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Summary

The development of genotyping-by-sequencing (GBS) to rapidly detect nucleotide variation at 

the whole genome level, in many individuals simultaneously, has provided a transformative 

genetic profiling technique. GBS can be carried out in species with or without reference genome 

sequences yields huge amounts of potentially informative data. One limitation with the approach 

is the paucity of tools to transform the raw data into a format that can be easily interrogated at 

the genetic level. In this chapter we describe bioinformatics tools developed to address this 

shortfall together with experimental design considerations to fully leverage the power of GBS for 

genetic analysis.

1. Introduction

It was a significant achievement when the first plant genome sequence of Arabidopsis thaliana

was published in 2000 [1] and heralded the application of genomics tools to plant research. The 

choice of this first species, with one of the smallest plant genomes and limited dispersed 

repetitive DNA, was partly driven by the cost and efficiency of available sequencing 

technologies. Today the transformative advances in sequencing platforms and chemistries, which 

have led to dramatic reductions in cost per base, have played a major role in deciphering multiple 

complex genomes. To date as many as 55 plant genomes have been sequenced and made 

publicly available [2] (http://www.phytozome.net/). Combined with such reference genome 

sequences next generation sequencing (NGS) has allowed a multitude of new approaches to be 

applied to the identification, analyses and visualisation of fundamental genetic variation. 

Identifying and utilising natural and induced genetic variation remains a prime objective in plant 

research with important implications in population genetics, evolution and crop breeding. The 

most abundant and perhaps most informative variation that can be exploited are single nucleotide 



polymorphisms (SNPs) that have proven ideal markers for the study of plant genomes [3].

A number of approaches have been described to capture genome wide natural and induced 

genetic variation by NGS. The majority of these approaches rely on the use of reduced 

representation, which delimits the portion of large and complex genomes to be assessed to a 

manageable size. Initially proposed by Altshuler et al., [4] reduced representation allowed a high 

density SNP map to be generated for a genome previously thought to be too large for such 

analyses. However, it has been the combination of reduced representation, NGS and multiple 

indexing of samples that has provided the ability to study extremely large genomes at reasonable 

cost. The relative simplicity and cost-effectiveness of the genotype-by-sequencing (GBS) 

approach has encouraged its application in multiple species, including both model and non-

model plants [5-8]. Also the increased marker density that is offered has led to its growing use in 

the anchoring of genome sequence assemblies, effectively removing the necessity to generate 

expensive and error prone physical maps [9-11]. The only current limitation is the bioinformatic 

and computational burden that is generated, with regards to both data processing and storage.

GBS now takes many forms, the first GBS data was generated using restriction site associated 

DNA sequencing (RAD-seq) [12] which utilised a single restriction enzyme combined with 

shearing of the digested DNA to capture a suitable portion of the genome. By optimising enzyme 

choice and eliminating the necessity for DNA shearing the Cornell group simplified the approach 

and allowed more extensive multiplexing, which reduced costs further [13]. There have been 

several modifications to the basic protocols, predominantly incorporating the use of two enzyme 

digestion, including 2b-RAD [14], ddRAD-seq [15] and a variant to the Cornell GBS approach 



by Poland et al. [6] that utilizes methylation sensitive enzymes to further reduce the 

representation of the target genome. There have been several reviews describing the different 

approaches to GBS in plants [16-19].

The common feature of all the approaches is the type and volume of data that is produced, since 

all have exploited the Illumina sequencing platforms, generating millions of sequence reads 

usually of 100 bp or less for each indexed sample. Thus the bioinformatics pipeline described in 

the following chapter would be applicable to any of the published protocols in either single-end 

or paired-end read format. All the methods can be used in the absence of a reference genome;

however, the use of a reference genome is generally far more effective in ensuring the robust 

identification of genome wide SNPs. The following chapter will focus on the analyses of GBS 

data where there is access to a complete or draft genome; although tools (section 2.1) that have 

been developed to analyse GBS in the absence of a reference genome are listed.

2. Materials

In this chapter, we discuss a Bioinformatics pipeline (Figure 1) that is designed to identify 

genetic variants such as SNPs and insertions/deletions (InDels) from NGS data generated by 

most major RAD and GBS approaches. This pipeline uses a suite of publicly available software 

and custom Perl scripts. There are alternative pipelines that have been developed and are listed in 

section 2.1.

