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Abstract – This paper presents the framework of 
a proposed expert system that is used to predict the 
deterioration rate of buried metallic pipes, based on 
surrounding soil properties. The knowledge base of 
the expert system is developed using two sources of 
information available for evaluating the 
deterioration of pipes: expert knowledge and field 
data. The novelty of the proposed approach lies in 
the modeling process and the framework of the 
expert system, complying with the nature of the 
information available. 

The knowledge base is composed of a subjective 
and an objective model. The former is based upon 
fuzzy IF-THEN rules representing the expert 
knowledge obtained from published work and an 

expert survey. It determines the soil corrosivity 

potential ( CoP ). The objective model is a single-

input-single-output (SISO) model that relates the 
deterioration rate ( DR ) to . The objective 

model may be developed using either fuzzy 
modeling or a regression analysis of field data. The 
result of the latter based on a set of available field 
data (used in a previous study) is presented. 

CoP

Keywords – Expert systems, fuzzy modeling, 
pipe deterioration, soil corrosivity 

I. INTRODUCTION 

Deterioration modeling of water mains is an 
essential practice to guide decision making in water 
main rehabilitation programs. In 2000, Water 
Infrastructure Network estimated that costs of 
deterioration for drinking water systems were $20 
billion in the United States only [1]. Water utilities 
use various criteria to assess the structural 
deterioration of pipes, among which are corrosion 
pitting rate and breakage frequency. Different 

mathematical and statistical techniques have been 
developed to model pipe deterioration. Probabilistic 
models are widely used in infrastructure 
deterioration modeling. Among this class of 
models, significant efforts have been dedicated to 
Markov-based models and their derivatives. There 
is a great deal of literature describing past and 
ongoing work on decision making for repair / 
renew / replacement of water mains. Rajani and 
Kleiner [2] and Kleiner and Rajani [3] provided 
comprehensive reviews of the published work 
related to physical and statistical models, 
respectively. In recent years, however, increasing 
research effort in modeling of infrastructure 
deterioration has been dedicated to fuzzy based 
methods (e.g., Sadiq et al., [4] and Najjaran et al. 
[5]), primarily because available data are often 
qualitative and field data are either scarce or 
uncertain and vague. 

Identification of potentially corrosive 
environments is a precursor to deterioration 
modeling. If done prior to pipe installation, water 
utilities can save significant future costs and avoid 
failures by installing externally coated pipes or 
providing appropriate mitigation against corrosion. 
In addition, identification of a corrosive 
environment for existing pipes can save resources 
by focusing attention on the pipe sections that are at 
high risk [6,7]. Several techniques are currently 
used to assess conditions that are corrosive to 
buried pipes. The most common method is the 10-
point scoring (10-P) that was introduced by CIPRA 
(Cast Iron Pipe Research Association, predecessor 
of DIPRA, Ductile Iron Pipe Research Association) 
in 1964 for cast iron pipes. The method was 
subsequently extended to ductile iron pipes [8]. The 
10-P method uses five soil properties including 
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resistivity, pH, redox potential, sulfides, and 
moisture. The contribution of each soil property to 
corrosion is scored separately, and if the sum of the 
scores of all five contributing properties for a given 
soil sample exceeds 10, the soil is considered 
“corrosive” to the pipes, requiring corrosion 
protection measures usually in the form of 
polyethylene wraps. This method essentially 
classifies the soil as either “corrosive” or “non-
corrosive”. The 10-P method cannot provide 
information on the intensity of corrosivity. For 
instance, if the score is 10, the soil is classified as 
“corrosive”, however, if it is only slightly less than 
10, say 9.5, the soil is rated as “non-corrosive”, 
whereas in reality the latter may not be significantly 
different from the former. 

The fuzzy set theory is an extension of the 
traditional set theory in which x  is either a member 

of set  with A 1)( =xµ  or not a member of  

with 

A

0) =x(µ , where )x(µ  denotes the 

membership value of x . Fuzzy logic helps to 

address the inherent deficiencies of binary logic to 
account for uncertainties. Hence, fuzzy models can 
formulate the information on an intensity scale. For 
example, soil with a score of 9.5 in the 10-P 
method would be rated non-corrosive, but a fuzzy-
based method might assign the soil as being 0.80 
corrosive and 0.20 non-corrosive (depending on 
predefined qualitative scales of corrosivity). It is 
anticipated that corrosion protection measures can 
be selected more efficiently if the degree of soil 
corrosivity is considered. Further, the qualitative 
determination of deterioration rates can enhance 
risk assessment. 

This paper presents the framework of an expert 
system to estimate pipe deterioration rates (based 
on maximum pit depth and pipe age) using a fuzzy 
model that relates pipe external corrosion to 
surrounding soil properties. Section 2 explains the 
structure of the proposed expert system. The results 
of a case study on a set of available field data are 
presented in Section 3. Section 4 presents the 
conclusions. 

