Dihydrodinophysistroxin-1 produced by Dinophysis norvegica in the Gulf of Maine, USA and its accumulation in shellfish
Deeds, Jonathan R.; Stutts, Whitney L.; Celiz, Mary Dawn; Macleod, Jill; Hamilton, Amy E.; Lewis, Bryant J.; Miller, David W.; Kanwit, Kohl; Smith, Juliette L.; Kulis, David M.; Mccarron, Pearse; Rauschenberg, Carlton D.; Burnell, Craig A.; Archer, Stephen D.; Borchert, Jerry; Lankford, Shelley K.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at https://nrc-publications.canada.ca/eng/copyright
READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site https://publications-cnrc.canada.ca/fra/droits
LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Questions? Contact the NRC Publications Archive team at PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.
Dihydrodinophysistoxin-1 produced by *Dinophysis norvegica* in the Gulf of Maine, USA and its accumulation in shellfish

Jonathan R. Deeds¹, Whitney L. Stutts³, Mary Dawn Celiz¹, Jill MacLeod², Amy E. Hamilton², Bryant J. Lewis³, David W. Miller², Kohl Kanwit¹, Juliette L. Smith¹, David M. Kulis⁴, Pearse McCarron⁵, Carlton D. Rauschenberg⁶, Craig A. Burnell⁷, Stephen D. Archer⁸, Jerry Borchert⁷, Shelley K. Lankford⁸

¹ United States Food and Drug Administration Center for Food Safety and Applied Nutrition, College Park, Maryland, USA
² Maine Department of Marine Resources, West Boothbay Harbor, Maine, USA
³ Virginia Institute of Marine Science, College of William and Mary, Virginia, USA
⁴ Woods Hole Oceanographic Institute, Woods Hole, Massachusetts, USA
⁵ Biotoxin Metrology, National Research Council Canada, Halifax, Nova Scotia, Canada
⁶ Bigelow Analytical Services, Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine, USA
⁷ Washington State Department of Health, Olympia, Washington, USA
⁸ Washington State Department of Health Public Health Laboratories, Shoreline, Washington, USA

Correspondence: jonathan.deeds@fda.hhs.gov; Tel.: (240)-402-1474

Current Address: Molecular Education, Technology, and Research Innovation Center, North Carolina State University, North Carolina, USA

Current Address: Maryland Department of Natural Resources, Annapolis, Maryland, USA

Received: date; Accepted: date; Published: date

Abstract: Dihydrodinophysistoxin-1 (dihydro-DTX1, [M-H]- m/z 819.5), described previously from a marine sponge but never identified as to its biological source or described in shellfish, was detected in multiple species of commercial shellfish collected from the central coast of the Gulf of Maine, USA in 2016 and 2018 during blooms of the dinoflagellate *Dinophysis norvegica*. Initial toxin screening using a protein phosphatase inhibition assay (PPIA) first detected the presence of DSP-like bioactivity; however, confirmatory analysis using liquid chromatography-tandem mass spectrometry (LC-MS/MS) with selected reaction monitoring failed to detect okadaic acid (OA, [M-H]- m/z 803.5), dinophysistoxin-1 (DTX1, [M-H]- m/z 817.5), or dinophysistoxin-2 (DTX2, [M-H]- m/z 803.5) in samples collected during the bloom. Bioassay guided fractionation followed by LC-high resolution mass spectrometry tentatively identified dihydro-DTX1 in the PPIA active fraction. LC-MS/MS showed an absence of OA, DTX1, and DTX2, but confirmed the presence of dihydro-DTX1 in shellfish during blooms of *D. norvegica* and results correlated well with previous PPIA testing. Two laboratory cultures of *D. norvegica*, isolated from the 2018 bloom on the central coast of Maine, were found to produce dihydro-DTX1 as the sole DSP toxin, confirming the source of this compound in shellfish. In both 2016 and 2018 concentrations of dihydro-DTX1 exceeded the regulatory guidance level of 0.16 ppm OA equivalents in multiple commercial shellfish species, reaching levels > 1 ppm, prompting shellfish harvesting closures in both years. To date, no illnesses have been associated with the presence of dihydro-DTX1 in shellfish from the Gulf of Maine region but studies are underway to determine the potency of this new toxin relative to the currently regulated DSP toxins in order to develop appropriate management guidance.

Keywords: Diarrhetic Shellfish Poisoning; dihydro-DTX1; *Dinophysis norvegica*; Gulf of Maine USA
Key Contribution: This work describes the first record of dihydrodinophysistoxin-1, produced by *Dinophysis norvegica*, in shellfish in the Gulf of Maine, USA. Also provided are data on accumulation of this compound in commercial shellfish species as well as preliminary methods of analysis.

1. Introduction

Shellfish harvesting closures due to Diarrhetic Shellfish Toxins (DSTs) in excess of the 0.16 ppm total okadaic acid equivalents (OA eq.) regulatory guidance level are a relatively recent occurrence in the United States (US). The first such closure occurred in the state of Texas (Gulf of Mexico region) in 2008 due to a bloom of *Dinophysis ovum* [1], [2]. A closure in the state of Washington (west coast Puget Sound region) occurred in 2011 due to a mixture of species, primarily *D. acuminata*. (Lloyd et al. 2013 [3], Trainer et al. 2013 [4]). On the east coast of the US, a large bloom of *D. acuminata* prompted a precautionary shellfish harvesting closure in the Potomac River bordering the states of Maryland and Virginia in 2002, but only trace concentrations of DSTs were found (Tango et al. 2002) [5]. More recently, *D. acuminata* has been documented in increasing abundance in the Mid-Atlantic region with DSTs in excess of guidance levels in shellfish (non-commercial) occurring sporadically since 2011 (Hattenrath-Lehman et al. 2011 [6], Wolny et al. 2020 [7]), but to date, no additional shellfish harvesting closures have occurred in this region. In the east coast New England region, limited shellfish harvesting closures have occurred in the Nauset Marsh system in Massachusetts since 2015 due to DSTs from blooms of *D. acuminata* (M Brosnahan, Woods Hole Oceanographic Institute, personal communication).