2.1. Publicly available Software and tools for GBS:

1. Trimmomatic (http://www.usadellab.org/cms/?page=trimmomatic) is a multithreaded 

command line tool that can be used for trimming adapter sequences and low quality 



regions from Illumina sequencing reads [20].

2. Bowtie2 (http://bowtie-bio.sourceforge.net/bowtie2/index.shtml) is an ultrafast short read 

alignment tool that can be used for aligning sequencing reads against a reference genome 

[21]. It should be noted that other alignment tools are available for this application, most 

commonly BWA [22].

3. SAMtools (http://samtools.sourceforge.net/) is a package of utilities designed for 

manipulating alignments in the SAM (Sequence alignment/Map) or BAM (Binary 

alignment/Map) format, including sorting, merging, indexing and generating alignments in 

a per-position format [23].

4. BCFtools (http://samtools.github.io/bcftools/) is a set of utilities that manipulate variant 

calls in the Variant Call Format (VCF) and its binary counterpart (BCF).

5. GATK (Genome Analysis Toolkit) genotyper (http://www.broadinstitute.org/gatk/) 

provides a wide variety of tools for variant discovery and genotyping [24-26].

6. STACKS (http://creskolab.uoregon.edu/stacks/) allows de novo assembly of short read 

GBS data and the identification of genetic variation in the absence of a reference genome

[27].

7. TASSEL-GBS (http://www.maizegenetics.net/) is an implementation of a GBS analysis 

pipeline in the TASSEL software package [28].

2.2. In house tools:

A set of utility Perl scripts (listed in Table 1) were written to perform various tasks associated 

with data processing, read alignment and SNP discovery. These scripts are open source and 

freely available upon request.

3. Methods



The basic workflow for variant discovery using NGS data generated by RAD-seq and GBS 

approaches can be divided into three sequential steps: (1) raw data processing, (2) read alignment 

to a reference genome or de novo assembly of the sequence tags, and (3) variant discovery and 

annotation. In general, these three steps are shared by most of the currently availably genotyping 

pipelines. In the following subsections, each of these steps are reviewed to provide background 

information for the available bioinformatics tools that are customised to perform various tasks 

associated with these steps. 

3.1 Raw data processing

RAD-seq and GBS employ a highly multiplexed sequencing strategy for constructing reduced 

representation libraries for the Illumina NGS platform (see Note 1). Demultiplexing is the first 

key step of processing raw sequencing data, which separates reads into their corresponding 

samples based on barcode matching. Demultiplexing of Illumina reads is generally carried out 

using Illumina CASAVA or MiSeq reporter software; however, CASAVA cannot demultiplex 

RAD-seq and GBS reads which contain customised inline barcodes in only one of the adapter 

sequences. We have developed a Perl script util_barcode_splitter.pl (Table 1) to demultiplex 

RAD-seq and GBS reads. 

Raw sequencing data often contain various types of errors and artefacts, such as base calling 

errors, low quality bases, adaptor contamination and duplicate reads [29]. Thus it is necessary to 

perform quality assessment and correction of reads by filtering or trimming of low quality reads 

or regions. There are numerous publicly available software that can be used for pre-processing of 

sequencing reads, such as Trimmomatic (http://www.usadellab.org/cms/?page=trimmomatic), 

PRINSEQ (http://prinseq.sourceforge.net/), FastqMcf (http://code.google.com/p/ea-

utils/wiki/FastqMcf), FASTX-Toolkit (http://hannonlab.cshl.edu/fastx_toolkit/) and cutadapt 



(http://code.google.com/p/cutadapt/). In our pipeline (Figure 1), we have adopted Trimmomatic, 

which is a fast, multithreaded command line tool that can be used to (i) remove adapter 

sequences, (ii) trim leading and trailing low quality regions (below a user defined quality 

threshold), (iii) scan the read with a user defined base-pair size sliding window and cut when the 

average quality per base has dropped below a threshold, and (iv) keeping only those read-pairs 

where both reads were longer than the specified minimal length. Trimmomatic is also designed 

to handle 'read-through' for paired-end data. A ‘read-through’ is when a fragment size smaller 

than the read length is sequenced and hence results in overlapping read-pairs that include both 

the target fragment and adapter sequence. It is essential to remove one of the reads in this case in 

order to avoid over-stating read-depth for variant calling.