II. STRUCTURE OF THE EXPERT 

SYSTEM 

An expert system estimates the current state or 
predicts the future state of a system using an a 

priori model of the system. In this research, an 
expert system is developed to estimate the 
deterioration rate of metallic pipes using soil 
properties. Traditional expert systems were 
primarily meant to use information learnt from 
expert knowledge and mimic human decision 
making. Expert knowledge in deterioration 
modeling is formed upon theoretical knowledge 
and extended observations, which is general and 
often imprecise. Thus, it is required that the expert 
system extract additional information from the 
input-output data of a real system. Field data, 
obtained during the inspection, repair, or renewal of 
pipelines, are more specific but scarce and contain 
uncertainties, as it is impractical to collect field data 
on an entire water network. From this standpoint, 
fuzzy models seem like an appropriate choice as 
they can integrate the information provided by 
human experts and actual input-output data until a 
reliable knowledge base is developed. 

The proposed fuzzy logic expert system consists 
of two modules: a knowledge base and an inference 
mechanism. The former includes a fuzzy model 
formed upon fuzzy IF-THEN rules. The later uses 
fuzzy reasoning methods to process the knowledge 
base and deduce an output for instantaneous inputs. 
The modularized design of the expert system 
enables it to maintain a generic processing structure 
that is capable of dealing with various systems in 
different application domains (e.g., engineering, 
medical, financial, etc.) as long as the knowledge 
base is constructed in a compatible format. Another 
advantage of the modular design is that the expert 
system can be updated simply by expanding the 
knowledge base using new information as it 
becomes available over time. In other words, the 
knowledge base, unlike the inference mechanism, is 
open source and accessible to the users. The 
computation module and graphical user interface of 
the proposed expert system have been designed to 
comply with the aforementioned properties. 

A. Knowledge Base 

The knowledge base is essentially an a priori 
model that relates the pipe deterioration rate to the 
surrounding soil properties. The model consists of a 
subjective and an objective part.  

The subjective model provides a fuzzy 
relationship between a number of soil properties 
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(perceived or proved factors) contributing most to 
the corrosion of metallic pipes, and a proposed 
corrosiveness criterion (viz., corrosivity potential, 

). The subjectivity of the model is associated 

with the descriptive nature of CoP , and the fact 

that experts cannot always provide a quantitative 
relationship between the input and output variables 
in the model. In general, fuzzy rules can include 
uncertain antecedent and consequent propositions 
in which fuzzy quantities are associated with 
linguistic variables. The subjective model is 
generated using the direct approach of fuzzy 
modeling based on the expert knowledge obtained 
from published literature and an online expert 
survey [9]. 

CoP

The second part of the knowledge base is the 
objective model. Developing the objective model 
requires system identification that involves finding 
a model equivalent to the actual system with 
respect to input-output data acquired during 
nondestructive inspection of buried pipes or 
examination of exhumed pipes. The inputs of the 
objective model may be identical to the subjective 
model (i.e., soil properties), but the output cannot 
be the same because the model now requires a 
measurable quantity, such as breakage frequency or 
maximum pit depth. Thus, in order to fuse the two 
sources of information (expert knowledge and field 
data) and augment the subjective model using the 
field data, it is necessary to introduce a method to 
commensurate the two models.  

Two approaches are proposed for the fusion of the 
two models. Fig. 1a shows the first approach in 
which the objective model is also an IF-THEN 
fuzzy model that is obtained by clustering the 
output space and then projecting the output clusters 
onto the input space [10,11]. In this approach the 
expert system directly determines the deterioration 
rate using soil properties. The subjective model 
provides an initial set of rules for an optimization 
process that minimizes the sum of the Euclidian 
distance between the output data and the center of 
the fuzzy clusters. Another fuzzy modeling 
technique is the template-based fuzzy modeling 
[12,13] in which the field data are used to assign 
credibility for individual rules, primarily defined by 
the subjective model. It is noted that if the data are 
noisy and the model is over-trained by the data, the 

effect of expert knowledge will eventually vanish 
and a faulty model will be attained.  

Fuzzy Modeling 

Expert Knowledge Field Data 

System 

Identification
Direct Approach

Subjective Model Objective Model 

Fusion 

Knowledge Base 

Deterioration 
Rate

Soil 
Properties Inference 

Mechanism 

Fuzzy Expert System 
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Fig. 1 The structure of the expert system a)

fuzzy subjective and objective models b) a fuzzy
subjective model and a regression objective
model. 