Although *D. acuminata* and *D. ovum* have been responsible for the majority of DSP-related shellfish harvesting closures in the US to date, other potentially toxigenic species have been documented in lower abundance, namely *D. fortii* and *D. norvegica* (Trainer et al. 2013 [4], Wolny et al. 2020 [7]). In the central coast of the Gulf of Maine, *Dinophysis* spp. commonly reach peak abundances in the summer months and when blooms occur, they are typically predominated by *D. norvegica* (Maine Department of Marine Resources, personal communication). From July 5 – August 29, 2016, a large monospecific bloom of *D. norvegica* occurred in the Penobscot and Frenchman Bay regions of the central coast of the Gulf of Maine, USA (Figure 1). Multiple samples had cell concentrations >2,000 cells L\(^{-1}\), with a maximum concentration of 54,300 cells L\(^{-1}\) recorded on July 17. Shellfish collected from several sites throughout the bloom area were screened using a commercial protein phosphatase inhibition assay (PPIA) which indicated the presence of DSTs in excess of 0.16 ppm OA eq. prompting a ban on shellfish harvesting on July 20 (Figure 2). Subsequent confirmatory testing using liquid chromatography tandem mass spectrometry (LC-MS/MS) failed to detect OA, dinophysistoxin-1 (DTX1), or dinophysistoxin-2 (DTX2) from samples collected during the bloom. Testing in three additional laboratories using both methods provided the same results, positive by PPIA and negative by LC-MS/MS. Further exploratory testing using LC-high resolution mass spectrometry (LC-HRMS) to screen for additional regulated lipophilic shellfish toxins, was also negative. Therefore, the harvesting ban was lifted on August 5.

In 2017, an investigation was initiated to determine the source of the DST-like bioactivity occurring in shellfish harvested during blooms of *D. norvegica* in Maine. Further testing used several commercial enzyme-linked immuno-sorbert assays (ELISAs) specific for DSTs. PPIA guided fractionation of a shellfish sample was used to isolate the causative toxin and subsequent LC-MS/MS analyses of the semi-purified fraction was used to tentatively identify the unknown DST. This same compound was identified in additional shellfish samples collected during the *D. norvegica* bloom in 2016 and again in 2018, as well as in a filtered plankton sample collected in 2018. Finally, this compound was confirmed to be the only DST produced in two cultured isolates of *D. norvegica* collected from the Gulf of Maine in 2018. Detailed here are the investigations leading to the discovery of this novel DST as well as a proposed strategy to manage this potential new DSP
risk until an analytical standard can be produced and the potency of this new toxin in relation to the other known DSTs can be determined.


Figure 2. *Dinophysis* spp. cell counts (open symbols) and corresponding PPIA activity (closed symbols) in shellfish collected during the 2016 *Dinophysis norvegica* bloom in the Gulf of Maine. Dashed line indicates guidance level for DSP toxins in shellfish of 0.16 ppm okadaic acid equivalents. Symbols correspond to sampling sites in Figure 1. Sampling site coordinates provided in Supplementary Table 1.

2. Results
2.1. Initial Testing of Shellfish Collected During the 2016 D. norvegica Bloom in the Gulf of Maine

The 2016 D. norvegica bloom in the Penobscot and Frenchman Bay regions of the central coast of the Gulf of Maine lasted for approximately two months (July 5th - August 29th) (Figures 1-2). During that time, numerous shellfish samples were found to contain DST-like activity, based on PPIA screening, in excess of the 0.16 ppm OA eq. regulatory guidance level (Figure 2), but subsequent testing for OA, DTX1, and DTX2 by confirmatory LC-MS/MS analysis could not confirm the presence of these compounds.

In an attempt to resolve this discrepancy, ten initial samples of frozen homogenized mussels (Mytilus edulis) were sent to three additional laboratories for follow up testing. Eight were samples collected during the 2016 D. norvegica bloom that had all previously tested positive for DST-like activity based on PPIA screening while an additional two samples, collected prior to the bloom and outside of the bloom area, were sent as negative controls. With the exception of one sample, all samples were found to be <LOD for OA, DTX1, and DTX2 by LC-MS/MS testing. All samples were also shown to be <LOD for the additional regulated lipophilic shellfish toxins azaspiracids, pectenotoxins and yessotoxins as tested using LC-HRMS. The single sample found to contain a detectable concentration of DTX1 by LC-MS/MS was actually one of the presumptive negative control samples collected on 6/27/16, prior to the D. norvegica bloom and from south of the bloom area (Sample 10 from Figure 1; 0.04 and 0.05 ppm DTX1 only as tested by two independent laboratories). All samples were re-tested at FDA CFSAN by PPIA and LC-MS/MS and results were found to be consistent with previous testing. Further testing using both a qualitative lateral flow ELISA (NEOGEN Reveal 2.0 for DSP) and a quantitative ELISA (Bioo Scientific MaxSignal Okadaic Acid (DSP)) showed results consistent with PPIA testing suggesting the presence of DST-like compound(s) based on both bioactivity and structure, but a compound distinct from OA, DTX1, DTX2, or any esterified derivatives thereof (Table 1).

Table 1. Results from analysis for mussel (Mytilus edulis) samples collected during the 2016 Dinophysis norvegica bloom in the Gulf of Maine. PPIA (Okadaic Acid (DSP) PP2A kit, Abraxis Inc., USA), ELISA (qualitative - NEOGEN Reveal 2.0 for DSP, quantitative - Bioo Scientific MaxSignal Okadaic Acid (DSP)), LC-MS/MS (1) according to the approved selected reaction monitoring (SRM) regulatory method analyzing for OA, DTX1, and DTX2 and (2) with the additional transitions for dihydro-DTX1. All units are in ppm.

<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>PPIA</th>
<th>ELISA Qualitative</th>
<th>ELISA Quantitative</th>
<th>LC-MS/MS (1) OA, DTX1, DTX2</th>
<th>LC-MS/MS (2) Dihydro-DTX1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.20</td>
<td>Positive</td>
<td>0.24</td>
<td>ND</td>
<td>0.24</td>
</tr>
<tr>
<td>2</td>
<td>&gt;0.35</td>
<td>Positive</td>
<td>0.67</td>
<td>ND</td>
<td>1.08</td>
</tr>
<tr>
<td>3</td>
<td>0.08</td>
<td>Negative</td>
<td>0.08</td>
<td>ND</td>
<td>0.06</td>
</tr>
<tr>
<td>4</td>
<td>0.10</td>
<td>Negative</td>
<td>0.07</td>
<td>ND</td>
<td>0.07</td>
</tr>
<tr>
<td>5</td>
<td>0.28</td>
<td>Positive</td>
<td>0.34</td>
<td>ND</td>
<td>0.79</td>
</tr>
<tr>
<td>6</td>
<td>0.17</td>
<td>Positive</td>
<td>0.16</td>
<td>ND</td>
<td>0.20</td>
</tr>
<tr>
<td>7</td>
<td>0.19</td>
<td>Negative</td>
<td>0.14</td>
<td>ND</td>
<td>0.21</td>
</tr>
<tr>
<td>8</td>
<td>0.14</td>
<td>Negative</td>
<td>0.15</td>
<td>ND</td>
<td>0.16</td>
</tr>
<tr>
<td>9</td>
<td>&lt;0.06</td>
<td>Negative</td>
<td>&lt;LOD</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>10</td>
<td>&lt;0.06</td>
<td>Negative</td>
<td>0.06</td>
<td>0.04</td>
<td>DTX1 Trace</td>
</tr>
</tbody>
</table>

