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C e t t e  communication ana lyse  l e s  r e s u l t a t s  de p l u s i e u r s  e s s a i s  
de  f l u a g e  2 long terme s u r  des  p ieux dans l e s  g e l i s o l s .  

L ' au teu r  y c o n s t a t e  que c ' e s t  l e  f l u a g e  2 v i t e s s e  d e c r o i s s a n t e  
qui prsdomine dans l a  p l u p a r t  des  cas.  Pour une concept ion 

r a t i o n n e l l e  des fonda t ions  s u r  p i eux  dans l e s  zones de 
p e r g s l i s o l ,  c e t t e  c a r a c t s r i s t i q u e  d o i t  t t r e  p r i s e  e n  
conside'ration. 
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ATTENUATING CREEP OF PILES I N  FROZEN SOILS 

V.R. Parameswaran* 

ABSTRACT 

Resul ts  of s eve ra l  long-term creep t e s t s  of p i l e s  i n  f rozen s o i l s  
a r e  analyzed; t he  primary o r  a t t e n u a t i n g  creep is  predominant i n  most 
cases.  For e f f e c t i v e  design of p i l e  foundations i n  permafrost a r eas ,  

t h i s  aspect  should be taken i n t o  considera t ion.  

INTRODUCTION 

P i l e  foundations a r e  used extensively  i n  permafrost  a r e a s  t o  
i s o l a t e  bui ld ings  from t h e  f rozen ground by providing an a i r  space 

between the  two, thereby preserving the  f rozen s t a t e  of the  ground. 
Timber p i l e s  a r e  most commonly used, s i n c e  they a r e  usua l ly  r ead i ly  

ava i l ab le  and a r e  r e l a t i v e l y  simple t o  i n s t a l l  compared t o  o the r  
foundations.  For s p e c i a l  purposes,  s t e e l  and concrete  p i l e s  a r e  a l s o  
used i n  some ins tances .  

A p i l e  foundation bears the  superimposed loads  ( s t a t i c  due t o  t h e  
weight of the  s t r u c t u r e ,  and dynamic due t o  moving loads  and v i b r a t i n g  
machinery wi thin  t h e  s t r u c t u r e )  by two mechanisms: adfreeze  bond 

between the  p i l e  and f rozen s o i l ,  and end bearing. In  i ce - r i ch  s o i l s ,  

end bearing is usua l ly  neglected and design of p i l e  foundations i s  
based mainly on t h e  s t a t i c  adfreeze  s t r eng th .  The e f f e c t  of dynamic 

loads is a l s o  neglected; i t  is probably compensated f o r  by the  f a c t o r  
of s a f e t y  usua l ly  incorporated i n  t h e  design. 

The s o i l  adjacent  t o  the  p i l e  i n  f rozen ground is subjected t o  a 
constant  mean s t r e s s  and undergoes long-term creep. Design of p i l e  

foundations i s  based on an allowable se t t lement  f o r  a s t r u c t u r e  dur ing 
i t s  l i f e ,  from which an average a l lowable  se t t l emen t  r a t e  can be 

calcula ted .  The ob jec t ive  of any good design i s  t o  a r r i v e  a t  a value  
of allowable s t r e s s  t h a t  can be borne by t h e  p i l e  foundation, without 

exceeding the  t o t a l  allowable se t t lement  during the  l i f e  span of t h e  
s t r u c t u r e .  Several  methods have been used t o  c a l c u l a t e  such an 
allowable design s t r e s s .  

Adfreeze s t r e n g t h  from short-term t e s t s  

A few quick t e s t s  a r e  c a r r i e d  out i n  the  laboratory  on p i l e s  
f rozen i n t o  d i f f e r e n t  s o i l s ,  by loading them a t  d i f f e r e n t  r a t e s ,  and 

determining the  peak adfreeze  s t r eng th  values (15). By p l o t t i n g  the  
peak adfreeze  s t r e n g t h  versus  the  displacement r a t e  and e x t r a p o l a t i n g  

