuously. The Directional Waverider transmits:

- Real time data:

motion vertical motion north motion west

- Quasi static data:

computed spectral density

directional parameters

Hmo (significant wave height)

Tz (mean zero crossing period)

Monitoring data such as sea temperature, battery voltage, system status, GPS position (optional) and parity bits for error checking purposes.

Mooring

The Directional Waverider is fitted with a 5 kg chain ballast attached to the mooring eye. This provides stability when only a small vertical mooring force is present (free floating or shallow water).

A single point vertical mooring with 30 m rubbercord ensures sufficient symmetrical horizontal buoy response also for small motions at low frequencies.

The low stiffness of the 30 m rubbercord allows the Directional Waverider to follow waves up to 40 m.

Current velocities of up to 3 m/sec (6 knots) can be accommodated. The static buoyancy of the buoy is 1630 N.

The mooring design used for the NRC trials is shown in Figure 1 at the end of this document.

2. Directional Waverider Mark II Specifications

Hull diameter	0.9 m
Buoy weight	212 kg
Static buoyancy	1630 N
Maximum current speed	3 m/sec
Sampling frequency	3.84 Hz

Heave:

Range-20 to +20 mResolution1 cmScale of accuracy3 % of measured valueZero offset< 0.1 m</td>Period time1.6 sec - 30 secCross sensitivity< 3 %</td>

Direction:

Range	0 - 360 degrees
Resolution	1.5 degrees
Buoy heading error	typical .5 degrees
Period time in free floating condition	1.6 sec - 30 sec
Period time in moored condition	1.6 sec - 20 sec

3. General Description of the Directional Waverider Receiver System

The receiving system installed on the roof of OCEANS Ltd. offices at 85 LeMarchant Rd. St. John's consisted of an omnidirectional antenna (a 3 metre Kathrein radiator whip antenna and 3 radial antennae) and antenna mount connected via a coax cable (RG 213 U) routed from the antenna mount to the wave direction receiver installed in an office below. A laptop interfaced to the wave direction receiver for storing and displaying wave data. The receiver was receiving on 38.760 Mhz. Standard 120 volt AC was used to power the wave direction receiver.

During the trials data was recorded every half hour. The recorded data included spectral, raw and statistics data. These data were passed to NRC within 48 hours after the end of a sea trial. In addition to other wave parameters the following basic wave parameters were included in the wave data provided to NRC:

start time of the data collection in UTC time significant wave height in centimetres mean zero crossing period in seconds direction of the spectral peak in degrees magnetic directional spread of the spectral peak in degrees

The directional waverider buoy was deployed October 8, 2004 at 17:00 UTC time by the 40 m long Marine Institute training vessel M/V Louis M. Lauzier in position 47 34.126 N 52 26.154 W in a water depth of 163 metres.

Typical Raw Datawell Wave Buoy Output Files:

<u>10171100.dat</u>

10-17-	2004 12	100 to	1120 ,100%	, 442	,10.0	, 340	,11.1 ,	272	,11.1	, 169	, 8.	8 ,0.82
86,	+155	, -173	,10.91									
126,	+147	, -202	,11.86									
45.	+105	101	.15.56									
85	+97	-146	14 55									
1	1100	120	12 02									
, ±	101	141	,13.03									
Ο,	+181	, -141	,11.92									
118,	+27	, -5	, 2.30									
5,	+71	, -61	, 9.96									
44,	+62	, -90	, 6.57									
87,	+111	, -81	,11.44									
124 ,	+52	, -6	, 7.21									
130,	+6	, -38	, 4.31									
119 .	+19	75	. 5.46									
82	+82	-116	.13.05									
46	+68	-64	15 58									
79,	±110	, 29	,10.00									
, <i>כ</i> , כס	1110	, <u> </u>	, 0.55									
<u>49</u> ,	+00	, -/4	, 0.07									
90,	+38	, +0	, 1.08									
131,	+//	, -113	,10.59									
81,	+77	, -48	, 8.10									
30,	+45	, -47	, 7.01									
76,	+17	, -64	, 6.06									
33,	+93	, -122	,10.20									
127,	+44	, -5	, 1.86									
125 ,	+79	, -12	, 7.19									
4.	+25	78	. 5.73									
66	+56	-14	4 63									
20,	+22	-56	, 1.00									
20,	100	, -50	, 5.05									
3,	+100	, -14/	,10.42									
122,	+144	, -131	,13./3									
89,	+123	, -141	,11.58									
94,	+66	, -7	, 6.64									
107,	+57	, -81	, 7.76									
134 ,	+148	, -110	, 8.34									
84,	+115	, -82	, 8.84									
129,	+65	, -39	, 6.76									
77.	+1	-32	. 3.26									
80	+55	-34	2.43									
83	±71	-32	, 2.10									
65 , 65	110		2 26									
, co	+15	, -32	, 2.30									
44,	+35	, -39	, 3.84									
75,	+58	, -52	,10.33									
2,	+1	, -36	, 2.66									
62,	+67	, -138	,11.01									
43,	+137	, -182	,11.82									
116 ,	+184	, -204	,11.34									
108 ,	+190	, -93	,10.61									
13,	+84	, -61	, 9.87									
34,	+82	-62	,10.04									
78,	+22	-36	. 3.00									
128	+84	-66	.10.40									
9	+23	-17	1 17									
18	+10	, <u>1</u> 7	, 1,1,									
117	101	, -1,	, 5.20									
100	+01	, -90	, 9.50									
123,	+69	, -81	,12.25									
67,	+81	, -/4	,10.20									
61,	+34	, -8	, 3.19									
70,	+39	-80	, 7.45									
74,	+46	, -49	, 5.95									
121 ,	+73	, -92	, 8.90									
109,	+53	, -31	, 9.55									
69,	+64	-114	, 6.83									
, 59,	+90	-116	,11.23									
88	+81	-27	. 7.90									
102	+42	_ q q	6 87									
±04 ,	107 107		, 0.0,									
34,	TI4/ ,	- 34	1+++04									

104		+123		-125	.10.30
132		+89		- 93	11 25
	'	100	'	61	10 50
	1	+/0	'	-01	,10.59
115	,	+69	,	-98	,11.45
8	,	+95	,	-80	, 9.08
53	,	+24	,	-29	, 2.83
50		+32		-34	. 8.37
EA	'	,70	'	72	, 0.01
54	'	+/6	'	- / 3	, 9.41
95	,	+76	'	-95	,10.05
15	,	+76	,	-133	,10.56
73		+138		-124	.11.54
47	'	.110	'	-102	0 12
4/	'	7119	'	-102	, 0.12
105	1	+99	1	-96	,11.21
120	,	+117	,	-165	,11.72
133		+118		-102	. 9.90
48		+139	`	-130	9 95
	'	-1	'	100	,).))
64	,	+155	1	-132	,12.15
16	,	+116	,	-104	,13.92
68	,	+97		-129	,13.99
32		+206	•	-182	10 51
101	'	1200	'	220	10.01
TOT	'	+213	'	-229	,10.01
7	,	+205	,	-108	,12.39
14	,	+112	,	-53	, 7.45
100		+100		-139	. 8.73
10	'	1 = 0	'	115	10 75
19	'	+120	'	-115	,10.75
57	,	+38	,	-13	, 2.34
93	,	+60	,	-102	,13.11
97		+56		-63	.10.70
41	'	T03	'	-136	9 13
41	'	+23	'	-10	, 2.43
63	1	+89	'	-61	,14.51
35	,	+59	,	-2	, 6.03
25		+28		-83	, 6.34
38	<i>'</i>	+40	'	+0	2 77
50	'	140	'		, 2.77
50	'	+42	'	-1	, 4.34
114	,	+56	1	-70	, 8.42
12	,	+59	,	-75	, 9.03
20		+86		-77	, 6.75
24	'	+34	'	-18	6 38
27	'	101	'	110	, 0.50
37	'	+48	'	-113	, 8.98
60	,	+92	,	-53	,10.06
103	,	+20	,	-27	, 4.70
21		+98		-130	9.50
27	'	100	'	100	11 00
	'	+90	'	-109	,11.09
110	1	+89	,	-81	,11.98
40	,	+65	,	-10	, 6.49
31		+26	,	-22	, 2.26
26	<i>'</i>	+20	'	-45	3 19
20	'	+20	'		, 5.17
12	'	+10	'	-4	, 2.14
112	,	+40	1	-55	, 5.43
96	,	+74	,	-81	,10.31
10		+92		-113	. 9.77
19	'	+96	'	_ 92	12 06
	'	120	'	1 6 0	,10.00
71	1	+165	1	-162	,10.78
39	,	+151	,	-146	,10.39
91	,	+68	,	-77	, 9.01
23	·	+90		- 81	12 30
111	'	.107	'	100	,12.00
T T T	'	+13/	'	-106	,10.08
106	1	+82	,	-102	,15.85
11	,	+131	,	-171	,11.27
99		+84		-169	.14.63
56	'	1211	'	-202	10 19
00	'	T214	'	-203	, 10.10
51	,	+148	'	-107	, 9.95
98	,	+89	,	-106	, 9.03
17	,	+100	,	-122	, 7.90
42		+146	1	-156	9.72
20	'	110	'	107	, 20,2
35	'	+103	'	-+0/	,11.22
6	,	+97	,	-64	,12.78
52	,	+63	,	-82	,10.88
113	,	+122	,	-106	, 9.23
			~		

10171026.SPT

296 8.695652 14.18512 24.95 10.15 7.125 .6275 -.48 -.125 184.2188 68.29102 .025,8.696544E-05,95.625,79.34118,-1.762304,1.590928 .03,3.207015E-04,355.7813,51.81236,2.346043,3.477841 .035,3.89752E-04,23.90625,70.94825,2.05442,2.156776 .04,9.303034E-04,53.4375,64.01009,.926271,2.028795 .045,2.357862E-03,61.875,73.29827,.7066005,1.523845 .05,6.158021E-03,115.3125,63.22675,-1.289652,2.09674 .055,1.083472E-02,64.6875,52.93142,1.613002,3.09405 .06,2.351775E-02,63.28125,47.55994,-1.045397,4.093884 .065,.2334004,42.1875,37.93605,-3.554573E-02,6.11615 .07,.6570469,46.40625,28.08834,-1.370019,7.987051 .075,.6376281,33.75,42.85991,-1.64351,3.156254 .08,1,47.8125,26.29785,-1.146525,9.833539 .085,.7710516,47.8125,32.67648,-.9353378,5.688601 .09, .9003245, 50.625, 35.69794, -.8472674, 4.886494 .095,.5627049,45,45.99326,.9481481,4.090817 .1, .4231621, 46.40625, 50.24568, 2.46527, 3.431181 .11, .4448581, 77.34375, 56.4005, .6603481, 1.852344 .12, .2187119, 78.75, 59.64577, .7208301, 1.731958 .13, .1119168, 46.40625, 64.79343, 1.906213, 2.208256 .14,6.653681E-02,53.4375,70.38872,1.307765,1.756863 .15,6.203851E-02,39.375,71.9554,1.225077,1.881334 .16,3.111703E-02,7.03125,69.71729,-2.330161,2.281087 .17,3.337327E-02,77.34375,74.41733,.7921488,1.550305 .18,1.707739E-02,25.3125,65.46487,.2496473,1.982169 .19,1.221611E-02,2.8125,71.39587,-.718248,1.834045 .2,1.350089E-02,26.71875,74.41733,-.104,1.822087 .21,5.628007E-03,12.65625,73.8578,.4527259,1.736633 .22,8.270999E-03,247.5,72.51493,.215327,1.842533 .23,7.335719E-03,246.0938,70.38872,.2682666,1.743144 .24,5.247519E-03,286.875,70.16491,.8956103,2.022876 .25,3.829581E-03,302.3438,71.17206,.3562781,1.827769 .26,4.190229E-03,272.8125,69.15775,-.1747531,1.876894 .27,3.810481E-03,257.3438,60.3172,-2.553057E-02,2.130399 .28,3.64281E-03,237.6563,62.3315,4.145059E-02,1.767856 .29,4.361236E-03,230.625,57.07193,-.3189018,2.210175 .3,6.771722E-03,199.6875,48.11947,1.657703,3.700258 .31,6.06634E-03,180,40.06226,2.13799,5.305311 .32,7.867618E-03,188.4375,37.71224,.2346808,4.903982 .33,4.748152E-03,185.625,51.36474,.5334446,2.431004 .34,3.465148E-03,175.7813,46.44089,1.898311,3.445816 .35,3.96599E-03,171.5625,50.91712,.9248894,2.929232 .36,4.471641E-03,167.3438,47.00042,.7582065,3.485711 .37,2.865536E-03,165.9375,48.90281,.7232853,2.914603 .38,3.312673E-03,180,45.54564,-.3845249,2.984397 .39,2.794786E-03,185.625,44.87421,.6010292,3.61412 .4,3.848777E-03,171.5625,37.82415,.6746418,4.777031 .41,2.405494E-03,160.3125,36.03365,-.248804,4.819575 .42,2.46639E-03,158.9063,38.04795,.4527808,4.410443 .43,1.979324E-03,174.375,44.65039,8.639818E-02,2.561805 .44,1.57264E-03,164.5313,39.50273,2.950445E-02,3.81636 .45,2.265409E-03,149.0625,33.34792,1.103734,6.667895 .46,1.064766E-03,163.125,46.6647,.2619462,2.985128 .47,1.294022E-03,164.5313,41.40513,-.8572904,3.305247 .48,1.012837E-03,156.0938,47.11232,-7.029918E-02,2.190486 .49,1.549226E-03,167.3438,35.1384,-.3052134,5.526583 .5,1.353583E-03,153.2813,38.15986,1.603512,5.503655 .51,9.210467E-04,147.6563,44.42658,-.1148203,2.816776 .52,1.124969E-03,154.6875,36.48128,.193304,3.25938