Amplification by polymerase chain reaction (PCR) is often used for target enrichment during the 

preparation of libraries for next-generation sequencing. PCR duplicates resulting from the 

original DNA templates being sequenced many times can have a detrimental effect on the quality 

of variant calls especially when the coverage is low (see Note 2). Computational methods for the 

detection and removal of PCR duplicates have become available that generally rely on the 

observation of identical alignment positions of reads to the reference genome. Read mapping 

being a computationally intensive process (see Note 3), the development of an alternate method 

for detection of PCR duplicates based on direct comparison of read sequences is essential, 

especially when the proportion of PCR duplicates is very high. To this end, we have developed a 

Perl script util_find_uniq_reads.pl (Table 1) that compares read sequences and removes 

duplicate reads. 

3.2 Read alignment to a reference genome

After read clean-up, alignment of short reads to a reference genome is the first step in a high-



throughput genotyping workflow. In the absence of a reference genome, paired-end sequencing 

data generated by RAD-seq or GBS approaches can be assembled de novo using software 

packages such as STACKS [27], UNEAK [30] or RApiD [31] to produce mini-contigs that can 

be used as a reference for read mapping and genotyping (see Note 4). In the last few years, a 

myriad of efficient short-read alignment programs, such as MAQ [32], mrsFast [33], STAMPY 

[34] Bowtie2 [35], BWA [22] and SOAP2 [36], have been developed. Most of these widely used 

aligners utilize hashing algorithms (MAQ, mrsFast, STAMPY) or Burrows–Wheeler transform 

(BWT) [37] based indexing (Bowtie2, BWA and SOAP2) for short read mapping. The hash-

based aligners use hash tables to store the information of either the reference genome or short 

reads. A major drawback of the hash-based aligners is that they require prohibitive amount of 

memory (see Note 3). The second generation BWT-based aligners are preferred as they consume

only a limited amount of memory [38, 39]. 

In our genotyping workflow (Figure 1), we have adopted Bowtie2 which is faster, more 

sensitive, and more accurate than BWA and SOAP2 across a wide range of parameter settings

[35]. Bowtie2 supports both local and global (end-to-end) modes of alignment of short reads 

[35]. A local alignment considers only a short segment of the read and clips unaligned characters 

from one or both ends of the read to maximise the alignment score. Conversely, global alignment 

involves alignment of all characters in the read. In our experience, local mode of alignment of 

the reads is faster and useful for mapping reads generated by GBS, although less accurate (due to 

increased multi-mapping) than global alignment. GBS does not involve size fractionation of the 

sequencing library and hence sometimes results in the generation of fragments that are either too 

short to be useful or result in paired-end sequencing reads that overlap completely. On the other 

hand, the RAD-seq protocol includes a size fractionation step and most reads generated by this 



non-overlapping approach can be aligned in an end-to-end manner. An example of the variation 

in the distribution of predicted enzyme sites for both RAD-seq (EcoRI) and GBS (PstI and 

MspI), together with a representation of relative genome coverage of each method, has been 

demonstrated for the Brassica oleracea genome [11]. RAD captured a greater portion of the 

genome with a high percentage of the potential sites being tagged and sequenced, while GBS 

coverage was impacted by the degree of cytosine methylation. 

Multi-mapped reads are those that align to multiple locations within the reference genome 

sequence [40]. Most eukaryotic organisms, especially plants with polyploid genomes, carry 

orthologous and paralogous gene families that contain multiple isoforms of the same gene with 

nearly identical or similar sequences. Shorter reads being less specific tend to have more multi-

mapping events. In polyploid plant species, the proportion of multi-mapped reads ranges from 

20-60%. Discarding such a high proportion of multi-mapping reads will result in a significant 

loss of valuable information. Bowtie2 searches and reports all valid alignments that score better 

than a given cut-off. We use Perl utility scripts bowtie2_extract_best_global_hit.pl or 

bowtie2_extract_best_local_hit.pl to go through the SAM files and identify the best hit from 

multi-mapped reads as having the top most hit with at least X=6 (end-to-end) or X=12 (local) 

penalty score better than the runner up. The larger the X score the more confident a read is 

uniquely mapped but more alignments get discarded as a consequence.