Toxins 2019, 11, x FOR PEER REVIEW

2.2. Bioassay Guided Fractionation

To first test the utility of the bioassay guided fractionation procedure, 500 µL of hydrolyzed extract of clam (*Mercenaria mercenaria*) homogenate that had previously been spiked with 0.16 ppm each of OA, DTX1, and DTX2 was fractionated and screened for PPIA activity. Three fractions were found to contain DST-like activity: the fractions collected from 23-24 min, 24-25 min, and 26-27 min. Subsequent testing of these fractions by LC-MS/MS confirmed them as containing OA, DTX2, and DTX1, respectively (Figure 3A). Next, 500 µL of hydrolyzed mussel extract that showed the highest PPIA activity from the initial set of 10 samples supplied by ME DMR (Sample 2 from Table 1) was also fractionated. PPIA testing showed a prominent peak in bioactivity in the 26-27 min fraction, which was closest in elution order to DTX1 (Figure 3B). To determine the molecular ion of the compound responsible for this PPIA activity full-scan experiments were performed by Q1 scanning in negative polarity (see method 4.5.2). From an extracted ion chromatogram for m/z 800–840, the expected mass range for DST-like compounds, an abundant peak was observed at 7.3 min, close to the known retention time of DTX1 (min). The predominant ion observed in negative ionization mode for this chromatographic peak was m/z 819.5, two Da larger than DTX1.

Figure 3. Results from bioassay guided fractionation procedure for [A] control extract of clam (*Mercenaria mercenaria*) homogenate spiked with 0.16 ppm each of OA, DTX1, and DTX2, and [B] extract of mussel (*Mytilus edulis*) collected during 2016 *Dinophysis norvegica* bloom in the Gulf of Maine (corresponds to Sample 2 in Figure 1 and Table 1). LC-MS/MS confirmed OA, DTX2, and DTX1 in the spiked control sample, and the tentative toxin at [M-H] m/z 819.5 in the mussel extract.

A product ion scan was performed to obtain MS/MS fragmentation information on the m/z 819.5 and to select product ions for SRM method development. The top three most abundant product ions were the same as those for known DSTs, m/z 255.2, 151.1, and 131.1 (Supplementary Figure S1).

2.3. Liquid Chromatraphy-High-Resolution Mass Spectrometry of PPIA active fraction
A peak detected in the 26-27 min fraction had a measured accurate mass of \( m/z \) 819.4908 which corresponds to the \([M-H]\) of C\(_{45}\)H\(_{71}\)O\(_{13}\) (\( \Delta m=0.9376 \) ppm). This compound differed from the measured accurate mass for a DTX1 standard of \( m/z \) 817.4753 (\( \Delta m=1.1020 \) ppm for C\(_{45}\)H\(_{69}\)O\(_{13}\)) by the addition of two hydrogen atoms suggesting it was a dihydro derivative of DTX1. Further, the LC-HRMS MS/MS spectrum of this compound showed several product ions that were also consistent with the MS/MS spectrum of the DTX1 standard. These product ions were \( m/z \) 255.1 as the most abundant ion, followed by \( m/z \) 113.1 and \( m/z \) 151.1. An additional product ion observed for the tentative dihydro-DTX1 was \( m/z \) 565.3014, corresponding to the chemical formula C\(_{30}\)H\(_{45}\)O\(_{10}\), and is 2 mass units higher than the corresponding product ion (\( m/z \) 563.2861; C\(_{30}\)H\(_{43}\)O\(_{10}\)) for DTX1, indicating that the two additional hydrogen atoms are contained in this segment of the molecule (Figure 4). Specifically, the double bond at C14,15 is potentially modified on the tentative dihydro-DTX1.

![Figure 4](image)

**Figure 4.** MS/MS spectra of [A] DTX1 certified reference material at \([M-H]\) \( m/z \) 817.5 and [B] suspect DST at \([M-H]\) \( m/z \) 819.5 from the 26-27-minute fraction from the PPIA bioassay guided fractionation procedure (depicted in Figure 3) for Sample 2 from Figure 1 and Table 1. Structure in panel A depicts \([M-H]\) \( m/z \) 563.2861 fragment showing location of 14-15 double bond. Full structures of OA, DTX1, and DTX2, as well as proposed structures for 255.2, 151.1, and 113.1 fragments provided in Supplementary Figure S2.

### 2.4 LC-MS/MS and PPIA of Water and Shellfish Samples

Using the data acquired from the previous analyses, minor modifications were made to the approved LC-MS/MS method for the analysis of total (free plus esterified) DSP toxins in shellfish to include the preliminary detection of dihydro-DTX1 (detailed in section 4.5.4 below). Using the...
modified LC-MS/MS method with data acquired in selected reaction monitoring (SRM) scan mode, samples collected from the Gulf of Maine in 2016 and 2018 during blooms of *D. norvegica* were analyzed, and dihydro-DTX1 was confirmed to be the only DST present in shellfish as well as water (Figure 5).

![Figure 5](image_url)

*Figure 5.* Extracted ion chromatograms from LC-MS/MS (SRM) analysis for dihydro-DTX1 ([M-H] \( m/z \) 819.5, for [A] 26-27 minute fraction from bioassay guided fractionation procedure on mussel (*M. edulis*) extract from 2016 *D. norvegica* bloom in the Gulf of Maine, [B] filtered water sample collected during 2018 *D. norvegica* bloom in the Gulf of Maine, and [C] representative mussel (*M. edulis*) sample collected during 2018 *D. norvegica* bloom in the Gulf of Maine. OA ([M-H] \( m/z \) 803.5), DTX1 ([M-H] \( m/z \) 817.5), and DTX2 ([M-H] \( m/z \) 803.5) were not detected (not shown). Panel [D] shows extracted ion chromatograms for a 12.8 ng/mL standard mix of OA, DTX1, and DTX2 run in the same analytical batch as panel C for comparison of relative retention times.

Next, the original 10 shellfish samples analyzed by multiple labs in 2016 were re-analyzed using the modified LC-MS/MS method and samples 1-8, collected during the 2016 *D. norvegica* bloom, were all confirmed to contain dihydro-DTX1 at concentrations that correlated well with previous results generated by PPIA and ELISA (Table 1). In addition, shellfish samples from multiple species, including mussels (*Mytilus edulis*), oysters (*Crassostrea virginica*), and clams (*Spisula solidissima* and *Mya arenaria*), collected in 2016 and 2018 (N=48 total) were analyzed both by PPIA and by the modified LC-MS/MS method and results were compared using linear regression and correlation analyses for any sample > LOD of the PPIA kit (N=42). In the absence of an analytical standard for dihydro-DTX1, a the DTX1 standard was used for external calibration assuming an equivalent molar response (Zendong et al. 2017 [8]). The linear regression analysis found a slope of 1.13 ± 0.07 with an r² of 0.86. Correlation analysis of results from these same samples found the two analyses to be significantly correlated (P<0.0001) with a Pearson r score of 0.9260 (Figure 6).
Figure 6. Comparison of protein phosphatase inhibition, as measured using a commercial PPIA kit, and dihydro-DTX1 concentration as measured by LC-MS/MS (SRM) analysis for mussels (Mytilus edulis), oysters (Crassostrea virginica), and clams (Spisula solidissima, and Mya arenaria) (N=42 total), collected in 2016 and 2018 from the central coast of the Gulf of Maine during blooms of Dinophysis norvegica. Dashed line indicates DSP guidance level of 0.16 ppm OA eq. Solid line indicates best fit linear regression for the two data sets (slope 1.13 ± 0.07, r² 0.86).