Appendix G Seakeeping Trials Test Plan

1

<u>Test Program for Seakeeping Trials on 65 ft. long Fishing Vessel Roberts Sisters II - Vessel C1 (fitted with anti-roll tank)</u>
Proj. 2017 Sept. 28, 2004 V2.0
Assumptions: 1) Vessel is docked in St. John's during trials preparation period & will sail from St. John's during trial. 2) Vessel will carry 3 crew members and a maximum of 8 trials personnel. 3) Vessel operator will be responsible for fuelling vessel & acquiring required supplies to operate vessel. 4) Assume vessel has sufficient quality AC power to operate trials instrumentation & DAS and thus no propane generator is to be fitted by IOT. Still require UPS to be fitted however.
Preliminary Preparations:
 Fit out vessel with instrumentation as per instrumentation plan. Set displacement condition roughly half load condition - this will require loading ballast - either ice or water ballast. Press up water & fuel tanks to minimize free surface. Borrow sufficient lifesaving equipment from CCG for all trials personnel. Select location for trials. Permission from St. John's Traffic Control may be required. Design/arrangements required with respect deploying wave buoy & sentry buoy prior to trial Design/arrangements required with respect deploying wave buoy & sentry buoy prior to trial Design/arrangements required with respect deploying wave buoy & buoy identification info (color, dimensions, radar beacon, flashing light etc.) Borrow a cell phone from D&F for trials preparation period & sea trial (687-3541) Borrow a cell phone from D&F for trials preparation period & san trial (687-3541) Determine/record location (X, Y, Z co-ordinates) of GPS antenna relative to some known ship location (1) Take digital photos of instrumentation/equipment set up. Determine/record location (X, Y, Z co-ordinates) of GPS antenna relative to some known ship location (1) Take digital photos of instrumentation/equipment set up. Darrow at inclusing preparation period & san accelerometers relative to some known ship location. Take digital photos of instrumentation/equipment set up. A more complex process will be required for GPS antenna alignment & set up with new GPS system than previously experienced. Carry out inclining experiment with all instrumentation, consumables & ballast in place.
 Check all instrumentation and data acquisition system. Note draft bow & stern as well as any static list. Record harbour water temperature & salinity at dock. Ensure all freeing ports are open and unobstructed. Ensure all hatches are closed so any water on deck can not accumulate. Inform CCG traffic control that vessel is going to be on trials, name of vessel, location etc. so that vessels in vicinity can be warned.

CCGA Roberts Sisters II Seakeeping Trial

CCGA Roberts Sisters II Seakeeping Trial

7) 10 minute collection of data with mooring lines slack, engine off (perform on same day as ballasting)

At Trials Location - whenever vessel is stopped adjacent to wave buoy (ie: before each forward speed set):

Note the wave buoy outputs sea direction information in deg. Magnetic - roughly -21 deg. (exact number to be determined) deviation from deg. If there is a significant difference between dominant & average wave direction from the buoy, there are probably 2 major sea directions. 1) Verify Communications with wave buoy & transfer any data files. Use initial wave buoy data to determine Average Wave Direction. Some judgment including visual observation will be required to determine the actual sea direction.

Record sea temperature and salinity information adjacent to wave buoy. True North

3) Record wind speed and absolute direction.

Record estimated sea conditions from visual observation - sea state, direction.
 Record general weather conditions, - fog, visibility, precipitation.

Execute Runs as per ITTC Recommended Pattern:

For each run, manually record the following information after vessel attained steady state speed/direction: incidents of slamming, water on deck, spray - is water accumulating on deck? engine speed/ shaft speed from any onboard instrumentation general motion behavior of vessel (heavy roll, pitch etc.) difficulty for personnel to maintain balance, seasickness wind speed/relative direction

Run 1: 0 speed drift run, initial heading - beam seas

take digital photos during trial of deployed wave buoy, taking salinity readings etc.

Run 2: trawl speed 4 knots, head seas, 25 minutes Run 3: trawl speed 4 knots, following seas, 40 minutes Run 4: trawl speed 4 knots, bow sea, 25 minutes Run 5: trawl speed 4 knots, beam sea, 25 minutes Run 6: trawl speed 4 knots, quartering sea, 25 minutes

Return to wave buoy location.

Run 7: full speed 8 knots, head seas, 25 minutes Run 8: full speed 8 knots, following seas, 40 minutes Run 9: full speed 8 knots, bow sea, 25 minutes Run 10: full speed 8 knots, beam sea, 25 minutes. Run 11: full speed 8 knots, quartering sea, 25 minutes

ITTC Recommended Run Pattern ITTC Procedures Book, 22nd ITTC, Sept. 1999 Run 1: Head Sea Run 2: Following Sea Run 3: Bow Sea Run 4: Beam Sea Run 5: Quartering Sea

Return to wave buoy location.

Run 12: 0 knots, beam seas, 25 minutes

Add ~ 14 " (0.3556 m) salt water to anti-roll tank. Record level of tank when filling complete. Do NOT vary tank level. Return to wave buoy location - download wave data.

Run 16: trawl speed 4 knots, quartering sea, 25 minutes Run 15: trawl speed 4 knots, beam sea, 25 minutes Run 14: trawl speed 4 knots, bow sea, 25 minutes Run 13: 0 knots, beam seas, 25 minutes

Return to wave buoy location - download wave data - recover wave buoy & sentry float.

After vessel has returned to dock upon completion of trial:

- Note draft bow & stern as well as any static list.
- 2) Record harbour water temperature & salinity at dock.
- 3) Record fuel, water tank levels. Verify level of fluid in anti-roll tank.
 - Remove all instrumentation, ballast from vessel. 4
- 5) Return all borrowed lifesaving equipment, cell phone.

NOTE: 180 deg. is defined as a head sea. The 65 ft vessel likely has an autopilot & thus all data will be collected with the vessel on autopilot control (other than zero speed drift runs). Trawl speed is actually 2 kts. however the autopilot linked to the magnetic compass would not be able to provide good heading angle May be more convenient to add water to anti-roll tank in port and carry out Runs 13-16 first. control at this low forward speed without dragging trawl so will do 3-4 kts.

Appendix H Seakeeping Trials Run Log

141 very strong current, buoy submerging at Comments: Drift 1.8 knots to SW wave peaks Recover wave buoy. Significant tension on entire mooring due to tidal current. Steel cable section could not be retrieved with 14.75" (37.465 cm measured at wharf (tank sight glass) at end of trial) Density 1015.8 kg/m³ Density 1024.5 kg/m³ Density 1016.4 kg/m³ Density 1018.6 kg/m³ Shaft RPM 0 Eng. RPM Run Log for Seakeeping Trial on CCGA Roberts Sisters II - Vessel 'C1' 836 ΝA (kts.) (Deg. Speed Direction Date: Nov. 15 2004 (Deg. Mag.) 240 340 Wind TRUE) (kts.) 20 12 Salinity 20.1 ppt, sea water temp 5.9 C 10MIN DRIFT 20041109151656.CSV salinity 31.1 ppt, sea water temp 5.7 C salinity 23.7 ppt, sea water temp 6.0 C salinity 20.8 ppt, sea water temp 6.0 C Nominal Nominal SOG COG A/A 073 Launch wave Neptune buoy 47 33 42 N, 52 26 11 W, 165 m depth ,1.9 to 2 knot drift Visibility excellent, overcast, apparent wave direction 75 degrees true, sea state 2 1.8 2.6 Period 12.34 12.34 (s) Approximately 3 miles from buoy at end of test pattern due to tidal drift SWH 2.58 2.44 Ē 47.5544 52.4375 47.5553 52.4332 52.4075 deg N deg W 52.4496 to Incident Latitude Long. Location Start/Finish Low frequency waves not being recorded by Neptune buoy 47.5591 47.5466 pot hauler and was recovered by hand (very difficult). Fishing Vessel Research Project (Proj. 2017) Drafts: aft 13' 7'' (4.140 m), fwd. 9' 2'' (2.794 m) Nov. 15 Drafts: fwd. 9'2" (2.794 m), aft 13' 7" (4.140 m) beam drift Course Relative Waves Head Salinity 24.0 ppt, sea water temp 6.3 C No water on deck, or bow spray noted Wind 5 knots, 350 degrees magnetic Finish Time 05:56 06:49 07:14 Start 06:21 Nov 9, 04: 10 minute drift run in Harbour Waves appear to be dropping Filled ART to working level 0DRIFT_2004_1115055619.csv Departed St. John's THEAD_2004_1115064947 File Name At buoy, At buoy, At dock 04:15 05:50 06:30 06:40 01:00 08:50 Run # 07:20 06:30 14:00 16:20 16:30 18:00 **** 2

CCGA Roberts Sisters II Seakeeping Trial

Ť

			Course	201	tion									
Run #	File Name	Start	Relative	Start/	inish	Nominal	Nominal	SOG	COG	>	Vind	Eng.	Shaft	Comments:
		Finish	to Incident	Latitude	Long.	NHS	Period	(kts.)	(Deg.	Speed	Direction	RPM	RPM	
		Time	Waves	deg N	deg W	(m)	(s)		TRUE)	(kts.)	(Deg. Mag.)			
ç					177 CL				010	1	011			-
0		08:01	Billwollol	47.5412	52.4898	C0.2	10.09	4. 0.	CC7		011	10/	0.021	Englire at lare due to current
			-				0000							
4	1 BUW_2004_1115080800.CSV	08:33 08:33	Mod	47.5279	52.4648 52.4648	2.61	10.89	3.0	120	91	590	/60	128.4	Engine at idle
5	TBEAM_2004_1115083828.csv	08:38	beam	47.529	52.464	2.55	12.34	2.6	344	17	020	720	121.8	Engine at idle
		09:03		47.545	52.471						-			
9	TQUART_2004_1115090757.csv	20:60	quartering	47.542	52.472	2.82	12.34	4.8	210	13	200	720	121.8	Engine at idle
		09:32		47.5156	52.4949									
7	0DRIFT_2004_1115101000.csv	10:10	beam drift	47.555	52.439	2.04	12.34	1.4	N/A	17	050	N/A	0	Drift rate 1.4 knots
		10:35		47.5482	52.4511									
8	CHEAD_2004_1115104952	10:49	head	47.5556	52.423	1.98	9.75	7.2	092	12	310	1640	274.3	Wind freshening
		11:14		47.5552	52.3491									
თ	CFOL 2004 1115111949.csv	11:19	following	47.553	52.359	1.99	10.89	7.1	270	ດ	080	1320	221.3	Apparent quartering sea, winds shifting
		12:01		47.555	52.4769)) -
6	CBOW_2004_1115120544.csv	12:05	woq	47.555	52.571	2.08	10.89	7.0	135	21	280	1420	237.9	waves 25 degrees off of the bow
		12:30		47.5149	52.421									ı
	CBEAM_2004_1115123606.csv	12:36	beam	47.518	52.419	2.1	9.75	2.0	000	16	010	1660	277.7	
		13:01		47.5678	52.4144									

CCGA Roberts Sisters II Seakeeping Trial

H-2

								-						
Run	# File Name	<u>Start</u>	Course Relative	Loc: Start/	ation Finish	Nominal	Nominal	sog	SOG	-	Vind	Eng.	Shaft	t Comments:
		Finish	to Incident	Latitude	Long.	HWS	Period	(kts.)	(Deg.	Speed	Direction	RPM	RPM	
		Time	Waves	deg N	deg W	(L)	(s)		RUE)	(kts.)	Mag.)			
13	COLIART 2004 1115130535 rev	13-05	dilartaring	47 5622	52 4191	0	0 75	0 2	225	σ	180	1200	201 A	
<u>.</u>		13:30	לממורכו וווה	47.5273	52.4706	<u>.</u>	2.2	2	242	ס	2	004	F	
	ART filled to working level	14:00												
13	ART_TBEAM_2004_1115141318.c sv	14:13	beam	47.553 47 5750	52.445 52.45	2.25	9.75	3.2	340	20	030	840	141.7	beam sea determined visually
14	ART_TQUART_2004_1115144226 .csv	14:42 15:07	quartering	47.572 47.5441	52.4596	2.24	10.89	4.7	206	16	210	740	125.1	
15	ART_TBOW_2004_11151923.csv	15:19 15:44	woq	47.539	52.482 52.4587	2.25	10.89	2.0	115	19	290	750	126.8	visibility reduced to 1 mile wind increasing
••	Wind speed is provided relative SOG - Speed Over Ground CO	in knot:)G - Cou	s, wind dire urse Over G	sction is ı ∋round	magnetic	; deg. SWH	- Signifi	cant V	Vave	Height			Ż	A - not applicable
••	ART - Anti-Roll Tank T - Exceptionally strong current flov	Trawl S ving froi	speed m the north	C - C	ruise Sp th to part	eed tially sub	č merge N	Veptur	le wa	ve buc	ov - curren	t slac	ked o	off somewhat as the
	day progressed and the tide che	anged.	6 Action of the		- 00				10	11 01 01	, influence	1 30 0	0 0	daniedt meine team
•	the engines were on idle.	am nhn		x quai lei	IIIG sea I		n n n		nıs ar	n o n a	Initiality and		5 9	urrent even triougri
•	Cruise speed was set at 7 knots													
•	Trial carried out around moored	l Neptur	ne direction	ial wave	puoy no	minally 1	0 nm ea	ast of	St. Jo	hn's, N	JL in 165 r	nofv	/ater	approx.
•	Vominal Draft Aft: 3.249 m Nor	minal D	raft Fwd.: 2	2.059 m	Drafts	s measur	ed relat	ive to	botto	n of k	eel (light s	hip cc	nditi	on 1 in stability book).
•	CCGA Roberts Sisters II used a filled to ~14.75 inches @ 14:00	a flat pla ()	te rudder a	and a sin	gle, 4 blɛ	aded pro	pellor er	nclose	d in a	fixed	nozzle. V	essel	has	passive anti roll tank
•	The difference between deg. ms	agnetic	and deg. T	RUE wa	s approx	imately 2	20.94 d€	eg.thu	s True	e Direc	ction = Ma	gnetic	: - 21	deg.
•	Neather overcast, air temp. 5 du	eg. C, g	lood visibili	ty - redu	ced to 1	mile in n	nid-after	ňoon.))
•	All fuel tanks and fresh water tai	nks pre	ssed up. A	vs ballast	t, two ref	rigeratec	sea wa	iter ta	nks pi	essec	l up with s	ea wa	iter.	
•	All runs carried out on autopilot.	Autop	ilot is contre	olled by	internal r	nagnetic	compa	SS.						