*Research Of f i ce r ,  Divis ion of Building Research, National Research 

Council Canada, Ottawa, Ontario,  K1A 0R6, Canada. 
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the curves back to the desired (alloyable) settlement rate for a 

structure, an allowable peak adfreeze strength is obtained. 
Previously this value was used together with a suitable factor of 

safety (9.24). Black and Thomas (3) described prototype pile tests of 
72 hours' duration in permafrost soils, and calculated an ultimate 

bearing strength as that stress at which the test pile attained a 
displacement of 0.5 mm (0.02 in) in the last third of the test period. 
This corresponds to a displacement rate of 3.47 x mmfmin 

(8.2 x 10-4 inlhr), which is much larger than the usual allowed 

settlement rate of about 25.4 mm (1 in) during the life of a 
structure. If the anticipated life of a structure is 25 years, the 

allowable settlement rate will be about 2 x mmfmin 
(4.72 x inlhr). [For calculations based on such allowable 

settlements see (1,14,22)]. 

The danger in this method,of extrapolation of data from 
short-term high-rate tests is that the allowable stress obtained by 

extrapolation to the desired settlement rate is always much higher 
than the stress that the pile foundation can withstand under long-term 
constant load creep conditions. Thus, the allowable stress is 

overestimated by this technique and this could lead to premature 
failure. This was shown by comparing the results from long- and 

short-term tests carried out in the laboratory (17). However, in 

winter when the ground temperature of the active layer is much colder 
than that of the perennially frozen ground underneath, the piles have 

a much higher bearing capacity than the allowable design values. 

Long-term creep tests 

A logical alternative to the previous method is constant load 
creep tests carried out in the laboratory or in the field for 
sufficiently long periods that a rate comparable to the desired 
settlement rate in the field is obtained. From a plot of stress 
versus steady-state creep rate, the allowable stress for a desired 
settlement rate is obtained. 

This technique is normally used by designers, but the design is 

based entirely on the secondary or steady-state creep rate. The 
instantaneous creep or settlement and the primary stage, where the 
rate of settlement decreases with time, are neglected. These are 

assumed to be very small compared to the total creep in the 
steady-state regime (11,13), based on the assumption that long-term 

pile behaviour under static load is analogous to the behaviour of 

viscoelastic materials (10). However, the primary creep regime 
continues for a considerable period of time, especially under low 

loads. This has also been observed in field situations (3,12,20,23). 

Failure time 

In the method suggested by Vyalov (25), the difficulties of the 
two previous methods are somewhat eliminated by considering a "failure 

time" defined as the time required for the onset of tertiary or 
accelerating creep at the end of the steady-state regime. For frozen 

soils at a particular temperature this time (tf) is a function of 

stress ( 0 ) :  
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with B and 0 c h a r a c t e r i s t i c  constants  f o r  a mater ia l .  Thus, from a 

p l o t  of ILn(tf) vs 110 f o r  var ious  temperatures,  t he  s t r e s s  
corresponding t o  a des i r ed  l i f e  span can be obtained ( s e e  a l s o  

Sayles,  21). Vyalov's method thus takes  i n t o  account the 
ins tantaneous  displacement,  and t h e  primary and secondary creep 

regimes; hence, it could be the most s u i t a b l e  model t o  p red ic t  t h e  
des ign l i f e  under a p a r t i c u l a r  load o r  v i ce  versa.  However, t he  

empir ica l  parameters B and 0 have t o  be determined from many t e s t s  
c a r r i e d  out  i n  d i f f e r e n t  s o i l s .  

It would be convenient t o  have an a n a l y t i c a l  model t o  p red ic t  t h e  

t o t a l  creep behaviour of t h e  s o i l  a t  t he  p i l e l s o i l  i n t e r f a c e .  

However, simple creep laws a s  appl ied  t o  pure ma te r i a l s  such a s  meta ls  
o r  i c e  cannot be app l i ed  t o  f rozen s o i l  f o r  t he  following reasons: 

( a )  t he  nonhomogeneous na tu re  of frozen s o i l  and the nonuniform 
d i s t r i b u t i o n  of i c e  l enses  i n  t h e  ma te r i a l ,  and ( b )  var ious  processes  

such a s  v i s c o e l a s t i c  behaviour of i c e ,  d i s loca t ion  p l a s t i c i t y  wi th in  
each i c e  g ra in ,  g r a i n  boundary viscous flow o r  r i g i d  body r o t a t i o n  of 

g ra ins ,  d i f f u s i o n  through the  unfrozen water i n  the  s o i l ,  and 
in t e rg ranu la r  s o i l  f r i c t i o n .  [For a gene ra l  review of t h e  

physico-mechanical processes occurr ing i n  f rozen s o i l s ,  s e e  ( 2 ) l .  