Lastly, in order to test for species-specific differences in the bioaccumulation of dihydro-DTX in various commercial shellfish species from the Gulf of Maine, three species of shellfish: mussels (M. edulis), clams (S. solidissima), and oysters (C. virginica), were collected approximately weekly between May 30th and June 18th from a single location (Blue Hill Falls, symbol [Δ] from Figure 1) during the 2018 D. norvegica bloom and analyzed by LC-MS/MS. All three species were found to bioaccumulate dihydro-DTX1 with the rank order mussels > clams > oysters. Even though clams and oysters were found to accumulate less toxin overall compared to mussels, all three species were found to exceed regulatory guidance levels on at least one occasion during the course of the bloom, assuming equivalent potency and molar response to DTX1 (Figure 7).

Figure 7. Dihydro-DTX1 accumulation in mussels (Mytilus edulis), clams (Spisula solidissima), and oysters (Crassostrea virginica) collected between May 30th and June 18th from Blue Hill Falls, Maine during the 2018 Gulf of Maine Dinophysis norvegica bloom. Each bar represents a single composite shellfish sample (≥12 individuals each). Dashed line indicates DSP guidance level of 0.16 ppm OA eq.
2.5. Production of Dihydro-DTX1 in a Culture of Gulf of Maine D. norvegica

Isolates of D. norvegica from the Gulf of Maine contained dihydro-DTX1 and PTX2 in both the intracellular and extracellular fractions of the cultures (Table 2). OA, DTX1, and DTX2 were not detected in the extracts of D. norvegica cultures.

Once subjected to alkaline hydrolysis, the toxin concentrations of dihydro-DTX1 in the intracellular fraction increased 60-80 fold, indicating the extensive presence of esterified toxin derivatives (Table 2). More specifically, the esterified toxins made up 98% of the total intracellular dihydro-DTX1 pool (free + esterified dihydro-DTX1) in both isolates. Extracellular dihydro-DTX1 derivatives were also present in the medium and dominated over the parent toxin with 80 – 83% present as esterified toxins. Overall, the amount of the parent congener, dihydro-DTX1, was similar inside and outside the cells; however, once esterified dihydro-DTX1 toxins were included in the analysis, significantly more toxin was located within the cells.

Table 2. Concentrations of dihydro-DTX1 and PTX2 in methanolic extracts from the intracellular and extracellular fractions of two cultures of D. norvegica isolated from the Gulf of Maine in 2018, as measured by LC-MS/MS. OA, DTX1, and DTX2 were also analyzed, but were not detected.

<table>
<thead>
<tr>
<th>Isolate</th>
<th>Intracellular</th>
<th>Extracellular</th>
<th>PTX2 (ppb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNBH-FB4</td>
<td>Free</td>
<td>Esterified</td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>60.6</td>
<td>61.5</td>
</tr>
<tr>
<td>DNBH-B3F</td>
<td>0.5</td>
<td>43.1</td>
<td>43.6</td>
</tr>
</tbody>
</table>

3. Discussion

Multiple cases of severe vomiting and diarrhea associated with the consumption of mussels and scallops, with a failure to detect any known pathogenic microorganisms, occurred in Japan in 1976-1977 and led to the first description of the syndrome now known as Diarrhetic Shellfish Poisoning (DSP) (Yasumoto et al. 1978) [9]. The source organism for this toxic syndrome, in Japan, was determined to be the dinoflagellate Dinophysis fortii and the unknown toxin was named dinophysistoxin (Yasumoto et al. 1980) [10]. Structural elucidation of this toxin, termed dinophysistoxin-1 (DTX1), determined it to be a novel polyether derivative of a C38 fatty acid that was closely related to the similar toxins okadaic acid (35-desmethyl-DTX1) and acanthifolicin (9,10-episulfide-35-desmethyl-DTX1) that had previously been identified during bioassay-guided searches for novel antitumor agents from marine sponges (Schmitz et al. 1981 [11], Tachibani et al. 1981 [12], Murata et al. 1982 [13]). OA was later determined to also be produced by dinoflagellates, such as Prorocentrum lima and D. acuminata and to be the primary DSP toxin found in shellfish in Europe (Murakami et al. 1982 [14], Yasumoto et al. 1985 [15], Kumagai et al. 1986 [16]). Another dinophysistoxin (DTX2, 31-desmethyl-35-methyl-OA) was later found in shellfish from Ireland (Hu et al. 1992) [17]. To date, these three toxins, along with their 7-O-acyl shellfish derived metabolites, have been the primary toxins found in shellfish associated with DSP events worldwide.

Since the original descriptions of OA, DTX1, and DTX2, a limited number of additional DST-derivatives have been described, although they have never been found to be present in shellfish in sufficient quantities to cause DSP. 2-Deoxy-OA and 7-deoxy-OA were both isolated as minor constituents from the dinoflagellate P. lima (Schmitz and Yasumoto 1991 [18], Holmes et al. 2001 [19]), 19-epi analogs of OA, DTX1, and DTX2 were identified as minor impurities during the production of DSP certified reference materials (Beach et al. 2016) [20], while 14,15-dihydro-OA was isolated as a minor constituent from the marine sponge Halichondria okadai during the original
isolation of OA (Takai et al. 1992) [21]. Using a similar bioassay guided isolation scheme, with the
286 goal of identifying novel biologically active compounds from marine organisms, 14,15-
287 dihydrodinophysistoxin-1, along with roughly equivalent amounts of OA and DTX1, was isolated
288 from marine sponges (Phakellia sp.) collected in waters from the central coast of Maine in 1985 and
289 1986 (Schmitz and Yasumoto 1991 [18], Sakai and Rinehart 1995 [22]). Although this compound was
290 first reported over 20 years ago, its biological source was never determined, and it has not appeared
291 in the scientific literature again to date.