CCGA Roberts Sisters II Seakeeping Trial

θ Η

CCGA Roberts Sisters II Seakeeping Trial

- •
- Trials DGPS offset 6 degrees (included in calibrated data) OCEANS Ltd. Datawell wave buoy moored at position: 47 34.126 N 52 26.154 W, in 165 metres of water CCGA Roberts Sisters II moored Fort Amherst small boat basin •

,

•

Appendix I Wave Statistics, Nondimensional Spectrum Plots, and Mean Wave Direction vs. Frequency Plots

NEPTUNE DIRECTIONAL WAVE BUOY DATA: I-1 to I-20

DATAWELL DIRECTIONAL WAVE BUOY DATA: I-21 to I-44

Summary of Wave Statistics Collected Using Neptune Directional Wave Buoy

CCGA Roberts Sisters II November 15, 2004 Fishing Vessel Research Proj. 2017

NF Time	Sig. Wave	Dominant	Average	Dominant	Average	Dominant	Average	Dominant	Average
	Height	Wave Freq.	Wave Freq.	Wave Period	Wave Period	Wave Dir.	Wave Dir.	Wave Dir.	Wave Dir.
	(m)	(Hz)	(Hz)	(s)	(s)	(deg. mag.)	(deg. mag.)	(deg. TRUE)	(deg. TRUE)
06:00	2.58	0.08	0.12	12.34	8.24	59.90	79.50	38.90	58.50
06:30	2.44	0.08	0.12	12.34	8.04	75.00	63.70	54.00	42.70
07:00	2.34	0.09	0.13	10.89	7.76	73.00	67.00	52.00	46.00
07:31	2.63	0.09	0.12	10.89	8.13	58.20	46.90	37.20	25.90
08:00	2.61	0.09	0.12	10.89	8.24	41.00	50.70	20.00	29.70
08:30	2.55	0.08	0.13	12.34	7.82	61.00	57.60	40.00	36.60
09:00	2.82	0.08	0.12	12.34	8.47	34.80	73.70	13.80	52.70
09:30	2.25	0.09	0.13	10.89	7.67	244.20	-112.30	223.20	-133.30
10:01	2.04	0.08	0.14	12.34	6.99	64.70	71.30	43.70	50.30
10:30	1.98	0.10	0.15	9.75	6.81	64.90	72.20	43.90	51.20
11:30	1.99	0.09	0.15	10.89	6.84	85.50	86.00	64.50	65.00
12:00	2.08	0.09	0.14	10.89	7.04	137.20	118.10	116.20	97.10
12:30	2.10	0.10	0.14	9.75	7.00	70.10	76.30	49.10	55.30
13:00	1.90	0.10	0.15	9.75	6.63	264.90	78.80	243.90	57.80
14:00	2.17	0.09	0.14	10.89	6.99	247.50	80.80	226.50	59.80
14:30	2.25	0.10	0.14	9.75	6.95	81.10	84.20	60.10	63.20
15:00	2.24	0.09	0.14	10.89	7.17	10.60	45.10	-10.40	24.10
15:30	2.25	0.09	0.14	10.89	7.09	59.60	56.10	38.60	35.10

NOTE: Correction used to convert deg. magnetic to deg. TRUE during trial was -21 deg. Wave buoy moored ~ 10 nm east of St. John's, NL

NOTE: File for 0731 has a file name time stamp of 0731, but a internal data time stamp of 0730 File for 1001 has a file name time stamp of 1001, but a internal data time stamp of 1000 File for 1030 has a file name time stamp of 1030, but a internal data time stamp of 1100 File for 1300 has a file name time stamp of 1300, but a internal data time stamp of 1330

|-4

Summary of Wave Statistics Collected Using Datawell Directional Wave Buoy

CCGA Roberts Sisters II November 15, 2004 Fishing Vessel Research Proj. 2017

NF Time	Sig. Wave	Mean Wave Period	Mean Waya Frequency	Maximum Spectral Density	Maximum Waya Direction
	(m)		(Hz)	(m ² /Hz)	(deg TRUE)
05.07		(0)		(11/112)	
05:27	2.44	7.14	0.1400	12.27	121.03
05:57	2.38	7.02	0.1425	9.80	118.22
06:27	2.24	6.78	0.1475	10.40	114.00
06:57	2.26	6.67	0.1500	7.63	102.75
07:27	2.29	6.67	0.1500	9.60	122.44
07:57	2.40	6.78	0.1475	9.85	116.81
08:27	2.26	6.78	0.1475	11.21	119.63
08:57	2.26	6.67	0.1500	7.01	108.38
09:27	2.21	6.56	0.1525	6.37	99.94
09:57	2.48	6.56	0.1525	9.56	125.25
10:27	2.18	6.35	0.1575	8.39	126.66
10:57	2.28	6.45	0.1550	8.31	126.66
11:27	2.33	6.67	0.1500	12.15	118.22
11:57	2.22	6.45	0.1550	8.78	132.28
12:27	2.28	6.35	0.1575	7.30	108.38
12:57	2.34	6.56	0.1525	9.00	118.22
13:27	2.33	6.56	0.1525	12.52	121.03
13:57	2.28	6.45	0.1550	8.14	119.63
14:27	2.24	6.25	0.1600	8.39	112.59
14:57	2.17	6.06	0.1650	6.34	121.03
15:27	2.25	5.97	0.1675	8.69	122.44
15:57	2.15	6.15	0.1625	6.97	106.97

Appendix J Tables of Basic Information and Statistics for Each Trial Run

File Name:	0DRIFT 200	04 11150556	19			
Date:	5 2004	NF Time:	05:56			
Dockside						
Location:	Fort Amhers	t Small Boat	Basin			
Nominal Draft AP:	4.140 m		Nominal Draf	t FP:	2.794 m	
Water Temperature:	5.9 C		Water Densit	y:	1015.8	kg/m ³
Closest Stability Booklet C	Condition:	Condition 4				-
Static Stability Info:		GM _⊤ (Fluid):	0.433 m - fro	m inclining ex	kperiment	
Trials Site: Start of the Ru	in					
Trials Location:	10 nautical r	niles East of a	St. John's			
Water Temperature:	5.7 C		Water Densit	y:	1024.5	kg/m ³
Latitude:	47.5544	North	Longitude:		52.4375	West
Duration of Run:			Number of Sa	amples:		
Nominal Forward Speed (Over the Grou	und:	1.8	knots		
Nominal Course Over the	Ground:		N/A	deg. TRUE		
Total Distance Traveled D	ouring the Rui	n:	0.72	nautical mile	S	
Nominal Relative Wind Sp	beed:		12	knots		
Nominal Relative Wind Di	rection:		240	deg. Mag		
Nominal Shaft RDM			2	DDM		
Dominant Wave Characte	ristics.		0.0	Datawa	الد	Neptupo
		Significant H	leight [.]	2.38	m	2.58 m
		Direction:		118.22 deg True		38.9 deg. True
		Peak Period	:	11.765	s	12.34 s
Channel		Minimum	Maximum	Mean	St. Dev.	
DGPS Antenna						
COG (deg. TRUE)		12.240	336.650	217.174	30.945	
SOG (m/s)		0.061	2.636	0.983	0.397	
SOG (knots)		0.119	5.124	1.910	0.771	
Rudder Angle (deg.)		-0.615	1.496	0.124	0.553	
Output from MotionPak	positioned a	at the Center	of Gravitv			**
Roll Angle (deg)		-15.185	15.131	-0.009	4.895	
Pitch Angle (deg)		-6.781	3.983	-1.328	1.599	
Yaw Angle (deg)		-20.095	27.800	0.645	11.376	
Output from Tri-Mounte	d Accelerom	eter positior	ned on Bridge	;		
Surge Acceleration (m/s ²)		-0.991	1.127	0.016	0.318	
Sway Acceleration (m/s ²)		-3.284	3.454	0.273	1.075	
Heave Acceleration (m/s ²)	-11.375	-8.001	-9.762	0.513	

File Name:	0DRIFT_2004_111505561	19	
Date:	November 15 2004	NF Time:	05:56

Channel	Minimum	Maximum	Mean	St. Dev.				
Output from MotionPak positioned at the Center of Gravity								
Surge Acceleration (m/s ²)	-0.606	0.530	0.000	0.175				
Sway Acceleration (m/s ²)	-0.853	0.738	0.000	0.231				
Heave Acceleration (m/s ²)	-1.301	1.260	-0.024	0.398				
Surge Displacement (m)	-0.916	0.930	0.000	0.322				
Sway Displacement (m)	-1.284	1.428	0.001	0.431				
Heave Displacement (m)	-1.576	1.605	0.000	0.520				
Computed for the Master's steering position from MotionPak								
Surge Acceleration (m/s^2)	-0.704	0.659	0 000	0 205				

Surge Acceleration (m/s)	-0.704	0.059	0.000	0.205
Sway Acceleration (m/s ²)	-1.385	1.497	0.000	0.412
Heave Acceleration (m/s ²)	-2.051	1.822	-0.024	0.551
Surge Displacement (m)	-0.775	0.845	0.000	0.277
Sway Displacement (m)	-1.387	1.796	0.002	0.448
Heave Displacement (m)	-2.081	1.930	0.001	0.573

Notes:

- The draft is referenced to the keel.

- The wave direction sign convention is stated as where the waves are coming from.

- The motions of the vessel were calculated using the earth fixed coordinate system.

- positions below are rough estimates based on information from poor drawings in Stability Booklet.

- The sign convention for Accelerometer is:

x : '+' forward		y : '+' starboard	z : '-' downwards	
-	The sign convention for MotionPak	is:		
	x : '+' forward	y : '+' starboard	z : '+' downwards	
-	The distance to Center of Gravity fr	om MotionPak:		
	∆x : 1.955 m	∆y: 0.042 m	∆z: 0.5385 m	
-	The distance to the Master's steering	ng position from MotionPak:		
	∆x : 6.257 m	∆y: 2.620 m	∆z: -3.4747 m	
-	The distance to the triaxial accelero	ometer position from MotionPak:		
	∆x : 6.257 m	∆y: 0.219 m	∆z : -2.56 m	

File Name:	THEAD_200	4_111506494	47			
Date:	November 1	5 2004	NF Time:	06:49		
Dockside						
Location:	Fort Amhers	t Small Boat I	Basin			
Nominal Draft AP:	4.140 m		Nominal Draf	t FP:	2.794 m	
Water Temperature:	5.9 C		Water Densit	y:	1015.8	kg/m ³
Closest Stability Booklet C	Condition:	Condition 4				-
Static Stability Info:		GM _T (Fluid):	0.433 m - from	n inclining e	xperiment	
Trials Site: Start of the Ru	n					
Trials Location:	10 nautical n	niles East of s	St. John's			
Water Temperature;	5.7 C		Water Densit	v:	1024.5	ka/m ³
Latitude:	47.5553	North	Longitude:	-	52.4332	West
Duration of Run:			Number of Sa	amples:		
Nominal Forward Speed (Over the Grou	ind:	2.6	knots		
Nominal Course Over the	Ground:		73	deg. TRUE		
Total Distance Traveled D	ouring the Rur	1:	1.05	nautical mile	es	
Nominal Relative Wind Sp	beed:		20	knots		
Nominal Relative Wind Di	rection:		240	deg. Mag		
Nominal Sea State:			2			
Nominal Shaft RPM:			141.0	RPM		
Dominant wave Characte	ristics:		المامة.	Datawe		Neptune
		Direction:	leight.	2.20	om dog Truc	2.34 m
		Peak Period	:	102.75	is	10.89 s
Channel		Minimum	Moximum	Moon	St Dov	
DGPS Antonno		Millinum	WidXIIIIUIII	Weall	SL. Dev.	
COG (deg. TRUE)		10.820	129 740	76 745	18 290	
SOG (m/s)		0.397	2 278	1 355	0.283	
SOG (knots)		0.772	4.428	2.635	0.549	
,						
Rudder Angle (deg.)		-10.067	7.422	-1.836	1.709	
Output from Motion Pok	nositionede	t the Contor	of Crowitz			
	posicioned a		10 561	0 527	3 000	
Pitch Angle (deg)		-9735	5 231	-0.337	1 912	
Yaw Angle (deg)		-7.693	5.483	-0.003	2.203	
Output from Tri-Mounte	d Accelerom	eter positior	ned on Bridge	•		
Surge Acceleration (m/s ²)		-1.715	1.496	0.003	0.438	
Sway Acceleration (m/s ²)		-2.443	3.211	0.369	0.871	
Heave Acceleration (m/s ²)	-12.572	-6.873	-9.777	0.736	
File Name:	THEAD_2004_111506494	1 7				
------------	----------------------	------------	-------			
Date:	November 15 2004	NF Time:	06:49			

Channel	Minimum	Maximum	Mean	St. Dev.
Output from MotionPak positioned at	the Center	of Gravity		
Surge Acceleration (m/s ²)	-0.726	0.906	0.000	0.193
Sway Acceleration (m/s ²)	-0.617	0.771	0.000	0.188
Heave Acceleration (m/s ²)	-1.959	1.851	-0.026	0.513
Surge Displacement (m)	-1.196	1.050	0.000	0.323
Sway Displacement (m)	-0.994	1.017	0.001	0.313
Heave Displacement (m)	-1.715	1.772	0.000	0.569
Computed for the Master's steering p	osition from	n MotionPak		
Surge Acceleration (m/s ²)	-0.812	0.901	0.000	0.254
Sway Acceleration (m/s ²)	-1.224	1.247	-0.001	0.349
Heave Acceleration (m/s ²)	-3.151	2.821	-0.026	0.736
Surge Displacement (m)	-0.849	0.939	0.000	0.271
Sway Displacement (m)	-0.955	1.265	0.001	0.348
Heave Displacement (m)	-2.066	2.205	0.000	0.642

- The draft is referenced to the keel.