LABORATORY STUDIES ON THE BEHAVIOUR OF PILES I N  FROZEN SOILS 

The experimental  apparatus  and procedure used t o  measure t h e  
displacement of p i l e s  i n  f rozen s o i l s  i n  the  laboratory  under s t a t i c  

and dynamic loads  a r e  given by Parameswaran (16,181. 

Typical creep curves show the  displacement of var ious  p i l e s  i n  
d i f f e r e n t  f rozen s o i l s  ( f i g u r e s  l ( a )  t o  3(a)) .  In  a l l  t hese  f i g u r e s ,  

the  primary o r  dece le ra t ing  creep regime extends over more than ha l f  
t he  per iod required f o r  t h e  onset  of t e r t i a r y  creep o r  f a i l u r e .  In  

some cases ,  t he  p i l e s  were e n t i r e l y  i n  the  primary creep regime 
without ever  a t t a i n i n g  a s t eady- s t a t e  regime. 

Figures  l ( b )  t o  3(b) show the  v a r i a t i o n  of displacement r a t e s  

wi th  time, corresponding t o  t h e  creep curves  i n  f i g u r e s  l ( a )  t o  3(a). 

Again, primary creep is dominant f o r  very long times,  a s  ind ica t ed  by 
t h e  continuous decrease  i n  creep r a t e s  dur ing t h e  t e s t  period. The 
abrupt peaks seen i n  some of these  curves correspond t o  an inc rease  i n  
t h e  s t a t i c  load on t h e  p i l e ,  hence, an  inc rease  i n  t h e  s t r e s s  a t  t h e  

p i l e l s o i l  i n t e r f a c e .  These a r e  a l s o  ind ica t ed  on the  creep curves.  

For var ious  p i l e s  t e s t e d  i n  the  laboratory ,  the  t o t a l  

displacement ( inc lud ing  ins tantaneous)  i n  the  primary creep region was 
much l a r g e r  than t h a t  i n  the  secondary creep region, e s p e c i a l l y  f o r  

wood p i l e s .  S imi l a r  behaviour of t he  dominant primary creep regime 
f o r  p i l e s  i n  f rozen s o i l s  was observed by previous workers, from p i l e  
load t e s t s  c a r r i e d  out  i n  t h e  f i e l d  (3,12,20,23). 

/' 
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Figure  I ( a )  Creep curve showing displacement w i th  t ime f o r  an  
uncoated B.C. f i r  p i l e  i n  f rozen  sand (average g r a i n  
s i z e :  0.2-0.6 mm (0.008-0.02 i n ) ;  mois ture  content :  14% 
by weight of dry sand; T = -Z°C (28.4OF). S t r e s s  ( T )  a t  
p i l e / s o i l  i n t e r f a c e  was 0.238 MPa (34.52 p s i ) ,  except  i n  
region A t o  B of t h e  curve,  where T was 0.27 MPa 
(39.16 p s i ) .  At C and D, tempera ture  f l u c t u a t i o n s  
occurred  i n  t h e  cold  room. 

(b )  Var ia t ion  of displacement r a t e  w i th  t ime f o r  creep curve  
i n  Figure  1 ( a ) .  
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Figure  2 (a )  Creep curve f o r  creosoted  B.C. f i r  p i l e  i n  s i l t y  s o i l  
from Northwest T e r r i t o r i e s  (mois ture  content :  20%; 
T = -2.5OC (27.5"F); T = 0.1903 MPa (27.60 p s i ) ;  

temperature f l u c t u a t i o n s  a t  A and B).  

( b )  Var ia t ion  of displacement r a t e  w i th  t ime f o r  creep curve  
i n  f i g u r e  2(a) .  