The first record of *D. norvegica* blooming in North America occurred in Bedford Basin, Nova
293 Scotia on the Atlantic coast of Canada in 1990 (Subba Rao et al. 1993) [23]. Maximum cell densities
294 were 4.5 × 10^6 cells L^-1 and DST(s) were reported to be present both in net tow plankton samples as
295 well as in experimentally exposed scallops (*Placopecten magellanicus*) based on a commercial ELISA.
296 In that same year, the first cases of DSP were reported in North America from mussels harvested
297 from Mahone Bay, Nova Scotia, Canada (Marr et al. 1992 [24], Quilliam et al. 1993 [25]). During that
298 event, *D. norvegica* was reported in plankton samples collected from Mahone Bay but no DSP toxins
299 were detected (Marr et al. 1992 [24] (methods not described). Shellfish from the DSP event were
300 positive for DST-like activity by mouse bioassay and DTX1 was confirmed by a combination of
301 methods including LC-MS and proton NMR spectroscopy (Quilliam et al. 1993) [25]. *P. lima*,
302 cultured from water samples collected during the same time period, was subsequently shown to
303 produce both OA and DTX1 and the event was attributed to *P. lima* (Marr et al. 1992) [24]. At that
304 time, the methods required to culture *Dinophysis* spp. had not yet been established, so the
305 contribution of *Dinophysis* to this DSP event could not be determined.

Not long after the first DSP event in eastern Canada, several unexplained incidents of shellfish-
306 related gastroenteritis in Maine, USA prompted a study to assess the prevalence of potentially DST-
307 producing organisms and the occurrence of DST-like toxicity in mussels along the entire state coast
308 (Morton et al. 1999) [26]. In that study, DST-like activity in mussel hepatopancreas was detected
309 using a PPIA test only in the central coastal region in the vicinity of Eastern Bay and Frenchman
310 Bay, the same region as our current study. The most prevalent potentially DST-producing species
311 found in this region at the time was *D. norvegica*, but analysis of net tow samples were negative for
312 protein phosphatase inhibitory (PPI) activity. Both mussels and plankton were also negative for OA
313 and DTX1 by LC-MS/MS testing but the authors noted that the bioactivity detected in mussels by
314 PPIA was likely below the detection limit for LC-MS/MS. Although lower in number, *P. lima* was
315 detected in the epiphytic community in this region and testing of a concentrated sample of this
316 material detected DST-like activity using the PPIA test and the presence of DTX1 was confirmed by
317 LC-MS/MS; therefore, the authors concluded that *P. lima* was the source of the PPI activity in
318 mussels during that study.

We show here that *D. norvegica* in the central coast of the Gulf of Maine, both in culture and in situ,
319 produces a DST-like toxin distinct from OA, DTX1, or DTX2. The toxin has been tentatively
320 identified as a 14,15-dihydro-derivative of DTX1, equivalent to 14,15 dihydro-DTX1 that was was
321 described from marine sponges collected from this same region over 30 years ago. Confirmation of
322 this will require further structural elucidation studies. The presence of this toxin, as quantified
323 using the current reference method for DST testing under the National Shellfish Sanitation Program
324 in the US (NSSP, 2017) [27], correlated well with PPIA testing, indicating that this toxin alone can
325 explain the DST-like activity detected in this region in association with blooms of *D. norvegica* in
326 2016 and 2018. This also suggests that dihydro-DTX1 and OA binds equivalently to the PP2A
327 enzyme used in the commercial PPIA kit as OA is the standard utilized in the kit. 14,15-dihydro-
328 DTX1 was found to be equally potent when compared to OA and DTX1 using a cytotoxicity assay
329 against L-1210 leukemia cells (Sakai and Rinehart 1995) [22], but in other studies looking at the
330 relative inhibitory potencies of various OA-derivatives, including 14,15-dihydro-OA, this
331 compound was found to have a higher dissociation constant (lower affinity) for both PP1 and PP2A
332 compared to OA and DTX1 (Takai et al. 1992) [21]. This was proposed to be due to the conversion
of the double bond between C-14 and C-15 to a single bond, which the authors hypothesized to
stabilize the circular confirmation known to be important for the binding of these compounds to
protein phosphatases (Takai et al. 1992) [21]. Determination of the relative potency of the dihydro-
DTX1 produced by *D. norvegica* compared to the other known DSP-causing DSTs will require
further testing once a better characterized, analytically pure preparation of this compound is
available. In the meantime, it appears that PPIA screening with confirmatory LC-MS/MS testing
utilizing *m/z* 819.5 with product ions at *m/z* 255.2, for quantitation, and 151.1 and/or 113.1 for
confirmation, in negative ion mode according to the current NSSP method, is a viable means of
screening for this toxin in shellfish until a formal analyte extension study can be performed. As
with all marine biotoxins, chemical analytical methods such as HPLC or LC-MS/MS depend greatly
on the availability of accurate toxicity equivalency factors (TEFs) (Botana et al. 2017) [28]. The
determination of a TEF for the dihydro-DTX1 compound is a priority so that the risk this toxin
poses to human consumers can be properly assessed, especially considering that this toxin has not
been conclusively linked to any DSP-like illnesses to date. This work is currently in progress.

The central coast of the Gulf of Maine is not the only region in the US where *D. norvegica*
occurring, although it does appear to be the only region in the US, that we are aware of, where it is the
predominant species of *Dinophysis* present. *D. norvegica* has been documented in lower abundance,
compared to species such as *D. acuminata*, in the mid-Atlantic region (Wolny et al. 2020) [7], the
Pacific Northwest (Trainor et al. 2013) [4], and the central coast of California (Schultz et al. 2019)
[29]. Historically, *D. norvegica* was shown to reach high abundances on the Atlantic coast of Canada,
particularly Nova Scotia (Subba Rao et al. 1993) [23] and still occurs occasionally in high abundance
along with *D. acuminata* in that region today (Nancy Lewis, personal communication). Worldwide,*D. norvegica* occurs in many cold-water coastal environments, such as Norway, where it commonly
co-occurs with other *Dinophysis* species such as *D. acuta* and *D. acuminata* (Séchet et al. 1990) [30],
and the Baltic Sea (Carpenter et al. 1995) [31], but it is often considered a minor contributor to DSP
events (Reguera et al. 2012, 2014) [32-33]. It remains to be determined if *D. norvegica* in any of these
additional locations also produces the dihydro-DTX1 compound and what potential risk this poses
to shellfish consumers.

4. Materials and Methods

4.1 Phytoplankton and Shellfish Sampling

Individual phytoplankton samples were each comprised of 10 liters of surface seawater
collected from shore and gravity filtered through a 20 µm sieve. Once the seawater had fully
drained, the cylinder was inverted and placed onto a funnel attached to a 50 mL centrifuge tube.
Phytoplankton collected on the sieve were rinsed into the collection tube using freshly filtered
seawater. Sample tubes were suspended by a rack in a cooler held between 0-10 °C during
transport. Once transported to the lab, samples were held at 0-4 °C and analyzed within 24 hours. If
samples could not be analyzed within this timeframe, they were fixed with 80 µL of Lugol’s iodine
and stored at 0-4 °C until analysis.