- The wave direction sign convention is stated as where the waves are coming from.

- The motions of the vessel were calculated using the earth fixed coordinate system.

positions below are rough estimates based on information from poor drawings in Stability Booklet.
The sign convention for Accelerometer is:

,

x : '+' forward	y : '+' starboard		+' forward y : '+' starboard		z:'	-' downwards
- The sign convention for MotionPak is	:					
x : '+' forward	x : '+' forward y : '+' starboard		z:'	+' downwards		
- The distance to Center of Gravity from	n MotionPak:					
∆x : 1.955 m	Δ y : (0.042 m	Δz :	0.5385 m		
- The distance to the Master's steering	position from Motion	Pak:				
∆x : 6.257 m	Δ y : 2	2.620 m	Δz :	-3.4747 m		
- The distance to the triaxial accelerom	neter position from Mo	otionPak:				
∆x : 6.257 m	Δ y : 0	0.219 m	Δz :	-2.56 m		

File Name:	TBOW_2004	4_111508080	0			
Date:	November 1	5 2004	NF Time:	08:08		
Dockside						
Location:	Fort Amhers	t Small Boat	Basin			
Nominal Draft AP:	4.140 m		Nominal Draf	tFP:	2.794 m	
Water Temperature:	5.9 C		Water Densit	y:	1015.8	kg/m ³
Closest Stability Booklet (Condition:	Condition 4				0
Static Stability Info:		GM _⊤ (Fluid):	0.433 m - fro	m inclining ex	xperiment	
Trials Site: Start of the Ru	ın			-		
Trials Location:	10 nautical n	niles East of \$	St. John's			
Water Temperature:	5.7 C		Water Densit	y:	1024.5	ka/m ³
Latitude:	47.5391	North	Longitude:	-	52.4880	West
Duration of Run:			Number of Sa	amples:		
Nominal Forward Speed	Over the Grou	ind:	3	knots		
Nominal Course Over the	Ground:		120	deg. TRUE		
Total Distance Traveled D	ouring the Rur	า:	1.16	nautical mile	S	
Nominal Relative Wind Sp	beed:		19	knots		
Nominal Relative Wind Di	rection:		290	deg. Mag		
Nominal Sea State:			2			
Nominal Snaπ RPIVI:	viction		128.0			NI a set una a
Dominant wave Characte	ensucs:	Significant H	loight:	Datav	veii	Neptune
		Direction:	eignt.	2.40	dea True	2.01 III 20 deg. True
		Peak Period	:	11.111	s	10.89 s
Channel		Minimum	Maximum	Mean	St. Dev.	
DGPS Antenna						
COG (deg. TRUE)		51.310	176.170	124.051	16.801	
SOG (m/s)		0.544	2.633	1.480	0.298	
SOG (knots)		1.058	5.119	2.878	0.579	
Rudder Angle (deg.)		-10.618	7.934	-0.329	2.179	
Output from MotionPak	positioned a	ot the Center	of Gravity			
Roll Anale (dea)	p	-12.225	11.310	-0.037	4.039	
Pitch Angle (deg)		-9.737	4.746	-1.331	1.826	
Yaw Angle (deg)		-6.250	4.696	-0.139	2.261	
Output from Tri-Mounte	d Accelerom	eter positior	ned on Bridge	•		
Surge Acceleration (m/s ²)		-1.427	1.605	0.010	0.382	
Sway Acceleration (m/s^2)		0.070	2.054	0.000	0.044	
		-2.370	3.254	0.289	0.914	

File Name:	TBOW_2004_111508080	0	
Date:	November 15 2004	NF Time:	08:08

Channel	Minimum	Maximum	Mean	St. Dev.
Output from MotionPak positioned at	t the Center	of Gravity		
Surge Acceleration (m/s ²)	-0.624	0.941	0.000	0.208
Sway Acceleration (m/s ²)	-0.667	0.694	0.000	0.176
Heave Acceleration (m/s ²)	-1.462	1.654	-0.022	0.482
Surge Displacement (m)	-1.497	1.148	0.000	0.395
Sway Displacement (m)	-0.812	0.709	-0.001	0.234
Heave Displacement (m)	-2.531	1.898	0.000	0.600
Computed for the Master's steering p	osition fron	n MotionPak		
Surge Acceleration (m/s ²)	-1.015	0.906	0.000	0.256
Sway Acceleration (m/s ²)	-1.155	1.386	0.000	0.360
Heave Acceleration (m/s ²)	-2.365	2.555	-0.022	0.656
Surge Displacement (m)	-0.980	1.036	0.000	0.327
Sway Displacement (m)	-0.968	0.959	0.000	0.322

-2.400

1.930

0.000

0.640

Notes:

- The draft is referenced to the keel.

Heave Displacement (m)

- The wave direction sign convention is stated as where the waves are coming from.

- The motions of the vessel were calculated using the earth fixed coordinate system.

positions below are rough estimates based on information from poor drawings in Stability Booklet.
The sign convention for Accelerometer is:

x : '+' forward	y : '+' starboard	z : '-' downwards
- The sign convention for MotionPal	k is:	
x : '+' forward	y : '+' starboard	z : '+' downwards
- The distance to Center of Gravity	from MotionPak:	
∆x : 1.955 m	∆y: 0.042 m	∆z : 0.5385 m
- The distance to the Master's steer	ing position from MotionPak:	
∆x : 6.257 m	∆y: 2.620 m	∆z∶ -3.4747 m
- The distance to the triaxial acceler	rometer position from MotionPak:	
∆x : 6.257 m	∆y: 0.219 m	∆z : -2.56 m

File Name:	TBEAM_200	04_111508382	28			
Date:	November 1	5 2004	NF Time:	08:38		
Dockside						
Location:	Fort Amhers	t Small Boat I	Basin			
Nominal Draft AP:	4.140 m		Nominal Draf	t FP:	2.794 m	
Water Temperature:	5.9 C		Water Densit	y:	1015.8	kg/m ³
Closest Stability Booklet	Condition:	Condition 4				-
Static Stability Info:		GM _T (Fluid):	0.433 m - fro	m inclining e	xperiment	
Trials Site: Start of the Ru	ın					
Trials Location:	10 nautical r	niles East of s	St. John's			
Water Temperature:	5.7 C		Water Densit	y:	1024.5	kg/m ³
Latitude:	47.5290	North	Longitude:		52.4640	West
Duration of Run:			Number of Sa	amples:		
Nominal Forward Speed	Over the Grou	und:	2.6	knots		
Nominal Course Over the	Ground:		344	deg. TRUE		
Total Distance Traveled E	During the Rui	n:	0.98	nautical mile	es	
Nominal Relative Wind S	beed:		17	knots		
Nominal Relative Wind Di	irection:		20	deg. Mag		
Nominal Sea State:			122.0			
Dominant Wave Characte	rietice		122.0	Dataw		Nontuno
Dominant Wave Onaraote	13103.	Significant H	leiaht [.]	2 26	en Sm	2 55 m
		Direction:	loight.	119.63	dea. True	40 deg True
		Peak Period	:	11.765	is s	12.34 s
Channel		Minimum	Maximum	Mean	St. Dev.	
DGPS Antenna						
COG (deg. TRUE)		0.020	359.940	348.345	22.104	
SOG (m/s)		0.453	2.311	1.308	0.276	
SOG (knots)		0.880	4.492	2.542	0.536	
Rudder Angle (deg.)		-13.913	12.125	-1.153	2.925	
Output from MotionPak	positioned a	at the Center	of Gravitv			
Roll Angle (deg)	-	-14.538	13.346	-0.485	4.696	
Pitch Angle (deg)		-6.692	3.995	-1.333	1.607	
Yaw Angle (deg)		-5.815	7.388	0.080	2.376	
Output from Tri-Mounte	d Accelerom	eter positior	ned on Bridge)		
Surge Acceleration (m/s ²)	1	-1.348	1.230	0.012	0.386	
Sway Acceleration (m/s ²)		-2.905	3.558	0.353	1.055	
Heave Acceleration (m/s ²)	-12.151	-7.528	-9.765	0.686	

-0.001

0.579

File Name:	TBEAM_2004_111508382	28	
Date:	November 15 2004	NF Time:	08:38

Channel	Minimum	Maximum	Mean	St. Dev.
Output from MotionPak positioned at	the Center	of Gravity		
Surge Acceleration (m/s ²)	-0.527	0.607	0.000	0.156
Sway Acceleration (m/s ²)	-0.963	0.776	-0.001	0.239
Heave Acceleration (m/s ²)	-1.638	1.508	-0.016	0.502
Surge Displacement (m)	-0.733	0.781	0.000	0.250
Sway Displacement (m)	-1.361	1.420	0.000	0.385
Heave Displacement (m)	-1.287	1.754	-0.001	0.495
Computed for the Master's steering p	osition fron	n MotionPak		
Surge Acceleration (m/s ²)	-0.787	0.738	0.000	0.223
Sway Acceleration (m/s ²)	-1.481	1.374	-0.001	0.439
Heave Acceleration (m/s ²)	-2.734	2.226	-0.017	0.704
Surge Displacement (m)	-0.652	0.716	0.000	0.212
Sway Displacement (m)	-1.587	1.503	0.001	0.423

-1.734

2.393

Notes:

- The draft is referenced to the keel.

Heave Displacement (m)

- The wave direction sign convention is stated as where the waves are coming from.

- The motions of the vessel were calculated using the earth fixed coordinate system.

- positions below are rough estimates based on information from poor drawings in Stability Booklet.

x : '+' forward		y : '+' st	z : '-' downwards			
- T	he sign conve	ention for MotionPak i	S:			
	x:'+'1	forward	y : '+' st	arboard	z:'-	+' downwards
- T	he distance t	o Center of Gravity fro	om MotionPak:			
	$\Delta \mathbf{x}$:	1.955 m	∆ y :	0.042 m	Δ z :	0.5385 m
- T	he distance to	o the Master's steering	g position from Moti	onPak:		
	$\Delta \mathbf{x}$:	6.257 m	Δ y :	2.620 m	Δz :	-3.4747 m
~ T	he distance t	o the triaxial acceleror	meter position from	MotionPak:		
	Δ x :	6.257 m	Δ y :	0.219 m	Δz :	-2.56 m

File Name:	TQUART 20	04_1115090	757			
Date:	November 1	5 2004	NF Time:	09:07		
Dockside						
Location:	Fort Amhers	t Small Boat	Basin			
Nominal Draft AP:	4.140 m		Nominal Draf	ť FP:	2.794 m	
Water Temperature:	5.9 C		Water Densit	y:	1015.8	kg/m ³
Closest Stability Booklet (Condition:	Condition 4				-
Static Stability Info:		GM _T (Fluid):	0.433 m - fro	m inclining e	xperiment	
Trials Site: Start of the Ru	ın					
Trials Location:	10 nautical n	niles East of a	St. John's			
Water Temperature:	5.7 C		Water Densit	y:	1024.5	kg/m ³
Latitude:	47.5420	North	Longitude:		52.4720	West
Duration of Run:			Number of Sa	amples:		
Nominal Forward Speed (Over the Grou	ınd:	4.8	knots		
Nominal Course Over the	Ground:		210	deg. TRUE		
Total Distance Traveled D	ouring the Rur	1 :	1.84	nautical mile	S	
Nominal Relative Wind Sp	beed:		13	knots		
Nominal Relative Wind Di	rection:		200	deg. Mag		
Nominal Sea State:			100 0	DDM		
Dominant Wave Characte	ristics		122.0	Dataw	ماز	Nentuno
Dominant wave onaracte		Significant F	leight [.]	2 26	m	2.82 m
		Direction:	loight.	108.38	deg True	13.8 deg True
		Peak Period	:	11.765	s	12.34 s
Channel		Minimum	Maximum	Mean	St. Dev.	
DGPS Antenna						
COG (deg. TRUE)		173.320	246.620	208.891	10.524	
SOG (m/s)		1.794	3.650	2.414	0.230	
SOG (knots)		3.488	7.095	4.692	0.447	
Rudder Angle (deg.)		-12.086	6.657	-2.683	2.012	
Output from MotionPak	positioned a	t the Center	of Gravitv			
Roll Angle (deg)	,	-16.420	17.589	0.569	4,104	
Pitch Angle (deg)		-7.162	4.164	-1.362	1.572	
Yaw Angle (deg)		-6.372	7.048	0.076	2.397	
Output from Tri-Mounte	d Accelerom	eter positior	ned on Bridge)		
Surge Acceleration (m/s ²)		-1.243	1.178	0.006	0.324	
Sway Acceleration (m/s ²)		-2.987	3.762	0.179	0.982	
Heave Acceleration (m/s ²)	-11.879	-7.753	-9.788	0.562	

File Name:	TQUART_2004_11150907	757	
Date:	November 15 2004	NF Time:	09:07

Channel	Minimum	Maximum	Mean	St. Dev.				
Output from MotionPak positioned at the Center of Gravity								
Surge Acceleration (m/s ²)	-0.557	0.727	0.000	0.178				
Sway Acceleration (m/s ²)	-0.824	0.670	-0.001	0.222				
Heave Acceleration (m/s ²)	-1.492	1.360	-0.016	0.419				
Surge Displacement (m)	-1.172	0.984	0.000	0.307				
Sway Displacement (m)	-1.246	1.258	-0.001	0.423				
Heave Displacement (m)	-1.798	2.015	0.001	0.546				
Computed for the Master's stee	ring position from	n MotionPak						
Surge Acceleration (m/s ²)	-0.680	0.689	0.000	0.209				
Sway Acceleration (m/s ²)	-1.169	1.292	-0.001	0.364				
Heave Acceleration (m/s ²)	-2.287	2.073	-0.016	0.571				
Surge Displacement (m)	-0.948	0.827	0.000	0.254				
Sway Displacement (m)	-1.505	1.229	0.000	0.406				
Heave Displacement (m)	-1.913	2.219	0.001	0.605				

- The draft is referenced to the keel.