Discussion 

Analogous t o  t h e  t o t a l  c reep s t r a i n  of a m a t e r i a l ,  t h e  t o t a l  
displacement (A%) of a loaded p i l e  i n  f rozen  s o i l  can  be represented  
by an equation: 



20 FOUNDATIONS IN PERMAFROST 

where the four terms on the  r i g h t  s i d e  represent  the  ins tantaneous  
displacement,  and t h e  displacements i n  t h e  primary, secondary and 
t e r t i a r y  creep regions ,  r e spec t ive ly .  I n  t h i s  d iscuss ion only the  
primary or  a t t e n u a t i n g  creep behaviour of p i l e s  i n  f rozen s o i l s  w i l l  
be considered. 

Several  equat ions  r e l a t i n g  the  s t r a i n  ( E )  and time ( t )  have been 
used t o  desc r ibe  t h e  primary creep behaviour of v i s c o e l a s t i c  ma te r i a l s  
such a s  metals,  rocks,  concrete ,  and ceramics ( see  Pomeroy, 15, f o r  a 
review). Some of these  equat ions  a r e  given below: 

Power law: E = Atn (3 )  

Logarithmic law: E = B1 + B2 Ln(t)  ( 4 )  

Hyperbolic law: E=L 
a t  + b 

Exponential law: E = C [ I  - exp. ( - ~ t ) ]  

In  these  equations the  constants  A, n, B1, B2,  a ,  b, C and D a r e  
c h a r a c t e r i s t i c  of t h e  mater ia l .  

The da ta  from the  present  p i l e  creep t e s t s  i n  f rozen s o i l s  were 
f i t t e d  t o  equat ions  ( 3 )  t o  (61, wi th  t h e  s t r a i n  ( E )  replaced by t h e  
p i l e  displacement (AL), us ing a s tandard programme a v a i l a b l e  with a 
desk top computer. Besides these  fou r  equat ions ,  a polynomial of t h e  
type: 

was a l s o  f i t t e d  t o  the  data .  

Once a curve f i t  was se l ec t ed ,  t he  r eg res s ion  values  were 
ca lcula ted .  The q u a l i t y  of f i t  achieved by r eg res s ion  was given by 
the  value of the  ' c o e f f i c i e n t  of determinat ion '  r2, given by: 

where r is the  sample c o r r e l a t i o n  c o e f f i c i e n t  ( f o r  d e t a i l s  s e e  
Crow e t  a l . ,  6).  Theore t i ca l ly ,  t he  c l o s e r  t h e  value of r 2  i s  t o  1, 
the  b e t t e r  the  f i t .  

Valuea of r2 ( t h e  c o e f f i c i e n t  of determinat ion)  obta ined by 

f i t t i n g  the  d a t a  from s e v e r a l  t e s t s  t o  t h e  f i v e  equat ions  ( 3  t o  7) 
showed t h a t ,  al though the  polynomial equation gave the  highest  value 
of r2 f o r  most of t h e  t e s t s ,  t h e r e  was a tendency f o r  t h e  polynomial 
curve t o  o s c i l l a t e  about the  a c t u a l  creep curve; hence, it was not 
conmidered a good f i t .  For most of t h e  t e s t s ,  t he  power law 
(equat ion 3 )  f i t  q u i t e  we l l  and f o r  s o w  t e s t s  the  hyperbol ic  l a w  
fequat ian  5 )  f i t  well .  I n  all cases ,  t he  equat ions  f i t  t h e  
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Figure  3 (a )  Creep curve f o r  uncoated B.C. f i r  p i l e  i n  c l a y  from 

Thompson, Manitoba (mois ture  content:  50% by weight of 
dry  s o i l ;  T = -2.5'C (27.5OF); T = 0.0474 MPa (6.87 p s i ) .  
A t  A t h e  displacement r a t e  i nc reased  due t o  superimposed 
dynamic loads.)  

( b )  Var ia t ion  of displacement r a t e  w i th  t ime f o r  creep curve 
i n  f i g u r e  3(a) .  
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Figure 3 ( c )  Curve f i t t i n g  of t h e  d a t a  of f i g u r e  3 ( a )  u s ing  
equat ions  ( 3 )  t o  (7) .  Thick l i n e  shows a c t u a l  data.  

observat ions  reasonably  we l l ,  t h e  maximum dev ia t ions  being l e s s  t han  
25%. The va lues  of va r ious  cons t an t s  used i n  equat ions  ( 3 )  t o  ( 6 )  
obta ined from t h e  t e s t  da t a  a r e  g iven i n  Table I. 