Swift M10 compound microscopes (Swift Optical Instruments, Schertz, TX, USA) were used at
100X magnification for phytoplankton enumeration. Each sample tube was gently inverted three
times and 1 mL of the sample aliquoted onto a Sedgwick Rafter gridded slide for enumeration.
Using light microscopy, 0.2 mL (200 grids) were analyzed, after which the sample was discarded,
the slide rinsed with deionized water, and a second sample loaded and analyzed. The genus
*Dinophysis* was enumerated using morphological characteristics. The total counts of individual cells
in the two separate aliquots were averaged with numbers reported in cells/liter.

Each bivalve sample was comprised of 12-15 specimens for a given species that were
composited for analysis. Samples were transported live in a cooler held at a temperature of 0-10 °C.
Upon delivery to the lab, samples were stored at 0-4 °C and processed within 24 hours of collection. For processing, each sample was rinsed, drained, shucked, and the tissues homogenized by a blender. Homogenized samples were stored at 0-4 °C and extracted within 24 hours. Samples not scheduled for analysis within 24 hours were stored at -20 °C until extraction. Remaining homogenates were stored at -20 °C and after 2 months, archived in long-term storage at -80 °C. Additional aliquots for further chemical analysis were taken from these archived samples.

4.2. Standards and Reagents

Certified reference materials (CRMs) for OA, DTX1, and DTX2 were purchased from the National Research Council Canada (Halifax, NS, Canada). All reagents were purchased from Sigma-Aldrich (St. Louis, MO, USA) and were analytical grade or better. All solvents were purchased from Fisher Scientific (Pittsburgh, PA, USA) and were LC-MS grade.

4.3. Commercial Test Kits

Three commercial test kits for the determination of DSP toxins in shellfish were utilized in the study: 1. Okadaic Acid (DSP) PP2A kit (PN 520025, Abraxis, Inc. Warminster, PA, USA), 2. Reveal 2.0 for DSP (NEOGEN Corporation, Lansing, MI, USA), and 3. MaxSignal Okadaic Acid (DSP) ELISA Test Kit (Bioo Scientific Corp, Austin, TX, USA). The Okadaic Acid (DSP) PP2A kit is an in-vitro test based on the inhibition of protein phosphatase 2A, a known biological target for DSTs. The Reveal 2.0 for DSP kit is a qualitative antibody-based lateral flow test, while the MaxSignal Okadaic Acid (DSP) ELISA kit is a quantitative micro-well plate antibody-based test. For all kits, the manufacturer’s instructions were followed, with an exception for the Okadaic Acid (DSP) PP2A kit where 2 g of shellfish homogenate was extracted in a total of 20 mL solvent (1:10 dilution) as opposed to the current manufacturer’s instructions of 5 g homogenate extracted in 25 mL solvent (1:5 dilution). To compensate for the different extraction dilutions, the total volume of the dilution in buffer after sample hydrolysis was changed from 20 mL to 10 mL (Section D, Step 12 of manufacturer’s instructions). This adjustment corresponds to the standard extraction for the validated LC-MS/MS method for DSTs and allows the same extract to be used for both analyses.

4.4. Bioassay Guided Fractionation

Purification of DSP-like compound(s) from Maine shellfish was achieved through bioassay guided fractionation following a modification of the method described in Holmes et al. (1991) [34]. First, a homogenized composite sample of 12 mussels (Mytilus edulis), collected in 2016 from the Gulf of Maine during the D. norvegica bloom and previously shown to contain >0.35 ppm OA eq. activity using the PPIA kit and 0.67 ppm OA eq. using the MaxSignal quantitative ELISA, both described in the “Commercial Test Kit” section above, was extracted following the standard procedure used in the LC-MS/MS analysis described below. A 2 mL sub-sample was hydrolyzed with 250 µL of 2.5 M NaOH followed by heating in a water bath at 76 °C for 40 min. After cooling to room temp, the sample was neutralized with 250 µL of 2.5 M HCl. A sub-sample of hydrolyzed extract (500 µL) was injected onto an Agilent 1200 Series HPLC system equipped with a G1363A 900 µL extended loop injection kit and a 1260 Series model G1364C fraction collector (Agilent Technologies, Waldbronn Germany). Separations were achieved using a 4.6 × 150 mm, 5 µm particle size, Zorbax Eclipse XDB-C18 column (Agilent Technologies, Waldbronn Germany) at a flow rate of 500 µL/min using the following elution profile: 70%A:30%B hold for 2 min, increasing linearly to 100%B over 20 min, hold at 100%B for 5 min, decrease to 70%A:30%B over 3 min, hold at 70%A:30%B for 5 min. Mobile phase A consisted of 100% water with 0.1% TFA and mobile phase B consisted of 100% acetonitrile with 0.1% TFA following Holmes et al. (1991) [33]. Fractions were collected every minute over the entire 35 min run time. All fractions were tested for protein phosphatase inhibitory activity using the commercial kit described above. As a positive control, a homogenate of clam (Mercenaria mercenaria), previously shown to be <LOD for DSP toxins by LC-
MS/MS, was spiked with 0.16 ppm each of methanolic reference solutions of OA, DTX1, and DTX2, then extracted, fractionated, and analyzed for PPIA activity as described above.

4.5 Liquid Chromatography-Mass Spectrometry

4.5.1. Lipophilic Toxin Screening by LC-HRMS

Initial lipophilic toxin screening using LC-HRMS analyses, performed at NRC Canada, of the first set of 10 samples collected by ME DMR in 2016 for DSTs as well as azaspiracids, pectenotoxins, and yessotoxins was performed according to McCarron et al. [35] and Blay et al. [36].

4.5.2. Q1 Scanning and MS/MS Analysis of the Unknown DST-like Compound

Initial LC-MS experiments on the semi-purified extract from the 26-27 min fraction obtained from the PPIA bioassay guided fractionation of Sample 2 (from Figure 1 and Table 1) were performed using an Acquity Ultra-Performance Liquid Chromatography system (Waters Corporation, Manchester, UK) coupled to a Sciex QTrap 5500 mass spectrometer equipped with a Turbo V ionization source (SCIEX, Framingham, MA, USA). The column used for separations was a Waters BEH C18 (1.7 μm, 1.0 mm x 150 mm) (Waters Corp., Milford, MA). The aqueous mobile phase (A) consisted of 2 mM ammonium formate and 50 mM formic acid in water. The organic mobile phase (B) consisted of 2 mM ammonium formate and 50 mM formic acid in 95% acetonitrile/5% water. For initial method development studies gradient conditions started at 50% B, maintained for two min at 50% B, then linearly increased to 70% B in four min, followed by 100% B in two min, held at 100% B for five min, then decreased to 50% B in 0.5 min and lastly, held at 50% B for 4.5 min. The total run time was 18 min at a flow rate was 0.12 mL/min. The column temperature was maintained at 40 °C while the autosampler temperature was 10 °C. The injection volume was 5 μL.