- The wave direction sign convention is stated as where the waves are coming from.

- The motions of the vessel were calculated using the earth fixed coordinate system.

- positions below are rough estimates based on information from poor drawings in Stability Booklet.

x:	'+' forward	y: '+' s	tarboard	z:'	-' downwards
- The sign c	onvention for MotionPak is	S:			
x :	'+' forward	y: '+' s	tarboard	z :'	+' downwards
- The distan	ice to Center of Gravity fro	m MotionPak:			
$\Delta \mathbf{x}$:	1.955 m	$\Delta \mathbf{y}$:	0.042 m	Δz :	0.5385 m
- The distan	ice to the Master's steering	g position from Mot	ionPak:		
Δx :	6.257 m	∆ y :	2.620 m	Δz :	-3.4747 m
- The distan	ice to the triaxial acceleror	neter position from	MotionPak:		
Δx :	6.257 m	Δ y :	0.219 m	Δz :	-2.56 m

File Name:	TFOL_2004_	_1115072149		07.04		
Date:	November 1	5 2004	NF Time:	07:21		
Dockside						
Location:	Fort Amhers	t Small Boat I	Basin			
Nominal Draft AP:	4.140 m		Nominal Draf	t FP:	2.794 m	
Water Temperature:	5.9 C		Water Densit	y:	1015.8	kg/m ³
Closest Stability Booklet C	Condition:	Condition 4				-
Static Stability Info:		GM _T (Fluid):	0.433 m - from	m inclining ex	kperiment	
Trials Site: Start of the Ru	ın					
Trials Location:	10 nautical n	niles East of §	St. John's			
Water Temperature:	5.7 C		Water Densit	y:	1024.5	kg/m ³
Latitude:	47.5550	North	Longitude:		52.4170	West
Duration of Run:			Number of Sa	amples:		
Nominal Forward Speed (Over the Grou	ind:	4.8	knots		
Nominal Course Over the	Ground:		253	deg. TRUE		
I otal Distance Traveled D	ouring the Rur	ו:	3.06	nautical mile	S	
Nominal Relative Wind Sp	beed:		110	KNOIS		
Nominal Sea State:	rection.		2	ueg. wag		
Nominal Shaft RPM			129.0	RPM		
Dominant Wave Characte	eristics:		120.0	Datav	veli	Neptune
		Significant H	leight:	2.29	m	2.63 m
		Direction:	U	122.44	deg. True	37.2 deg. True
		Peak Period	:	11.111	s	10.89 s
Channel		Minimum	Maximum	Mean	St. Dev.	
DGPS Antenna						
COG (deg. TRUE)		220.010	289.090	254.310	9.716	
SOG (m/s)		1.508	3.392	2.390	0.275	
SOG (knots)		2.932	6.593	4.646	0.535	
Rudder Angle (deg.)		-10.174	7.544	-1.201	1.877	
Output from MotionPak	positioned a	t the Center	of Gravity			
Roll Angle (deg)	-	-13.054	13.487	-0.528	3.565	
Pitch Angle (deg)		-8.569	6.369	-1.433	1.796	
Yaw Angle (deg)		-9.065	9.628	-0.032	2.717	
Output from Tri-Mounte	d Accelerom	eter positior	ned on Bridge	•		
Surge Acceleration (m/s ²)		-1.534	1.472	-0.004	0.373	
Sway Acceleration (m/s^2)		-3.065	3.407	0.365	0.797	
Hoove Acceleration (m/s ²)	-12 052	-7 214	-9 784	0.607	

U,

File Name:	TFOL_2004_1115072149		
Date:	November 15 2004	NF Time:	07:21

Channel	Minimum	Maximum	Mean	St. Dev.					
Output from MotionPak positioned at	Output from MotionPak positioned at the Center of Gravity								
Surge Acceleration (m/s ²)	-0.712	0.801	0.000	0.199					
Sway Acceleration (m/s ²)	-0.642	0.535	0.000	0.155					
Heave Acceleration (m/s ²)	-1.444	1.681	-0.026	0.405					
Surge Displacement (m)	-1.476	1.608	0.000	0.436					
Sway Displacement (m)	-0.877	0.860	0.000	0.273					
Heave Displacement (m)	-1.463	1.651	0.001	0.483					
Computed for the Master's steering p	osition from	n MotionPak							
Surge Acceleration (m/s ²)	-0.775	0.805	0.000	0.228					
Sway Acceleration (m/s ²)	-1.110	1.309	0.000	0.297					
Heave Acceleration (m/s ²)	-2.554	2.534	-0.025	0.610					
Surge Displacement (m)	-1.292	1.383	0.000	0.376					
Sway Displacement (m)	-1.063	1.230	0.000	0.305					
Heave Displacement (m)	-1.678	2.015	0.001	0.554					

- The draft is referenced to the keel.

- The wave direction sign convention is stated as where the waves are coming from.

- The motions of the vessel were calculated using the earth fixed coordinate system.

- positions below are rough estimates based on information from poor drawings in Stability Booklet.

	x : '+' forward y :		tarboard	z: '-	-' downwards
- The sign conv	vention for MotionPak i	S:			
x:'+'	forward	y:'+'s	tarboard	z : '·	+' downwards
- The distance	to Center of Gravity fro	om MotionPak:			
Δx :	1.955 m	Δ y :	0.042 m	Δz :	0.5385 m
- The distance	to the Master's steering	g position from Mot	ionPak:		
Δx :	6.257 m	Δ y :	2.620 m	Δz :	-3.4747 m
- The distance	to the triaxial acceleror	meter position from	MotionPak:		
$\Delta \mathbf{x}$:	6.257 m	$\Delta \mathbf{y}$:	0.219 m	Δz :	-2.56 m

File Name:	0DRIFT 200	04 11151010	00			
Date:	November 1	5 2004	NF Time:	10:10		
Dockside						
Location:	Fort Amhers	t Small Boat I	Basin			
Nominal Draft AP:	4.140 m		Nominal Draf	t FP:	2.794 m	
Water Temperature:	5.9 C		Water Densit	y:	1015.8	kg/m ³
Closest Stability Booklet (Condition:	Condition 4				,
Static Stability Info:		$GM_T(Fluid)$:	0.433 m - fro	m inclining e	xperiment	
Trials Site: Start of the Ru	ın					
Trials Location:	10 nautical r	niles East of S	St. John's			
Water Temperature:	5.7 C		Water Densit	y:	1024.5	kg/m ³
Latitude:	47.5550	North	Longitude:		52.4390	West
Duration of Run:			Number of Sa	amples:		
Nominal Forward Speed	Over the Grou	ind:	1.4	knots		
Nominal Course Over the	Ground:		N/A	deg. TRUE		
Total Distance Traveled D	ouring the Rui	า:	0.63	nautical mile	S	
Nominal Relative Wind Sp	beed:		17	knots		
Nominal Relative Wind Di	rection:		50	deg. Wag		
Nominal Shaft PPM:			2	DDM		
Dominant Wave Characte	ristics		0.0	Datawe		Nentune
		Significant H	leiaht:	2 48	m	2 04 m
		Direction:		125.25	dea. True	43.7 deg. True
		Peak Period	:	11.765	S	12.34 s
Channel		Minimum	Maximum	Mean	St. Dev.	
DGPS Antenna						
COG (deg. TRUE)		19.130	356.230	220.657	39.310	
SOG (m/s)		0.006	4.056	0.882	0.431	
SOG (knots)		0.011	7.883	1.715	0.838	
Rudder Angle (deg.)		-0.692	0.417	-0.266	0.106	
Output from MotionPak						
Roll Angle (deg)	positioned a	it the Center	of Gravity			
÷ · •	positioned a	-16.281	of Gravity 14.129	-0.363	4.964	
Pitch Angle (deg)	positioned a	-16.281 -7.881	of Gravity 14.129 5.416	-0.363 -1.284	4.964 1.872	
Pitch Angle (deg) Yaw Angle (deg)	positioned a	-16.281 -7.881 -25.471	14.129 5.416 26.690	-0.363 -1.284 0.065	4.964 1.872 12.266	
Pitch Angle (deg) Yaw Angle (deg) <i>Output from Tri-Mounte</i>	positioned a d Accelerom	-16.281 -7.881 -25.471	of Gravity 14.129 5.416 26.690 ned on Bridge	-0.363 -1.284 0.065	4.964 1.872 12.266	
Pitch Angle (deg) Yaw Angle (deg) <i>Output from Tri-Mounte</i> Surge Acceleration (m/s ²)	positioned a d Accelerom	-16.281 -7.881 -25.471 Peter position -1.272	of Gravity 14.129 5.416 26.690 ned on Bridge 1.425	-0.363 -1.284 0.065 0.013	4.964 1.872 12.266 0.392	
Pitch Angle (deg) Yaw Angle (deg) <i>Output from Tri-Mounte</i> Surge Acceleration (m/s ²) Sway Acceleration (m/s ²)	positioned a d Accelerom	-16.281 -7.881 -25.471 neter position -1.272 -2.654	of Gravity 14.129 5.416 26.690 ned on Bridge 1.425 3.698	-0.363 -1.284 0.065 0.013 0.327	4.964 1.872 12.266 0.392 1.120	

.

File Name:	0DRIFT_2004_1115101000			
Date:	November 15 2004	NF Time:	10:10	

Channel	Minimum	Maximum	Mean	St. Dev.				
Output from MotionPak positioned at the Center of Gravity								
Surge Acceleration (m/s ²)	-0.662	0.627	0.000	0.177				
Sway Acceleration (m/s ²)	-0.794	0.831	0.000	0.236				
Heave Acceleration (m/s ²)	-1.484	1.559	-0.017	0.443				
Surge Displacement (m)	-1.056	1.055	0.000	0.280				
Sway Displacement (m)	-1.221	1.330	0.000	0.391				
Heave Displacement (m)	-1.942	1.669	-0.001	0.524				
Computed for the Master's steering p	osition fron	n MotionPak						
Surge Acceleration (m/s ²)	-0.760	0.865	0.000	0.213				
Sway Acceleration (m/s ²)	-1.398	1.441	0.000	0.436				
Heave Acceleration (m/s ²)	-2.699	2.363	-0.017	0.649				
Surge Displacement (m)	-0.825	1.008	0.000	0.258				
Sway Displacement (m)	-1.274	1.529	0.000	0.426				
Heave Displacement (m)	-2.090	2.019	-0.001	0.611				

- The draft is referenced to the keel.

- The wave direction sign convention is stated as where the waves are coming from.

- The motions of the vessel were calculated using the earth fixed coordinate system.

- positions below are rough estimates based on information from poor drawings in Stability Booklet.

	x:'+'`	forward	y:'+'s	starboard	z:'-'	downwards
- T	The sign conv	ention for MotionPak is	s:			
	x:'+'`	forward	y∶'+'s	starboard	z:'+	' downwards
- T	The distance t	o Center of Gravity fro	m MotionPak:			
	$\Delta \mathbf{x}$:	1.955 m	Δ y :	0.042 m	Δz :	0.5385 m
- T	The distance t	o the Master's steering	g position from Mot	tionPak:		
	$\Delta \mathbf{x}$:	6.257 m	Δ y :	2.620 m	Δ z : -	3.4747 m
- T	The distance t	o the triaxial acceleror	neter position from	MotionPak:		
	$\Delta \mathbf{x}$:	6.257 m	Δ y :	0.219 m	Δz :	-2.56 m

File Name:	CHEAD 200	04 11151049	52			
Date:	November 1	5 2004	NF Time:	10:49		
<u>Dockside</u>						
Location:	Fort Amhers	t Small Boat I	Basin			
Nominal Draft AP:	4.140 m		Nominal Drafi	t FP:	2.794 m	
Water Temperature	59C		Water Densit	v.	1015.8	ka/m ³
Closest Stability Booklet (Condition:	Condition 4	Water Denoit	<i>.</i>	1015.0	Kg/III
Static Stability Info:	Sonation.	GM_(Eluid)	0.433 m - from	m inclining e	vneriment	
Triele Site: Start of the D	(D)		0.455 11 - 1101	n noning e	xperiment	
Trials Sile. Start of the Ru	10 pouticol n	nilon East of 9	St. John's			
Mater Temperature:	F 7 C	mes cast or o	Motor Donait		40045	3
valer remperature.	5.7 C	Nlewfle	valer Density	у.	1024.5	kg/m [°]
Latitude:	47.5556	Νοπη	Longitude:	malaa	52.4230	vvest
Nominal Forward Speed (Over the Gree	und:		knote		
Nominal Course Over the	Ground	inu.	92	dea TRIIE		
Total Distance Traveled F	Ouring the Rur	ı.	2 97	nautical mile	e	
Nominal Relative Wind St	need:	1.	12	knots	3	
Nominal Relative Wind Di	rection.		310	deg Mag		
Nominal Sea State:			2	aog. mag		
Nominal Shaft RPM:			274.3	RPM		
Dominant Wave Characte	eristics:			Dataw	eli	Neptune
		Significant H	leiaht:	2.28	m	1.98 m
		Direction:	0	126.66	dea. True	43.9 deg. True
		Peak Period	:	11.111	s	9.75 s
Channel		Minimum	Maximum	Mean	St Dev	
DGPS Antenna		Millingin	Maximum	Mean	OL Dev.	
COG (deg. TRUE)		75 410	109 270	90.347	5 483	
SOG (m/s)		2.417	4.558	3 647	0.307	
SOG (knots)		4.698	8.861	7.089	0.597	
Rudder Angle (deg.)		-7.880	7.040	-1.635	1.218	
Output from MotionPak	positioned a	t the Center	of Gravity			
Roll Angle (deg)		-10.055	10.144	0.060	2.947	
Pitch Angle (deg)		-8.733	4.748	-1.650	1.753	
Yaw Angle (deg)		-4.215	4.669	0.055	1.267	
Output from Tri-Mounte	d Accelerom	eter positior	ned on Bridge	•		
Surge Acceleration (m/s ²)		_1 945	1 626	-0 048	0.518	
Sway Acceleration (m/c^2)		-2 046	2 640	0.0-10	0.675	
Heave Acceleration (m/s^2)	`	12 247	5 200	0.271	0.075	
neave noceleration (III/S)	-13.317	-0.202	-9.001	0.940	

File Name:	CHEAD_2004_111510498	52	
Date:	November 15 2004	NF Time:	10:49

Channel	Minimum	Maximum	Mean	St. Dev.				
Output from MotionPak positioned	Output from MotionPak positioned at the Center of Gravity							
Surge Acceleration (m/s ²)	-0.724	0.683	0.000	0.200				
Sway Acceleration (m/s ²)	-0.686	0.739	0.000	0.197				
Heave Acceleration (m/s ²)	-2.758	3.589	-0.020	0.728				
Surge Displacement (m)	-1.083	1.036	-0.001	0.344				
Sway Displacement (m)	-0.895	0.901	0.000	0.235				
Heave Displacement (m)	-1.818	1.696	0.001	0.544				
Computed for the Master's steering	position from	n MotionPak						
Surge Acceleration (m/s ²)	-1.471	1.429	0.000	0.368				
Sway Acceleration (m/s ²)	-1.029	1.198	0.000	0.322				
Heave Acceleration (m/s ²)	-3.622	4.291	-0.020	0.937				
Surge Displacement (m)	-0.992	0.971	-0.001	0.301				
Sway Displacement (m)	-0.799	0.795	0.000	0.251				
Heave Displacement (m)	-2.055	2.097	0.001	0.610				

- The draft is referenced to the keel.