Figure  3 (c )  shows t h e  r e s u l t  of t h e  creep t e s t  presented  i n  
f i g u r e  3 (a ) ,  and t h e  bes t  f i t  o f  t h e  primary creep equat ions  ( 3  
t o  7). 

F igures  4 and 5 (a )  show two t y p i c a l  long-term c reep  t e s t s  w i th  
load increments a t  i n t e r v a l s ,  and f i g u r e  5(b)  shows the  displacement 
r a t e s  a s  a func t ion  of time corresponding t o  5 (a ) .  The p i l e s  a r e  
under primary o r  a t t e n u a t i n g  creep regime throughout t he  du ra t ion  of 
t h e  t e s t s .  The sp ikes  (A', B ' ,  C') i n  5 (b )  correspond t o  t h e  load 



TABLE I. Values of r2 and t h e  c o n s t a n t s  i n  e q u a t i o n s  ( 3 )  t o  ( 6 )  f o r  v a r i o u s  t e s t s  r~ N 

Mean Value 
s t r e s s  of  r2 

a t  p i l e /  f o r  t h e  
s o i l  power Values of t h e  c o n s t a n t s  i n  e q u a t i o n s  ( 3 )  t o  ( 6 )  

T e s t  i n t e r f a c e  law 

P i l e  and s o i l  type  No. MPa ( p s i )  (Eq. 3 )  A n B1 B2 a h C D  

Uncoated BC f i r  i n  f r o z e n  
sand (See  f i g .  l a )  

S t e e l  H-sect ion i n  f r o z e n  
sand (-6OC) (21.2"F) 

Creosoted  BC f i r  i n  s i l t y  

s o i l  (See f i g .  2a)  

Uncoated BC f i r  i n  sand 

Concre te  i n  nand 

Concre te  i n  sand 

Uncoated s t e e l  p i p e  i n  sand 
(-6'C) (21.2"F) 

Uncoated BC f i r  i n  Thompson 
c l a y  (See f i g .  3 a )  

Dense t r o p i c a l  wood i n  

Thompson c l a y  
(-2.5'C) (27.5"F) 
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TIME. h 

Figure  4 Resul t  of long-term creep t e s t  of uncoated B.C. f i r  p i l e  i n  

f rozen sand a t  -2.5OC (27..5"F), with load increments a t  
po in t s  shown by arrows. S t r e s ses  i n  d i f f e r e n t  regions  shown 
i n  Table 11. 

increments. Equations (3) t o  (7) were again f i t t e d  t o  the  data along 
t h e  segments o f  t he  creep curves  f o r  d i f f e r e n t  l oads ,  by e h i f t i n g  the  
coordinate axes t o  the  po in t  of t he  load increments. The power law 
equat ion gave the bea t  values of r2. (The polynomial was again 
excluded because of o s c i l l a t i o n s  about the  measured creep.) The 
values of the exponent (n) a s  w e l l  a s  t he  s t r e s s  corresponding t o  each 
segment of the creep curves i n  f i g u r e s  4 and 5(a) are given i n  
Table 11. 

Since the power law (equation 3) f i t  t he  primacy creep region 
well, the  values of t he  exponent (a)  obta tned f o r  various t e s t s  were 

plotted aga ins t  s t r e s s  ( f i m r e  61, t o  determine any a t r e s e  dependence 
of this parameter. The ~ c a t t e r  in t h e  d a t a  i e  large, e s p e c i a l l y  i n  

the Lou s t r e s s  region, and the exponent (n )  does not seem t o  depend on 
the  shea r  s t r e s s  ( T )  a t  the  p i l e / s o i l  i n t e r f a c e .  An average value  of 
n wae about 0.46, with a s tandard dev ia t ion  of T0.125. 