Bowtie2 outputs alignments in SAM format which contains alignment data in human readable 

tab-delimited text. SAM files generally tend to be very large. BAM, a compressed binary version 

of SAM format, is a preferred format for the downstream variant detection analyses due to its 

relatively smaller size. We use the ‘view’ command of SAMtools to convert mapped reads from 



SAM to BAM format. For downstream analysis the alignments in BAM files must be sorted and 

indexed according to the chromosomal positions. To achieve this, we use the sort and index 

utilities of SAMtools.

3.3 Variant discovery

The next step after mapping reads to a reference genome is to call sequence variants (SNPs and 

InDels) from the processed BAM file. Multiple software tools for variant-calling are available, 

including SAMtools:mpileup/BCFtools [23], GATK [24-26], SOAP [41], SNVer [42] and 

GNUMAP [43]. A recent study performed systematic evaluation of these commonly used 

variant-calling bioinformatics pipelines and found a very poor concordance between variants 

called by each of these methods [44]. Each of the SNP calling methods are designed based on 

different sets of assumptions about the reference genome and reads, and their suitability in 

different situations depends upon various factors, including the nature of genotypes, presence or 

absence of multi-allelic SNPs, and sensitivity and specificity of detecting SNPs. In our variant-

calling workflow, we have implemented two of the most commonly used SNP callers; 

SAMtools:mpileup/BCFtools [23] and GATK [24, 25]. Both of these pipelines also call InDels.

SAMtools:mpileup computes the likelihood of each possible genotype by generating a consensus 

sequence using the MAQ (Mapping and Assembly with Quality) model framework, which uses a 

general Bayesian framework for picking the base that maximizes the posterior probability with 

the highest Phred quality score, and outputs the information in the BCF format (binary variant 

call format). However, it does not call the variants. BCFtools does the actual calling and 

estimating allele frequency by applying the genotype likelihood information in BCF files. It 

generates output in the VCF (variant call format) format, which is the emerging standard for 



storing variant data. Identification of InDels from paired-end reads is relatively more challenging 

than that of SNPs as incorrect placement of insertions or deletions during read alignment to a 

reference genome may lead to false positive SNPs. SAMtools:mpileup deploys a concept called 

Base Alignment Quality (BAQ; [45]) to provide an efficient and effective way to rule out false 

positive SNPs caused by alignment artefacts. With the BAQ strategy which is invoked by default 

in mpileup, the probability of a base being misaligned can be accurately measured. Although the 

combination of SAMtools:mpileup and BCFtools offers a straightforward way of calling SNPs 

and InDels, this approach is limited to only diploid calling as SAMtools:mpileup is designed to 

compute and handle only biallelic variants [45]. We have successfully used SAMtools:mpileup 

for variant-calling and genetic linkage mapping of populations produced from bi-parental crosses 

(Bollina et al., In preparation; [10, 11]).

GATK is similar to SAMtools but utilizes additional processing steps, such as local re-alignment 

around InDel loci in order to clean up alignment artefacts, marking non-informative duplicate 

reads, and quality recalibration of both base quality and variant quality to improve overall

accuracy of variant-calling [24-26, 44]. GATK includes two variant calling tools, 

UnifiedGenotyper and HaplotypeCaller. The UnifiedGenotyper uses a Bayesian genotype 

likelihood model to estimate posterior probability of allele frequency at each locus. Additionally 

it utilizes information from multiple samples and supports SNP calling from non-diploid 

samples. The HaplotypeCaller, which combines a local de novo assembler with a more advanced 

hidden Markov model (HMM) likelihood function, outperforms the UnifiedGenotyper in 

discovering sequence variants. However, it currently supports only diploid calling and lacks 

multithreading support. 