The electrospray ionization (ESI) source parameters were as follows: source temperature 550 °C, ion spray voltage – 4500 V, curtain gas 25 psi, gas 1 and 2 both 40 psi. Full scan, negative ionization mode data were collected using a mass range from 500 to 900 Da and a scan rate of 200 Da/s. Product ion scans for m/z 819.30 were collected using a mass range from 100 to 900 Da and a scan rate of 1000 Da/s. The declustering and entrance potentials were -110 V and -10 V, respectively, and for product ion scans the collision energy was -70 V and collision cell exit potential was -15 V. Analyst® chromatography software (ver. 1.6.2, SCIEX, Framingham, MA, USA) was used for data visualization and analysis.

4.5.3. LC-HRMS of Dihydrodinophysistoxin-1

LC-HRMS measurements of the semi-purified extract from the 26-27 min fraction of Sample 2 (from Figure 1 and Table 1) was performed using a Nexera LC system (Shimadzu, Columbia, MD, USA) coupled to a Q Exactive Hybrid Quadrupole-Orbitrap mass spectrometer (Thermo Scientific, Waltham, MA, USA). The column and mobile phases were the same as described in section 4.5.2.

The LC run time was shortened to 15 min and the gradient started at 50% B, was maintained for two min at 50% B, then linearly increased to 70% B in four min, followed by 99% B in two min, held at 99% B for two min, then decreased to 50% B in 0.5 min and held for 4.5 min to re-equilibrate. All other chromatography and autosampler settings were the same as described in section 4.5.2.

Mass spectrometric detection was in ESI in negative mode. The ESI source conditions were as follows: spray voltage -3000 V, capillary temperature 320 °C, sheath gas 5 arbitrary units (au), and aux gas 0 au. A targeted-single ion monitoring (SIM)/data dependent (dd)-MS² experiment was performed on the sample. The instrument was set to monitor and perform MS/MS on m/z 819.49002.
The parameters for SIM were mass resolution setting of 70,000, automatic gain control (AGC) of 2×10^5, maximum injection time of 200 ms, and isolation window of 2 m/z. The parameters for dd-MS^2 were as follows: mass resolution setting of 35,000, AGC 2×10^5, maximum injection time 100 ms, normalized collision energy 35. The dd settings to initiate MS/MS was a minimum AGC of 8×10^3.

4.5.4. LC-MS/MS Selected Reaction Monitoring (SRM) Analysis for OA, DTX1, DTX2, and Dihydro-DTX1.

LC-MS/MS testing by SRM was performed using an Acquity Ultra-Performance Liquid Chromatography system coupled to a Sciex QTrap 5500 mass spectrometer equipped with a Turbo V ionization source. The protocol “LC-MS/MS Method for the Detection of DSP toxins in Shellfish” that was recently adopted by the Interstate Shellfish Sanitation Conference (ISSC) for use in the US National Shellfish Sanitation Program (NSSP) (available at: http://www.issc.org/Data/Sites/1/media/00-2017biennialmeeting/---taskforcei2017/17-103-supporting-documentation.pdf : accessed June 8, 2020) was followed with minor modifications to include the measurement of dihydro-DTX1 as detailed below. All samples were subjected to alkaline hydrolysis, following the referenced protocol, to measure total (free plus esterified) toxins.

The column, mobile phase, gradient conditions and ESI source parameters were the same as those used for LC-HRMS measurements (section 4.5.2) and in the ISSC protocol. Data acquisition was in negative ionization mode using SRM. The SRM parameters for dihydro-DTX1 were as follows: Q1 m/z 819.5, Q3 m/z 255.2 and 151.1, dwell time 100 ms, declustering potential -110 V, entrance potential -10 V, collision energy -70 V, and collision cell exit potential -15 V. The peak area of the SRM transition m/z 819.5 → 255.2 was used for quantitation. The m/z 819.5 → 151.1 SRM transition was used for confirmation. In the absence of a standard, quantitation of dihydro-DTX1 was performed using the calibration curve of DTX1. Analyst® chromatography software (ver. 1.6.2, SCIEX, Framingham, MA, USA) was used for peak area integration and quantitation.

4.6. Analysis of Gulf of Maine Shellfish for Dihydro-DTX1 by LC-MS/MS SRM and Comparison with PPIA

To compare the determination of dihydro-DTX1 by LC-MS/MS SRM (as described in section 4.5.4) to PPIA (as described in section 4.3), 48 shellfish samples collected by ME DMR during blooms of *D. norvegica* in 2016 and 2018, each comprised of ≥12 composited individuals and representing mussels (*Mytilus edulis*), oysters (*Crassostrea virginica*), and clams (*Spisula solidissima* and *Mya arenaria*), were analyzed using both methods. For any samples found to be greater than the working range of the PPIA kit (>0.35 ppm OA eq.), samples were diluted using the kit-provided dilution buffer and re-analyzed. All samples >LOD for the PPIA kit (0.063 ppm) (N=42) were compared to results determined by LC-MS/MS SRM, quantified using an external DTX1 standard curve, using both linear regression and correlation analysis with the program GraphPad Prism (ver. 5.01 for Windows, GraphPad Prism Software, San Diego, CA, USA).

During the 2018 *D. norvegica* bloom in the Gulf of Maine, three species of shellfish: mussels (*Mytilus edulis*), clams (*Spisula solidissima*), and oysters (*Crassostrea virginica*), were collected approximately weekly (≥12 composited individuals per sample) between May 30th and June 18th from a single location (Blue Hill Falls, Figure 1) and analyzed by LC-MS/MS SRM (as described in section 4.5.4) to look for species-specific differences in the accumulation of dihydro-DTX1.

4.7. Testing of a Gulf of Maine Dinophysis norvegica Culture for DST Production

Two new cultured clonal isolates of *D. norvegica* (DNBH-FB4 and DNBH-B3F) were established in culture in May 2018 from surface water collected from Blue Hill Falls, Maine, following the single-cell isolation methods described by Tong et al. (2011) [37]. At the time of water collection, the salinity was 30 psu and water temperature was 12 °C. During isolation and maintenance of the culture, *D. norvegica* were fed *Mesodinium rubrum* which had been previously raised on *Teleaulax*.
amphioxeia isolated from Japan (Nishitani et al. 2008 [38]) following the protocols of Park et al. (2006) [39] as modified by Hackett et al. (2009) [40]. The dinoflagellate, ciliate, and cryptophyte cultures were grown in modified f/6-Si medium (Anderson et al. 1994) [41], salinity of 30, at 15 °C in dim light (40 µmol photons·m-2·sec-1) under a 14h:10h light:dark photocycle.