- The wave direction sign convention is stated as where the waves are coming from.

- The motions of the vessel were calculated using the earth fixed coordinate system.

- positions below are rough estimates based on information from poor drawings in Stability Booklet.

x	: '+' forward	y:'+'s	starboard	z:'	-' downwards
- The sign	convention for MotionPak is	S:			
x	: '+' forward	y: '+' s	starboard	z:'	+' downwards
- The dista	ance to Center of Gravity fro	m MotionPak:			
Δx	c: 1.955 m	Δ y :	0.042 m	Δz :	0.5385 m
- The dista	ance to the Master's steering	position from Mo	tionPak:		
Δx	c: 6.257 m	$\Delta \mathbf{y}$:	2.620 m	Δz :	-3.4747 m
- The dista	ance to the triaxial acceleron	neter position from	MotionPak:		
Δx	c: 6.257 m	Δ y :	0.219 m	Δz :	-2.56 m

File Name:	CBOW 20	04 111512054	4			
Date:	November	15 2004	NF Time:	12:05		
Dockside						
Location:	Fort Amher	st Small Boat	Basin			
Nominal Draft AP:	4.140 m		Nominal Draf	ft FP:	2.794 m	
Water Temperature:	5.9 C		Water Densit	:y:	1015.8	kg/m ³
Closest Stability Booklet	Condition:	Condition 4				U C
Static Stability Info:		GM _⊤ (Fluid):	0.433 m - fro	m inclining e	xperiment	
Trials Site: Start of the R	un			Ū		
Trials Location:	10 nautical	miles East of	St. John's			
Water Temperature:	5.7 C		Water Densit	v:	1024.5	ka/m ³
Latitude:	47.555	0 North	Lonaitude:	,	52.5710	West
Duration of Run:			Number of Sa	amples:		
Nominal Forward Speed	Over the Gro	ound:	7	knots		
Nominal Course Over the	e Ground:		135	deg. TRUE		
Total Distance Traveled	During the Ru	גn:	2.93	nautical mile	S	
Nominal Relative Wind S	speed:		21	knots		
Nominal Relative Wind I	Direction:		280	deg. Mag		
Nominal Sea State:			2			
Nominal Shaft RPM:			238.0	RPM		NI /
Dominant wave Charact	eristics:	Circuificant I	le i e le tu	Dataw	ell	Neptune
		Direction:	leight.	122.22	m dog Truc	2.00 m 116.2 dog True
		Peak Period		11.111	s	10.89 s
Channel		Minimum	Maximum	Mean	St Dev	
DGPS Antenna		Minimum	maximam	mean		
COG (deg. TRUE)		112,980	197,780	136.532	7 342	
SOG (m/s)		2.400	8.394	3.638	0.312	
SOG (knots)		4.665	16.317	7.071	0.606	
Rudder Angle (deg.)		-11.206	10.198	-1.216	2.096	
Output from MotionPal	k positioned	at the Center	of Gravity			
Roll Angle (deg)	-	-11.480	13.881	0.621	3.988	
Pitch Angle (deg)		-8.682	4.518	-1.558	1.639	
Yaw Angle (deg)		-4.370	4.096	-0.041	1.179	
Output from Tri-Mount	ed Acceleroi	neter positio	ned on Bridge	9		
Surge Acceleration (m/s	²)	-1.688	1.647	-0.031	0.452	
Sway Acceleration (m/s ²)	-2.928	3.457	0.178	0.936	
Heave Acceleration (m/s	²)	-12.401	-6.049	-9.786	0.823	

File Name:	CBOW_2004_111512054	4	
Date:	November 15 2004	NF Time:	12:05

Channel	Minimum	Maximum	Mean	St. Dev.				
Output from MotionPak position	Output from MotionPak positioned at the Center of Gravity							
Surge Acceleration (m/s ²)	-0.697	0.585	0.000	0.189				
Sway Acceleration (m/s ²)	-0.766	0.750	0.000	0.210				
Heave Acceleration (m/s ²)	-2.066	2.584	-0.023	0.644				
Surge Displacement (m)	-0.868	0.983	0.000	0.336				
Sway Displacement (m)	-0.977	0.844	0.000	0.253				
Heave Displacement (m)	-2.021	1.636	0.001	0.537				
Computed for the Master's steen	ing position fron	n MotionPak						
Surge Acceleration (m/s ²)	-1.201	1.453	0.000	0.338				
Sway Acceleration (m/s ²)	-1.360	1.601	0.000	0.391				
Heave Acceleration (m/s ²)	-2.898	3.706	-0.023	0.822				
Surge Displacement (m)	-0.874	0.948	0.000	0.289				
Sway Displacement (m)	-1.121	1.106	-0.001	0.318				
Heave Displacement (m)	-2.446	1.994	0.001	0.577				

- The draft is referenced to the keel.

- The wave direction sign convention is stated as where the waves are coming from.

- The motions of the vessel were calculated using the earth fixed coordinate system.

- positions below are rough estimates based on information from poor drawings in Stability Booklet.

	x : '+' forward	v: '+'	starboard	z:'-	' downwards
-	The sign convention for Mo	otionPak is:			
	x : '+' forward	y:'+'	starboard	z:'-	+' downwards
-	The distance to Center of C	Gravity from MotionPak:			
	∆x : 1.955 m	Δ y :	0.042 m	Δz :	0.5385 m
-	The distance to the Master	's steering position from Me	otionPak:		
	Δx: 6.257 m	Δ y :	2.620 m	Δ z :	-3.4747 m
-	The distance to the triaxial	accelerometer position from	m MotionPak:		
	Δx : 6.257 m	Δ y :	0.219 m	Δz :	-2.56 m

File Name:	CBEAM 200	04 11151236	06			
Date:	November 1	5 2004	NF Time:	12:36		
Dockside						
Location:	Fort Amhers	t Small Boat I	Basin			
Nominal Draft AP:	4.140 m		Nominal Draft	FP:	2.794 m	
Water Temperature:	5.9 C		Water Density	y:	1015.8	kg/m ³
Closest Stability Booklet 0	Condition:	Condition 4				•
Static Stability Info:		$GM_T(Fluid)$:	0.433 m - fror	n inclining e	xperiment	
Trials Site: Start of the Ru	ın					
Trials Location:	10 nautical n	niles East of s	St. John's			
Water Temperature:	5.7 C		Water Density	y:	1024.5	kg/m ³
Latitude:	47.5180	North	Longitude:		52.4190	West
Duration of Run:			Number of Sa	mples:		
Nominal Forward Speed (Over the Grou	ınd:	7	knots		
Nominal Course Over the	Ground:		0 0	deg. TRUE		
Total Distance Traveled D	ouring the Rur	ר:	2.91 ו	nautical mile	S	
Nominal Relative Wind Sp	beed:		16	knots		
Nominal Relative Wind Di	rection:		10 (deg. Mag		
Nominal Sea State:			2			
Nominal Shaft RPM:			278.0	RPM		
Dominant Wave Characte	eristics:	o		Data	well	Neptune
			leight:	2.28	m	2.10 m
		Direction:		108.38	deg. True	49.1 deg. True
		Peak Period		10.526	S	9.75 S
Channel		Minimum	Maximum	Mean	St. Dev.	
DGPS Antenna						
COG (deg. TRUE)		0.020	359.990	3.774	8.592	
SOG (m/s)		2.667	4.603	3.631	0.254	
SOG (knots)		5.184	8.947	7.058	0.494	
Rudder Angle (deg.)		-13.883	10.496	-1.673	2.974	
Output from MotionPak	positioned a	at the Center	of Gravity			
Roll Angle (deg)		-16.781	16.506	-0.631	4.776	
Pitch Angle (deg)		-6.892	3.516	-1.698	1.468	
Yaw Angle (deg)		-5.339	6.049	-0.019	1.553	
Output from Tri-Mounte	d Accelerom	eter positior	ned on Bridge	1		
Surge Acceleration (m/s ²)		-1.809	1.379	-0.047	0.416	
Sway Acceleration (m/s ²)		-3.570	4,420	0.380	1.071	
Heave Acceleration (m/s ²)	-12.816	-6.632	-9.767	0.809	

File Name:	CBEAM_2004_11151236	06	
Date:	November 15 2004	NF Time:	12:36

Channel	Minimum	Maximum	Mean	St. Dev.			
Output from MotionPak positioned at the Center of Gravity							
Surge Acceleration (m/s ²)	-0.699	0.580	0.000	0.164			
Sway Acceleration (m/s ²)	-0.796	0.802	-0.001	0.244			
Heave Acceleration (m/s ²)	-2.173	2.268	-0.017	0.621			
Surge Displacement (m)	-0.834	0.841	0.000	0.275			
Sway Displacement (m)	-1.194	1.307	0.000	0.381			
Heave Displacement (m)	-1.827	1.756	-0.001	0.596			

Computed for the Master's steering position from MotionPak

Surge Acceleration (m/s ²)	-0.913	1.088	-0.001	0.269
Sway Acceleration (m/s ²)	-1.351	1.581	-0.001	0.435
Heave Acceleration (m/s ²)	-2.925	2.915	-0.017	0.824
Surge Displacement (m)	-0.795	0.826	0.000	0.233
Sway Displacement (m)	-1.331	1.161	0.000	0.412
Heave Displacement (m)	-2.129	2.307	-0.001	0.688

Notes:

- The draft is referenced to the keel.

- The wave direction sign convention is stated as where the waves are coming from.

- The motions of the vessel were calculated using the earth fixed coordinate system.

- positions below are rough estimates based on information from poor drawings in Stability Booklet.

x [·] '+' f	x · '+' forward v · '+' starboard		z · '-' downwards	
- The sign conve	ention for MotionPak i	s:		2. dommardo
x : '+' f	orward	y:'+'s	starboard	z : '+' downwards
- The distance to	o Center of Gravity fro	m MotionPak:		
Δx :	1.955 m	∆ y :	0.042 m	∆z : 0.5385 m
- The distance to	o the Master's steering	g position from Mo	tionPak:	
Δx :	6.257 m	Δ y :	2.620 m	∆z∶ -3.4747 m
- The distance to	o the triaxial acceleror	meter position from	n MotionPak:	
$\Delta \mathbf{x}$:	6.257 m	Δ y :	0.219 m	∆z : -2.56 m

File Name:	CQUART_2	004_1115130 5 2004	535 NE Time:	13.05		
Date.		5 2004	ini fiine.	13.05		
<u>Dockside</u>						
Location:	Fort Amhers	st Small Boat I	Basin			
Nominal Draft AP:	4.140 m		Nominal Drat	ft FP:	2.794 m	
Water Temperature:	5.9 C		Water Densit	y:	1015.8	kg/m ³
Closest Stability Booklet	Condition:	Condition 4				
Static Stability Info:		GM _T (Fluid):	0.433 m - fro	m inclining e	xperiment	
Trials Site: Start of the Ru	ın					
Trials Location:	10 nautical r	niles East of s	St. John's			
Water Temperature:	5.7 C		Water Densit	ty:	1024.5	kg/m ³
Latitude:	47.5622	North	Longitude:		52.4191	West
Duration of Run:			Number of S	amples:		
Nominal Forward Speed	Over the Grou	und:	7	knots		
Nominal Course Over the	Ground:		225	deg. TRUE		
Total Distance Traveled	During the Ru	n:	2.95	nautical mile	S	
Nominal Relative Wind S	peed:		9	knots		
Nominal Relative Wind D	irection:		180	deg. Mag		
Nominal Sea State:			201.0			
Dominant Wave Characte	rietice		201.0	Dataw		Nontuno
	5115005.	Significant H	leight:	2 34	m	1 90 m
		Direction:	118 2.0		dea True	243.9 deg. True
		Peak Period	:	11.111	s	9.75 s
Channel		Minimum	Maximum	Mean	St. Dev.	
DGPS Antenna						
COG (deg. TRUE)		197.370	251.840	224.917	7.168	
SOG (m/s)		2.864	4.494	3.637	0.247	
SOG (knots)		5.567	8.737	7.069	0.480	
Rudder Angle (deg.)		-9.233	4.608	-1.628	1.483	
Output from MotionPak	positioned a	at the Center	of Gravitv			
Roll Angle (deg)	•	-17.259	18.874	0.242	4.114	
Pitch Angle (deg)		-6.321	3.150	-1.541	1.466	
Yaw Angle (deg)		-7.686	7.597	0.041	2.150	
Output from Tri-Mounte	d Accelerom	neter positior	ned on Bridge	e		
Surge Acceleration (m/s ²))	-1.209	1.108	-0.021	0.307	
Sway Acceleration (m/s ²)		-3.734	4.344	0.240	0.894	
Heave Acceleration (m/s ²)	-11.843	-7.671	-9.789	0.563	

File Name:	CQUART_2004_1115130535				
Date:	November 15 2004	NF Time:	13:05		

Channel	Minimum	Maximum	Mean	St. Dev.					
Output from MotionPak positione	Output from MotionPak positioned at the Center of Gravity								
Surge Acceleration (m/s ²)	-0.668	0.567	0.000	0.180					
Sway Acceleration (m/s ²)	-0.702	0.676	0.001	0.199					
Heave Acceleration (m/s ²)	-1.658	1.540	-0.018	0.443					
Surge Displacement (m)	-1.155	1.211	0.000	0.384					
Sway Displacement (m)	-1.225	1.168	0.000	0.373					
Heave Displacement (m)	-2.081	1.821	0.000	0.524					
Computed for the Master's steering	ng position from	n MotionPak							
Surge Acceleration (m/s ²)	-0.737	0.757	0.000	0.227					
Sway Acceleration (m/s ²)	-1.075	1.413	0.001	0.352					
Heave Acceleration (m/s ²)	-1.953	2.089	-0.018	0.569					
Surge Displacement (m)	-1.130	1.046	0.000	0.331					
Sway Displacement (m)	-1.215	1.244	0.000	0.378					

-1.842

1.631

0.000

0.566

Notes:

- The draft is referenced to the keel.