Filtering raw SNP candidates is an essential step in the genotyping workflow as its helps in 

reducing false positive calls made from biases in the sequencing data and removing those calls 

that do not fulfil specific thresholds for SNP and genotype properties. Filtering of false positive 

calls based on read depth and quality threshold is embedded within some of the currently 

available variant calling pipelines such as SAMtools and GATK. We perform additional filtering 

based on missing genotyping calls and minor allele frequency (MAF). The level of missing data 

depends upon sequencing coverage which is influenced by the multiplexing level and the output 

from sequencing platform [18, 46]. Missing data can be reduced by sequencing at higher depth 

and reducing the multiplexing level. An alternative method for replacing missing data is to 

impute missing values with plausible substitutes (see Note 5). In recent years, algorithms [47-49]

have been developed for imputation of missing genotype data with great accuracy. MAF refers to 

the frequency at which the least common allele occurs in a given population [50]. We use the 

Perl utility script filter_vcf.pl (Table 1) to perform filtering based on missing genotype and MAF

generally ignoring SNPs with a MAF less than 5%. The final output from the majority of the 

variant calling pipelines is generally in the VCF format which can be viewed using genomic 

viewers such as Tablet [51] or IGV [52] (Figure 2). We have also developed Perl scripts to 

generate genotype scores in tab delimited file formats for ease of downstream processing and 

analysis. The last step of our genotyping workflow involves merging SNPs based on identical 

segregation patterns. The cartoon in Figure 3 depicts the logic as well as our approach for 

creating haplotypes blocks by merging closely linked SNP markers with identical segregation 

patterns to provide a recombination bin framework that can be easily incorporated into genetic 

mapping analysis.



3.4 Conclusion

The advent of very high throughput NGS platforms together with new technical methodologies 

to take advantage of these gains provided an opportunity for establishing high resolution genetic 

analysis in any species. The ability to profile large numbers of targeted loci for sequence 

variation in highly multiplexed sets of discrete individuals provided a platform for a range of 

applications. An initial limitation for the full deployment of these approaches have been the 

dearth of readily available bioinformatics tools to process the raw data to yield output that can be 

readily incorporated into classical genetic analyses. This chapter has outlined some of the 

recently available bioinformatics resources to enable researchers to establish GBS applications 

for genetic analysis in their laboratories, provided an example pipeline that could be utilized for 

this purpose, and also a description of key factors that need to be considered in experimental 

design.

4. Notes

1. Assessing sequencing data requirements

In many instances both RAD and GBS have been attempted with a number of restriction 

enzymes. However, the choice of a particular enzyme and the volume of sequencing data 

required depends on several factors such as, the genome size, sample multiplexing needs, GC 

content, frequency of the cut site (frequent to rare) and desired frequency of the sites throughout 

the genome. In silico analysis of a genome with a choice of an enzyme cut site would provide a 

glimpse prior to a selection. The RAD Counter tool provided on the RAD wiki website

(https://www.wiki.ed.ac.uk/display/RADSequencing/Home;jsessionid=14E3C4ECD753766FC8

E4EA41274A9BF1) provides the user with a simple Excel format to input relevant information 



with respect to the above parameters to establish the optimal experimental design to ensure 

appropriate read depth is reached.

2. Removal of duplicate reads: advantages and limitations

Duplicate reads arising from PCR amplification during library preparation can result in perfect 

copies of the DNA template being sequenced multiple times. The proportion of duplicate reads 

can vary enormously and duplicate reads can artificially inflate read coverage which may have 

detrimental effect on the quality of variant calls. Hence the dataset used for variant calling should 

include only one copy per duplicate set of reads. Duplicate reads can be detected and removed by 

comparison of either the read sequences or their alignment coordinates. However, the risk of 

removal of identical or almost identical reads arising from duplicated genomic regions, 

especially in organisms carrying polyploid genomes, poses a serious challenge. Additionally, it is 

impossible to differentiate duplicate reads arising due to amplification bias and identical GBS 

tags originating from the same restriction site(s) at a particular genomic location. This is not an 

issue in the case of paired-end RAD tags as the additional DNA fragmentation combined with 

size fractionation step in RAD-sequencing protocol leads to the production of paired-end tags 

with at least one variable end. Thus we advise against removal of duplicate GBS tags, whereas 

the decision on removal of duplicate RAD tags should depend upon the ploidy status or the level 

of segmental duplication in the organism under consideration.

3. Computational Resources

The analysis of GBS and RAD data requires non-trivial computational resources. In order to 

reduce analysis time, the use of multiple CPU cores is recommended. Many desktop computers 

will be limited in the number of samples they can process by the available RAM. Additionally, 

the output of the analysis steps requires significantly more hard disk space than that of the raw 



sequencing data. As an example of computational requirements, 96 GBS samples were processed 

using 16 CPU cores for Trimmomatic, Bowtie2, and GATK. The total time required to process 

the samples was approximately 13 hours and required at most 21GB of RAM. The samples were 

demultiplexed from 9.7GB of compressed fastq data and resulted in approximately 68 GB of 

uncompressed output using a pipeline optimized to reduce production of intermediary output 

files.