fn the c l a s s i c a l  power law creep equation proposed by Andrade, 
and app l i ed  t o  creep of metals,  rocks,  e tc .  (191, t he  valr-e of the 
exponent (n) i s  0.33. For i c e  a l s o ,  Glen (7) found a value  of  

n = 0.33 t o  f i t  h i s  creep data.  Several  o t h e r  workera ( 4 , 5 , 8 )  found, 
however. t h a t  a value of n * 0.5 gave a b e t t e r  f i t  t o  t h e  prfmary 

creep f o r  granular  i c e ,  columnar gra ined ice and f o r  s i n g l e  c r y s t a l 8  
of i c e  or iented f o r  nonbasal g l ide .  The value of 0.46 observed from 

the presen t  creep d a t a  on f rozen s o i l s  is c lose  t o  t h i s  l a t t e r  value ,  
which i n d i c a t e s  that: the creep of i c e  r i c h  f rozen s o i l  a t  temperatures 
c l o s e  t o  t he  mel t ing po in t  of i c e  is governed e s s e n t i a l l y  by the  
creep of ice. 

The s c a t t e r  of t he  r e s u l t s  shown i n  f i g u r e  6 and the  wide 
v a r i a b i l i t y  of t he  values of o t h e r  constants  shown i n  Tables 1 and 11 
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TABLE 11. Values of s t r e s s  and t h e  power law exponent ( n )  f o r  var ious  
segments of creep curves  i n  f i g u r e s  4 and 5 ( a )  

Segment of curve 

4(A) 4(B) 4(C) 4(D) 4(E) 4(F) 

S t r e s s  (T) a t  

p i l e l s o i l  i n t e r f a c e  0.523 0.604 0.644 0.682 0.722 0.762 
MPa ( p s i )  (75.86) (87.60) (93.41) (98.92) (104.72) (110.52) 

Segment of curve 

S t r e s s  (T) a t  

p i l e / s o i l  i n t e r f a c e  0.802 0.121 0.152 U.181 0.243 
MPa ( p s i )  (116.32) (17.55) (22.05) (26.25) (35.24) 
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TIME. h 

Figure 5(a) Long-term creep curve for uncoated B.C. fir pile in 

Thompson clay at -2.5OC (27.5OF). Arrows indicate load 
increments. Stresses in regions A to D shown in 
Table 11. 
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TIME, h 

Figure 5(b) Variation of displacement rate with time for creep curve 
in figure 5(a). 

point out the variability of parameters in nonhomogeneous frozen 

soils. It appears that a general creep equation cannot be obtained 
that will predict with accuracy the behaviour of pile foundations in 
frozen soils. Each test gives its own characteristic values; thus 
large safety factors become imperative in designing foundations in 
frozen ground. In spite of the scatter and variability in the values 
of the creep parameters, the results presented here show that primary 
or attenuating creep is the dominant regime to be considered in the 
design of pile foundations in frozen ground for the long-term support 
of structures. 
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Figure 6 Varia t ion of power law exponent (n) wi th  s t r e s s .  

(0. 0 ,  0 )  d a t a  from t h r e e  d i f f e r e n t  t e s t s  wi th  s t e p  
loading 

( e )  i nd iv idua l  constant  load creep t e s t s  

Conclusions 

Long-term creep t e s t s  c a r r i e d  out i n  the  laboratory  us ing 
d i f f e r e n t  p i l e s  embedded i n  var ious  f rozen s o i l s  showed t h a t ,  f o r  

s t r e s s e s  i n  the  range 0-1 MPa a t  the  p i l e f s o i l  i n t e r f a c e ,  the  dominant 

regime i a  primary o r  a t t e n u a t i n g  creep,  where t h e  displacement r a t e  
decreases  continuously with time. D i f f e ren t  primary creep equat ions  

proposed t o  desc r ibe  t h e  a t t e n u a t i n g  creep of v i s c o e l a s t i c  ma te r i a l s ,  
such a s  power law, logar i thmic ,  hyperbolic,  exponent ia l ,  and 

polynomial equat ions ,  were f i t t e d  t o  t h e  d a t a  from t h e  p resen t  p i l e  

creep t e s t e .  Although no unique parameters could be der ived by curve 

f i t t i n g ,  t he  power law equat ion c lose ly  f i t  most of t h e  observations.  
The average value  of the  power law exponent (n )  obtained was 0.46. 

For proper design of p i l e  foundations i n  permafrost a r eas ,  t h e  
primary creep regime has  t o  be considered i n  d e t a i l ,  and not t he  

s teady-s ta te  regime only. 
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