Heave Displacement (m)

- The wave direction sign convention is stated as where the waves are coming from.

- The motions of the vessel were calculated using the earth fixed coordinate system.

- positions below are rough estimates based on information from poor drawings in Stability Booklet.

	X: '+'	forward	y : '+' starboard		z:'-	downwards
- Th	ne sign conv	ention for MotionPak	is:			
	x : '+'	forward	y∶'+'s	tarboard	z:'+	⊦' downwards
- Th	ne distance t	o Center of Gravity fro	om MotionPak:			
	$\Delta \mathbf{x}$:	1.955 m	Δy:	0.042 m	Δz :	0.5385 m
- Tł	ne distance t	o the Master's steerin	g position from Mot	ionPak:		
	Δx :	6.257 m	$\Delta \mathbf{y}$:	2.620 m	Δz :	-3.4747 m
- Th	ne distance t	o the triaxial accelero	meter position from	MotionPak:		
	$\Delta \mathbf{x}$:	6.257 m	Δ y :	0.219 m	Δz :	-2.56 m

File Name:	CFOL_2004	_1115111949 5 2004) NE Timo:	11.10		
Dale.	November	5 2004	NF HINE.	11.19		
Dockside						
Location:	Fort Amhers	t Small Boat I	Basin			
Nominal Draft AP:	4.140 m		Nominal Drat	tFP:	2.794 m	
Water Temperature:	5.9 C		Water Densit	:y:	1015.8	kg/m ³
Closest Stability Booklet C	Condition:	Condition 4				
Static Stability Info:		GM _T (Fluid):	0.433 m - fro	m inclining e	xperiment	
Trials Site: Start of the Ru	ın					
Trials Location:	10 nautical r	niles East of \$	St. John's			
Water Temperature:	5.7 C		Water Densit	:y:	1024.5	kg/m ³
Latitude:	47.5530	North	Longitude:		52.3590	West
Duration of Run:			Number of Sa	amples:		
Nominal Forward Speed (Over the Grou	und:	7.1	knots		
Nominal Course Over the	Ground:		270	deg. TRUE		
Total Distance Traveled L	ouring the Ru	n:	4./4	nautical mile	S	
Nominal Relative Wind Sp	peed:		5	KNOIS		
Nominal Sea State	rection.		2	deg. Mag		
Nominal Shaft RPM			221.0	RPM		
Dominant Wave Characte	ristics:		221.0	Datawe		Neptune
		Significant H	leight:	2.33	m	1.99 m
		Direction:	U U	118.22	deg. True	64.5 deg. True
		Peak Period	:	11.111	s	10.89 s
Channel		Minimum	Maximum	Mean	St. Dev.	
DGPS Antenna						
COG (deg. TRUE)		246.740	294.620	270.952	7.273	
SOG (m/s)		2.644	4.617	3.545	0.300	
SOG (knots)		5.140	8.974	6.891	0.583	
Rudder Angle (deg.)		-17.852	8.172	-1.568	2.028	
Output from MotionPak	positioned a	at the Center	of Gravity	í.		
Roll Angle (deg)	-	-13.559	13.248	-0.080	4.010	
Pitch Angle (deg)		-8.514	4.407	-1.560	1.609	
Yaw Angle (deg)		-10.406	9.907	0.110	2.358	
Output from Tri-Mounte	d Accelerom	eter positior	ned on Bridge	9		
Surge Acceleration (m/s ²)		-1.351	1.114	-0.025	0.338	
Sway Acceleration (m/s ²)		-2.844	3.472	0.289	0.871	
Heave Acceleration (m/s ²)	-12.171	-7.271	-9.788	0.621	

File Name:	CFOL_2004_1115111949		
Date:	November 15 2004	NF Time:	11:19

Channel	Minimum	Maximum	Mean	St. Dev.					
Output from MotionPak positioned at	Output from MotionPak positioned at the Center of Gravity								
Surge Acceleration (m/s ²)	-0.698	0.811	0.000	0.201					
Sway Acceleration (m/s ²)	-0.550	0.657	0.000	0.158					
Heave Acceleration (m/s ²)	-1.616	1.797	-0.019	0.459					
Surge Displacement (m)	-1.818	1.745	0.000	0.563					
Sway Displacement (m)	-0.909	0.792	0.000	0.244					
Heave Displacement (m)	-1.853	1.613	-0.001	0.504					
Computed for the Master's steering p	osition fron	n MotionPak							
Surge Acceleration (m/s ²)	-0.953	1.032	0.000	0.248					
Sway Acceleration (m/s ²)	-0.997	1.295	0.000	0.317					
Heave Acceleration (m/s ²)	-2.559	2.501	-0.019	0.645					
Surge Displacement (m)	-1.637	1.637	0.000	0.500					
Sway Displacement (m)	-1.118	0.945	0.000	0.303					
Heave Displacement (m)	-1.873	1.842	-0.001	0.580					

- The draft is referenced to the keel.

,

- The wave direction sign convention is stated as where the waves are coming from.

- The motions of the vessel were calculated using the earth fixed coordinate system.

- positions below are rough estimates based on information from poor drawings in Stability Booklet.

x : '+' forward	y : '+' starboard	z : '-' downwards
- The sign convention for MotionPak i	s:	
x : '+' forward	y:'+' starboard	z : '+' downwards
- The distance to Center of Gravity fro	m MotionPak:	
∆x : 1.955 m	∆y∶ 0.042 m	∆z : 0.5385 m
- The distance to the Master's steering	g position from MotionPak:	
∆x: 6.257 m	∆y: 2.620 m	∆z∶ -3.4747 m
- The distance to the triaxial acceleror	neter position from MotionPak:	
∆x : 6.257 m	∆y : 0.219 m	∆z : -2.56 m

File Name:	ART TBOW	2004 1115 ⁻	1923			
Date:	November 1	5 2004	NF Time:	15:19		
Dockside						
Location:	Fort Amhers	t Small Boat	Basin			
Nominal Draft AP:	4.140 m		Nominal Draf	t FP:	2.794 m	
Water Temperature:	5.9 C		Water Densit	y:	1015.8	ka/m ³
Closest Stability Booklet C	Condition:	Condition 4				Ū.
Static Stability Info:		GM _T (Fluid):	0.433 m - from	m inclining ex	xperiment	
Trials Site: Start of the Ru	ın			-	-	
Trials Location:	10 nautical n	niles East of s	St. John's			
Water Temperature:	5.7 C		Water Densit	у:	1024.5	kg/m ³
Latitude:	47.5390	North	Longitude:		52.4820	West
Duration of Run:			Number of Sa	amples:		
Nominal Forward Speed (Over the Grou	ınd:	2	knots		
Nominal Course Over the	Ground:		115	deg. TRUE		
Total Distance Traveled D	ouring the Rur	ו:	1.11	nautical mile	S	
Nominal Relative Wind Sp	beed:		19	knots		
Nominal Relative wind Di	rection:		290	deg. Mag		
Nominal Shaft RPM			126.8	RDM		
Normal Chart of Mr.			120.0	Data	سماا	Nentune
				1 7 6 7 1 6 1	001.11	
Dominant Wave Characte	eristics:	Significant H	leiaht:	2.25	m	2.25 m
Dominant Wave Characte	eristics:	Significant H Direction:	leight:	2.25 122.44	m deg. True	2.25 m 38.6 deg. True
Dominant Wave Characte	eristics:	Significant H Direction: Peak Period	leight:	2.25 122.44 11.111	m deg. True s	2.25 m 38.6 deg. True 10.89 s
Dominant Wave Characte	ristics:	Significant H Direction: Peak Period Minimum	leight: : Maximum	2.25 122.44 11.111 Mean	m deg. True s St. Dev.	2.25 m 38.6 deg. True 10.89 s
Dominant Wave Characte Channel DGPS Antenna	ristics:	Significant H Direction: Peak Period Minimum	leight: : Maximum	2.25 122.44 11.111 Mean	m deg. True s St. Dev.	2.25 m 38.6 deg. True 10.89 s
Dominant Wave Characte <u>Channel</u> DGPS Antenna COG (deg. TRUE)	eristics:	Significant H Direction: Peak Period Minimum 68.860	leight: : <u>Maximum</u> 183.930	2.25 122.44 11.111 Mean 119.892	m deg. True s St. Dev. 13.088	2.25 m 38.6 deg. True 10.89 s
Dominant Wave Characte Channel DGPS Antenna COG (deg. TRUE) SOG (m/s)	eristics:	Significant H Direction: Peak Period Minimum 68.860 0.228	leight: : <u>Maximum</u> 183.930 2.561	2.25 122.44 11.111 Mean 119.892 1.398	m deg. True s St. Dev. 13.088 0.325	2.25 m 38.6 deg. True 10.89 s
Dominant Wave Character Channel DGPS Antenna COG (deg. TRUE) SOG (m/s) SOG (knots)	eristics:	Significant H Direction: Peak Period Minimum 68.860 0.228 0.443	leight: : Maximum 183.930 2.561 4.978	2.25 122.44 11.111 Mean 119.892 1.398 2.718	m deg. True s St. Dev. 13.088 0.325 0.631	2.25 m 38.6 deg. True 10.89 s
Dominant Wave Characte <u>Channel</u> <u>DGPS Antenna</u> COG (deg. TRUE) SOG (m/s) SOG (knots) Rudder Angle (deg.)	eristics:	Significant H Direction: Peak Period Minimum 68.860 0.228 0.443 -8.025	leight: : <u>Maximum</u> 183.930 2.561 4.978 9.594	2.25 122.44 11.111 Mean 119.892 1.398 2.718 -0.103	m deg. True s St. Dev. 13.088 0.325 0.631 2.051	2.25 m 38.6 deg. True 10.89 s
Dominant Wave Character Channel DGPS Antenna COG (deg. TRUE) SOG (m/s) SOG (knots) Rudder Angle (deg.) Output from MotionPak	positioned a	Significant H Direction: Peak Period Minimum 68.860 0.228 0.443 -8.025	leight: : <u>Maximum</u> 183.930 2.561 4.978 9.594 of Gravity	2.25 122.44 11.111 Mean 119.892 1.398 2.718 -0.103	m deg. True s St. Dev. 13.088 0.325 0.631 2.051	2.25 m 38.6 deg. True 10.89 s
Dominant Wave Character Channel DGPS Antenna COG (deg. TRUE) SOG (m/s) SOG (knots) Rudder Angle (deg.) Output from MotionPak Roll Angle (deg)	positioned a	Significant H Direction: Peak Period Minimum 68.860 0.228 0.443 -8.025 at the Center -8.883	leight:	2.25 122.44 11.111 Mean 119.892 1.398 2.718 -0.103 0.500	m deg. True s St. Dev. 13.088 0.325 0.631 2.051 2.089	2.25 m 38.6 deg. True 10.89 s
Dominant Wave Character Channel DGPS Antenna COG (deg. TRUE) SOG (m/s) SOG (knots) Rudder Angle (deg.) Output from MotionPak Roll Angle (deg) Pitch Angle (deg)	positioned a	Significant H Direction: Peak Period Minimum 68.860 0.228 0.443 -8.025 At the Center -8.883 -9.640	leight: Maximum 183.930 2.561 4.978 9.594 of Gravity 9.426 7.724	2.25 122.44 11.111 Mean 119.892 1.398 2.718 -0.103 0.500 -1.285	m deg. True s St. Dev. 13.088 0.325 0.631 2.051 2.089 2.329	2.25 m 38.6 deg. True 10.89 s
Dominant Wave Character Channel DGPS Antenna COG (deg. TRUE) SOG (m/s) SOG (knots) Rudder Angle (deg.) Output from MotionPak Roll Angle (deg) Pitch Angle (deg) Yaw Angle (deg)	positioned a	Significant H Direction: Peak Period Minimum 68.860 0.228 0.443 -8.025 at the Center -8.883 -9.640 -6.598	leight: Maximum 183.930 2.561 4.978 9.594 of Gravity 9.426 7.724 6.347	2.25 122.44 11.111 Mean 119.892 1.398 2.718 -0.103 0.500 -1.285 -0.031	m deg. True s St. Dev. 13.088 0.325 0.631 2.051 2.051 2.089 2.329 1.999	2.25 m 38.6 deg. True 10.89 s
Dominant Wave Character Channel DGPS Antenna COG (deg. TRUE) SOG (m/s) SOG (knots) Rudder Angle (deg.) Output from MotionPak Roll Angle (deg) Pitch Angle (deg) Yaw Angle (deg) Yaw Angle (deg)	positioned a	Significant H Direction: Peak Period Minimum 68.860 0.228 0.443 -8.025 At the Center -8.883 -9.640 -6.598 eter position	leight: Maximum 183.930 2.561 4.978 9.594 of Gravity 9.426 7.724 6.347 ned on Bridge	2.25 122.44 11.111 Mean 119.892 1.398 2.718 -0.103 0.500 -1.285 -0.031	m deg. True s St. Dev. 13.088 0.325 0.631 2.051 2.051 2.089 2.329 1.999	2.25 m 38.6 deg. True 10.89 s
Dominant Wave Character Channel DGPS Antenna COG (deg. TRUE) SOG (m/s) SOG (knots) Rudder Angle (deg.) Output from MotionPak Roll Angle (deg) Pitch Angle (deg) Pitch Angle (deg) Yaw Angle (deg) Output from Tri-Mounter Surge Acceleration (m/s ²)	positioned a	Significant H Direction: Peak Period Minimum 68.860 0.228 0.443 -8.025 at the Center -8.883 -9.640 -6.598 eter position -2.195	leight: Maximum 183.930 2.561 4.978 9.594 of Gravity 9.426 7.724 6.347 hed on Bridge 2.077	2.25 122.44 11.111 Mean 119.892 1.398 2.718 -0.103 0.500 -1.285 -0.031	m deg. True s St. Dev. 13.088 0.325 0.631 2.051 2.089 2.329 1.999 0.579	2.25 m 38.6 deg. True 10.89 s
Dominant Wave Character Channel DGPS Antenna COG (deg. TRUE) SOG (m/s) SOG (knots) Rudder Angle (deg.) Output from MotionPak Roll Angle (deg) Pitch Angle (deg) Pitch Angle (deg) Yaw Angle (deg) Yaw Angle (deg) Surge Acceleration (m/s ²) Sway Acceleration (m/s ²)	positioned a	Significant H Direction: Peak Period Minimum 68.860 0.228 0.443 -8.025 At the Center -8.883 -9.640 -6.598 eter position -2.195 -1.964	leight: Maximum 183.930 2.561 4.978 9.594 of Gravity 9.426 7.724 6.347 ned on Bridge 2.077 2.751	2.25 122.44 11.111 Mean 119.892 1.398 2.718 -0.103 0.500 -1.285 -0.031 9 -0.001 0.194	m deg. True s St. Dev. 13.088 0.325 0.631 2.051 2.089 2.329 1.999 0.579 0.525	2.25 m 38.6 deg. True 10.89 s