4. Single-end or paired-end mapping

Variant calling can be done using either single or paired-end data with resulting benefits in 

increased coverage with paired-end data. It is also difficult to accurately map single reads 

originating from regions with significantly higher sequence homology, such as repeat rich or 

duplicated genomic regions. Sequencing reads from both ends can partly overcome this 

difficulty. Filtering of paired-end sequencing data based on adapter contamination and quality as 

well as length thresholds results in the generation of a small proportion of single end reads. In 

such case both single-end and paired-end mapping followed by merging of separately generated

SAM files before the variant discovery step is possible.  

5. Data imputation

One issue with both RAD and GBS is the amount of missing data that can result from the 

sequencing, especially when this is carried out at a low level of coverage / depth. Hopefully such 

an outcome can be avoided in the first place by ensuring optimal levels of depth are reached by 

adopting an appropriate experimental design (see 5.1). However, when high levels of missing 

data result it is possible to adopt imputation approaches that are currently available for different 

experimental approaches with various population structures [49, 53]. As well, it is possible to 

limit the amount of missing data in some types of populations; for example bi-parental genetic 



mapping populations as described in the main text. In this case the merging of SNP loci based on 

identical segregation patterns can be carried out to create haplotypes blocks with minimal 

missing data and a resultant recombination bin framework for genetic mapping analysis.

Acknowledgements

Table 1. List of utility Perl scripts designed to perform various tasks associated with 

genetic variant discovery using RAD-Seq and GBS data sets

Perl script Utility

util_barcode_splitter.pl Demultiplexes paired-end RADseq or GBS reads based on perfect 

match to barcodes

util_find_uniq_reads.pl Compares read sequences and removes duplicate reads

bowtie2_extract_best_global_hit.pl Goes through the SAM files and identifies the best hit from multi-

mapped reads as having the top most hit with at least X=6 (or a user 

defined cut-off) penalty score better than the runner up.

bowtie2_extract_best_local_hit.pl Goes through the SAM files and identifies the best hit from multi-

mapped reads as having the top most hit with at least X=12 (or a user 

defined cut-off) penalty score better than the runner up.

filter_vcf.pl Perform filtering based on missing genotype and minor allele 

frequency



Figure Legends

Figure 1. Bioinformatics workflow for genetic variant discovery using next generation 

sequencing based genotyping approaches such as RADseq and GBS. 

The genetic variant calling pipeline comprises three major steps, including raw data processing, 

read mapping to a reference genome, and variant discovery. Each of these steps is further divided 

into multiple sub-steps. The bioinformatics tools (shown in purple), input and output file formats 

(green), and the purpose, methodology or general outcome of each sub-step (bullet points) in the 

workflow are presented.

Figure 2. Genomeviewer (IGV; Thorvaldsdóttir et al. 2013) images illustrating alignment 

to the reference genome of short paired-end reads generated by RAD-seq (A) and GBS (B) 

approaches. The top two/three tracks represent the reference contig and positions of restrictions 

site(s): EcoRI (RAD-seq) or PstI and MspI (GBS). The following tracks show reads from each

individual library aligned back to the reference using Bowtie2. Read bases that match the 

reference are displayed in gray and those that do not match (sequence variants) are shown in 

yellow.

Figure 3. Overview of the approach used for generating haplotypes by merging SNPs with 

identical segregation patterns.

As per the example shown in this cartoon, 5 RAD SNPs (at positions 100, 200, 300, 400 and 500

bp) were identified on scaffold1234. SNP#1 and SNP#2 have identical segregation pattern, 

except for the missing data points, so as SNP#3 to SNP#5. Instead of using all 5 SNPs for 

genetic mapping, we combine SNPs with identical scores. The locus name of each merged RAD 



SNP (haplotype) provides additional information: the first part of the name includes the scaffold 

name, the next number indicates chronological order of SNP pattern identified in the scaffold, 

the next two numbers indicate the base pair positions between which this haplotype pattern was 

found, and the final number indicates the count of independent SNPs that had this pattern.
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