To assess the toxigenicity of DNBH-FB4 and DNBH-B3F, cells were inoculated into fresh medium, salinity 30 psu, at 400 cells·mL⁻¹, fed M. rubrum at a 1:10 ratio of prey to predator, and monitored every 3 days for the complete consumption of M. rubrum by examining 1 mL subsamples in a Sedgewick-Rafter counting cell at 100x using an Olympus CX31 light microscope (Olympus America, Waltham, MA, USA). Three days after all ciliate prey were consumed, (i.e. during late exponential growth of the dinoflagellate) the culture was harvested for toxin analysis.

The harvested cultures were gently separated into cells (intracellular toxins) and medium (extracellular toxins) using a 10 µm sieve and the components were extracted and analyzed for toxins separately. Cells and medium were bath sonicated at room temperature for 15 min (Branson Millford, MA, USA) that was previously equilibrated with 3 mL of MeOH and 3 mL of GenPure water. The cartridge was then washed with 6 mL of GenPure water, blown dry, and eluted with 1 mL of 100% MeOH into a glass 1.5 mL high recovery LC vial and stored at -20 °C until analyzed. A portion of the sample underwent alkaline hydrolysis to enable the quantitation of total DSP toxins (free plus esterified) following Hattenrath-Lehmann et al., 2018 [42]. Extracts, original and alkaline hydrolyzed, were analyzed using an Acquity liquid chromatography system coupled to a Xevo mass spectrometer with electrospray ionization (Waters, Milford, MA, USA) following the DSP and PTX2 analytical methods described by Onofrio et al. (2020) [43].

Dihydro-DTX1 was detected using selected reaction monitoring (SRM) in negative ion mode with the transitions m/z 819.5—>255.1, 819.5—>819.5, 819.5—>151.1, and 819.5—>113.1. Quantitation was performed using the former SRM transition; concentrations were calculated using an external DTX1 standard curve with MassLynx 4.1 software (Waters Corporation, Millford, MA, USA). Matrix spikes, final concentration of 12.5 ppb DTX1, were conducted to confirm separation from DTX1. Toxin data are presented as toxin concentration per mL of culture, and free vs. esterified, with the latter being calculated through the subtraction of free toxins from total toxins.

**Supplementary Materials:** The following are available online at www.mdpi.com/xxx/s1, Supplementary Table S1, Supplementary Figure S1.

**Author Contributions:** Study design: JRD, WLS, JM, AEH, JS; provided samples: JM, AEH, BJL, DWM, DMK; provided data: JRD, WLS, MDC, JM, AEH, JS, PM, CDR, CAB, SDA, JB, SKL; wrote manuscript: JRD, WLS, MDC, AEH, JS; reviewed/edited manuscript: KK, DMK, PM, SDA, SKL.

**Funding:** Partial support for this research was received from the National Oceanic and Atmospheric Administration National Centers for Coastal Ocean Science Competitive Research ECOHAB Program under awards NA17NOS4780184 and NA19NOS4780182 to JLS (VIMS) and JRD (US FDA), and PCMHAB program award NA17NOS4780179 to SDA. This paper is ECOHAB publication number (XXXX).

**Acknowledgments:** The authors would like to express their gratitude to Marta Sanderson and Dr. Han Gao (VIMS) for their assistance in culture maintenance and toxin analysis, Dr. Satoshi Nagai (National Research Institute of Fisheries Science, Japan) for his sharing of Mesodinium rubrum and Teleaulax amphioxeia cultures, Stephen Conrad (CFSAN) for assistance with figure preparation, and Dr. Claude Mallet (Waters Inc.) and Sabrina Giddings (Biotoxin Metrology, NRC Canada) for their technical assistance.

**Conflicts of Interest:** The authors declare no conflicts of interest.

**References**
Dinophysis (Dinophyceae, Dinophysiales) bloom in the U.S. revealed by automated imaging flow

closures due to confirmed okadaic acid in Texas Gulf coast oysters. Toxicon 2010, 55, 1138-1146.

3. Lloyd, J.K.; Duchin, J.S.; Borchert, J.; Flores Quintana, H.; Robertson, A. Diarrhetic shellfish poisoning,
http://dx.doi.org/10.3201/eid1908.121824

B.L. Diarrhetic shellfish toxins and other lipophilic toxins of human health concern in Washington State.

D.W.; Campbell, L.; Deeds, J.D. Characterization of Dinophysis spp. (Dinophyceae, Dinophysiales) from the


7. Yasumoto, T.; Oshima Y.; Yamaguchi, H. Occurrence of a new type of shellfish poisoning in the Tohoku

8. Yasumoto, T.; Oshima, Y.; Sugawara, W.; Fukuyo, Y.; Oguri, H.; Igarashi, T.; Fujita, N. Identification of
Dinophysis firtii as the causative organism of diarrhetic shellfish poisoning. Bull. Japan Soc. Sci. Fish. 1980,
46, 1405-1411.

9. Schmitz, F.J.; Prasad, R.S.; Gopichand, Y.; Hossain, M.B.; van der Helm, D. Acanthofolicin, a new episulfide-
containing polyether carboxylic acid from extracts of the marine sponge Pandaros acanthifolium. J. Am. Chem.

10. Tachibami, K.; Scheuer, P.J.; Tsuchitani, Y.; Kikuchi, H.; Van Engen, D.; Clardy, J.; Gopichand, Y.; Schmitz,
F.J. Okadaic acid, a cytotoxic polyether from two marine sponges of the genus Halichondria. J. Am. Chem.
Soc. 1982, 103, 2469-2471.

11. Murata, M.; Shimatani, M.; Sugitani, H.; Oshima, Y.; Yasumoto, T. Isolation and structural elucidation of

12. Murakami, Y.; Oshima, Y.; Yasumoto, T. Identification of Okadaic acid as a toxic component of a marine


16. Schmitz, F.J.; Yasumoto, T. The 1990 United States – Japan seminar on bioorganic marine chemistry,

17. Holmes, M.J.; Lee, F.C.; Khoo, H.W.; Ming Teo, S.L. Production of 7-deoxy-okadaic acid by a New

C.E., Stefanova, R., Burtan, I.W., Kilcoyne, J., Melanson, J.E., Quilliam, M.A., McCarron, P. Development of
certified reference materials for diarrhetic shellfish poisoning toxins. Part 1: Calibration solutions. J. AOAC
Int. 2016, 99, 1151-1162.


35. McCarron, P.; Wright, E.; Quilliam, M.A. Liquid chromatography/mass spectrometry of domoic acid and lipophilic shellfish toxins with selected reaction monitoring and optional confirmation by library searching of product ion spectra. *J. AOAC International* 2014, 97, 316-324.


© 2019 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).