File Name:	ART_TBOW_2004_11151	923	
Date:	November 15 2004	NF Time:	15:19

Channel	Minimum	Maximum	Mean	St. Dev.				
Output from MotionPak positioned at the Center of Gravity								
Surge Acceleration (m/s ²)	-0.786	0.786	0.000	0.222				
Sway Acceleration (m/s ²)	-0.734	0.688	0.000	0.195				
Heave Acceleration (m/s ²)	-1.886	2.079	-0.019	0.584				
Surge Displacement (m)	-1.095	1.152	0.000	0.350				
Sway Displacement (m)	-0.914	0.999	0.000	0.240				
Heave Displacement (m)	-1.839	1.781	-0.001	0.512				
Computed for the Master's steering p	osition from	n MotionPak						
Surge Acceleration (m/s ²)	-1.226	1.563	0.000	0.361				
Sway Acceleration (m/s ²)	-1.263	1.192	0.000	0.304				
Heave Acceleration (m/s ²)	-3.189	3.389	-0.018	0.874				
Surge Displacement (m)	-0.942	1.012	0.000	0.292				
Sway Displacement (m)	-0.832	0.816	0.000	0.240				
Heave Displacement (m)	-1.979	2.043	-0.001	0.575				

- The draft is referenced to the keel.

- The wave direction sign convention is stated as where the waves are coming from.

- The motions of the vessel were calculated using the earth fixed coordinate system.

positions below are rough estimates based on information from poor drawings in Stability Booklet.
The sign convention for Accelerometer is:

x : '+' f	forward	y:'+'s	tarboard	z: '-	-' downwards
- The sign conve	ention for MotionPak is	s:			
x : '+' 1	forward	y:'+'s	tarboard	z:'·	+' downwards
- The distance to	o Center of Gravity fro	m MotionPak:			
Δx :	1.955 m	Δ y :	0.042 m	Δz :	0.5385 m
- The distance to	o the Master's steering	g position from Mot	ionPak:		
Δx :	6.257 m	Δ y :	2.620 m	Δz :	-3.4747 m
- The distance to	o the triaxial acceleror	neter position from	MotionPak:		
$\Delta \mathbf{x}$:	6.257 m	Δ y :	0.219 m	Δz :	-2.56 m

File Name:	ART_TBEA	M_2004_1118	5141318			
Date:	November 1	5 2004	NF Time:	14:13		
Dockside						
Location:	Fort Amhers	st Small Boat	Basin			
Nominal Draft AP:	4.140 m		Nominal Drat	ft FP:	2.794 m	
Water Temperature:	5.9 C		Water Densit	ty:	1015.8	kg/m ³
Closest Stability Booklet (Condition:	Condition 4				-
Static Stability Info:		GM _T (Fluid):	0.433 m - fro	m inclining ex	xperiment	
Trials Site: Start of the Ru	ın			-		
Trials Location:	10 nautical r	niles East of	St. John's			
Water Temperature:	5.7 C		Water Densit	ty:	1024.5	ka/m ³
Latitude:	47.5530) North	Longitude:		52.4450	West
Duration of Run:			Number of Sa	amples:		
Nominal Forward Speed	Over the Grou	und:	3.2	knots		
Nominal Course Over the	Ground:		340	deg. TRUE		
Total Distance Traveled D	ouring the Ru	n:	1.38	nautical mile	S	
Nominal Relative Wind S	peed:		20	knots		
Nominal Relative Wind Di	rection:		30	deg. Mag		
Nominal Sea State:			2			
Dominant Wave Characte	vrietice:		141.7	Datav		Nontuno
Dominant wave onaracte		Significant H	leight [.]	2 28	m	2.17 m
		Direction:	leight.	119.63	dea True	226 5 deg True
		Peak Period	:	10.526	s	10.89 s
Channel		Minimum	Maximum	Mean	St. Dev.	
DGPS Antenna						
COG (deg. TRUE)		0.020	359.740	316.439	81.168	
SOG (m/s)		0.653	2.817	1.714	0.294	
SOG (knots)		1.269	5.475	3.331	0.572	
Rudder Angle (deg.)		-12.223	10.825	-1.254	2.612	
Output from MotionPak	positioned a	at the Center	of Gravity			
Roll Angle (deg)		-12.214	10.393	-0.711	3.028	
Pitch Angle (deg)		-8.439	4.138	-1.405	1.781	
Yaw Angle (deg)		-7.438	6.559	-0.102	2.881	
Output from Tri-Mounte	d Accelerom	neter position	ned on Bridge	9		
Surge Acceleration (m/s ²)	l i i i i i i i i i i i i i i i i i i i	-1.464	1.197	-0.004	0.408	
Sway Acceleration (m/s ²)		-2.637	2.900	0.394	0.711	
Heave Acceleration (m/s ²)	-12.381	-7.200	-9.794	0.728	

File Name:	ART_TBEAM_2004_	1115141318	
Date:	November 15 2004	NF Time:	14:13

Channel	Minimum	Maximum	Mean	St. Dev.					
Output from MotionPak positioned at the Center of Gravity									
Surge Acceleration (m/s ²)	-0.623	0.614	0.000	0.185					
Sway Acceleration (m/s ²)	-0.872	1.003	-0.001	0.263					
Heave Acceleration (m/s ²)	-2.164	2.298	-0.016	0.545					
Surge Displacement (m)	-1.020	1.074	0.000	0.336					
Sway Displacement (m)	-1.313	1.242	0.000	0.390					
Heave Displacement (m)	-1.856	2.112	0.001	0.535					
Computed for the Master's stee	ering position from	n MotionPak							
Surge Acceleration (m/s ²)	-0.817	0.826	0.000	0.229					
Sway Acceleration (m/s ²)	-1.365	1.394	-0.001	0.390					

•				
Heave Acceleration (m/s ²)	-2.791	2.578	-0.016	0.736
Surge Displacement (m)	-0.939	0.987	0.000	0.283
Sway Displacement (m)	-1.319	1.097	0.000	0.357
Heave Displacement (m)	-2.038	2.555	0.001	0.606

- The draft is referenced to the keel.

- The wave direction sign convention is stated as where the waves are coming from.

- The motions of the vessel were calculated using the earth fixed coordinate system.

- positions below are rough estimates based on information from poor drawings in Stability Booklet.

x : '+' forward	y: '+'	starboard	z : '-' downwards
- The sign convention for MotionPak is			
x : '+' forward	y: '+'	starboard	z : '+' downwards
- The distance to Center of Gravity from	m MotionPak:		
∆x : 1.955 m	Δ y :	0.042 m	∆z: 0.5385 m
- The distance to the Master's steering	position from Mo	otionPak:	
∆x : 6.257 m	Δ y :	2.620 m	∆z∶ -3.4747 m
- The distance to the triaxial accelerom	neter position from	n MotionPak:	
∆x : 6.257 m	Δ y :	0.219 m	∆z : -2.56 m

File Name:	ART TQUA	RT 2004 11	15144226			
Date:	November 1	5 2004	NF Time:	14:42		
Dockside						
Location:	Fort Amhers	t Small Boat	Basin			
Nominal Draft AP:	4.140 m		Nominal Drat	ft FP:	2.794 m	
Water Temperature:	5.9 C		Water Densi	ty:	1015.8	kg/m ³
Closest Stability Booklet	Condition:	Condition 4				Ŷ
Static Stability Info:		GM _T (Fluid):	0.433 m - fro	m inclining ex	xperiment	
Trials Site: Start of the Ru	ın					
Trials Location:	10 nautical n	niles East of s	St. John's			
Water Temperature:	5.7 C		Water Densit	ty:	1024.5	kg/m ³
Latitude:	47.5720	North	Longitude:		52.4596	West
Duration of Run:			Number of S	amples:		
Nominal Forward Speed	Over the Grou	ınd:	4.7	knots		
Nominal Course Over the	Ground:		206	deg. TRUE		
Total Distance Traveled E	ouring the Rur	ו:	1.89	nautical mile	S	
Nominal Relative Wind S	peed:		16	knots		
Nominal Relative Wind Di	rection:		210	deg. Mag		
Nominal Sea State:			105.4			
Dominant Mayo Characte	victice:		125.1		voll	Nontuno
Dominant wave characte	13103.	Significant H	leight:	2 21	m	2 25 m
		Direction	leight.	112 59	dea True	60 1 deg True
		Peak Period	:	11.765	s	9.75 s
Channel		Minimum	Maximum	Mean	St. Dev.	
DGPS Antenna						
COG (deg. TRUE)		181.340	243.190	208.629	8.822	
SOG (m/s)		0.897	3.894	2.362	0.254	
SOG (knots)		1.744	7.570	4.592	0.494	
Rudder Angle (deg.)		-11.428	6.015	-3.001	1.869	
Output from MotionPak	positioned a	t the Center	of Gravity			
Roll Anale (dea)	<i>p</i>	-9.393	10.831	0.546	2.747	
Pitch Angle (deg)		-7.036	3.671	-1.417	1.645	
Yaw Angle (deg)		-5.899	6.450	0.046	2.624	
Output from Tri-Mounte	d Accelerom	eter positior	ned on Bridge	9		
Surge Acceleration (m/s ²)	1	-1.156	1.101	-0.006	0.344	
Sway Acceleration (m/s ²)		-2.333	2,390	0.190	0.629	
Heave Acceleration (m/s ²)	-12.145	-6.982	-9.809	0.612	

File Name:	ART_TQUART_2004_	1115144226	
Date:	November 15 2004	NF Time:	14:42

Channel	Minimum	Maximum	Mean	St. Dev.				
Output from MotionPak positioned at the Center of Gravity								
Surge Acceleration (m/s ²)	-0.649	0.624	0.000	0.185				
Sway Acceleration (m/s ²)	-1.092	0.804	0.000	0.238				
Heave Acceleration (m/s ²)	-2.152	2.280	-0.016	0.461				
Surge Displacement (m)	-1.095	0.936	-0.001	0.305				
Sway Displacement (m)	-1.599	1.716	0.000	0.402				
Heave Displacement (m)	-2.099	2.337	0.001	0.545				
Computed for the Master's steering position from MotionPak								
Surge Acceleration (m/s ²)	-0.713	0.743	0.000	0.213				
Sway Acceleration (m/s ²)	-1.326	1.138	0.000	0.332				

Sway Acceleration (m/s ⁻)	-1.326	1.138	0.000	0.332
Heave Acceleration (m/s ²)	-2.280	2.832	-0.016	0.567
Surge Displacement (m)	-0.992	0.843	-0.001	0.251
Sway Displacement (m)	-1.193	1.322	0.000	0.341
Heave Displacement (m)	-2.737	2.558	0.001	0.563

- The draft is referenced to the keel.

- The wave direction sign convention is stated as where the waves are coming from.

- The motions of the vessel were calculated using the earth fixed coordinate system.

- positions below are rough estimates based on information from poor drawings in Stability Booklet.

x : '+' forward	y :	'+' starboard	z:'-'	downwards
- The sign convention for	MotionPak is:			
x : '+' forward	у:	'+' starboard	z:'+	downwards
- The distance to Center of	of Gravity from MotionPak:			
Δx: 1.955	m Δy :	0.042 m	Δz :	0.5385 m
- The distance to the Mas	ter's steering position from	MotionPak:		
Δx: 6.257	m Δy:	2.620 m	Δ z : -	3.4747 m
- The distance to the triax	ial accelerometer position f	rom MotionPak:		
Δx: 6.257	m Δy:	0.219 m	Δz :	-2.56 m