Fig. 1b portrays the second approach in which the 
expert system uses only the subjective model to 
determine the CoP  of given soil samples. Then, the 
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field data are used to develop a regression model 
using the least squares method, which in turn 
relates the  to deterioration rate. The second 

approach has several advantages over the first 
approach. First, the modeling is much simpler and 
no complicated fuzzy clustering is required. 
Clustering is a nonlinear optimization process that 
may lead to local minima or partial optimal points, 
depending on the initial locations of the center of 
the output partitions. Second, the expert system 
provides not only a deterioration rate but also a 
descriptive  value that can help practitioners 

make more efficient decisions regarding the pipe 
protection means. Third, the expert knowledge, 
which is likely the most reliable source of 
information in this application, remains intact in the 
subjective model. 

CoP

CoP

)y

B. Inference Engine 

The inference engine of the expert system include 
two fuzzy reasoning algorithms: Mamdani’s 
reasoning [14] and logical reasoning [15], which 
use minimum and product operators as their t-norm, 
respectively. For the objective models developed 
using fuzzy modeling, one should choose the 
reasoning method that results in the closest fit to the 
field data. However, if the objective model is 
obtained by regression, the reasoning method may 
be chosen arbitrarily because the proximity of the 
field data and model is ensured by regression. 

The output of the inference mechanism is a fuzzy 
subset in the output universe of discourse. The 
defuzzification of the fuzzy output is carried out 
using the height method [16]. In this method, the 
elements of the fuzzy output with a membership 
value of less than α  are disregarded, and the 

defuzzified value is calculated using the center of 
area of the elements that have a membership grade 
of not less than α . The center of area (COA) and 

middle of maximum (MOM) defuzzification 

methods are special cases in which 0=α  and 

(maxµα = , respectively, where )(yµ  represents 

the output membership function in the output 
universe of discourse [12]. 

III. RESULTS 

Soil properties, pipe age, and maximum pit depth 
measurements available from a previous study on 

cast iron mains [17] are used to train the proposed 
expert system. The corrosion pitting growth is used 
as a criterion for deterioration rates ( DR ). The soil 
properties and pit depth measurements are a 
snapshot of current conditions. Deterioration rates 
are obtained by dividing the maximum pit depth by 
the pipe age under the assumption of a constant 
pitting growth rate over the life of the pipe. 
Therefore, deterioration rates represent an average 
rather than maximum or instantaneous values. This 
assumption provides a deterministic value for the 
deterioration rate and facilitates the regression 
analysis, but it also implies uncertainties to the 
objective model because issues such as 
manufacturing defects, changing water table, 
backfill chemistry (e.g., addition of salt during 
winter, etc.) and disturbance of backfill soil can 
change the pitting growth rate. Table 1 shows a 
partial list of DR  and CoP  values for a series of 

soil samples. 
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590 7.7 30 -29 1 0.025 0.77 

580 7.7 30 -30 1 0.042 0.77 

1575 5.8 22 309 -1 0.044 0.33 

5417 7.4 42 -42 -1 0.090 0.13 

… … … … … … … 

3100 6.3 42 306 0 0.033 0.19 

1560 5.2 42 203 0 0.067 0.33 

1300 7.6 22 -66 0 0.059 0.70 

1292 4.6 22 268 0 0.027 0.18 

6700 5.5 22 -88 0 0.055 0.30 

 

Fig. 2 shows the relationship between DR  and 
 based on results obtained from the expert 

system. The plot suggests that the deterioration rate 
is “reasonably” correlated with CoP , i.e., the 

higher the , higher the deterioration rate will 

be. However, the data scatter in the figure can arise 
because of two reasons. 

CoP

CoP

First, the fuzzy model is imprecise in a certain 
range of CoP . This could mean that either the 

number of fuzzy rules in the rule base is insufficient 
(i.e., the rule base does not satisfy the 
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“completeness” condition), or the input and output 
partitions are not appropriately tuned in some range 
of their universe of discourse. Tuning up the model 
using field data, which will be addressed in future 
research, can alleviate these issues. Further, it could 
also mean that one or more input have not been 
considered that may become dominant in certain 
ranges of . The identification of additional 

input variables is challenging because 
measurements of a variety of input candidates must 
be available before selecting the most pertinent 
ones. An expert survey can shed more light on 
other possible candidates for input variables. 

CoP

0.1 0.2

Second, some of the points are appeared to be 
outliers that must be excluded from the database 
before used in objective modeling. For example, the 
first two rows of Table 1 refer to almost identical 
soil samples, yet the corresponding deterioration 
rates are significantly different. The outliers are 
shown with circles in Fig. 2. Outliers exist because 
an accurate pipe deterioration rate is typically 
unavailable. It is noted that the deterioration rate is 
determined under the debatable assumption of an 
average (constant) corrosion rate from the 
installation to exhumation of the pipe. Typically, 
measurement techniques are imperfect that in turn 
result in an erroneous maximum pit depth. Finally, 
the deterioration rate is calculated based on the 
maximum pit depth of a few pipe sections that are 
randomly selected and may not be a true 
representative of pitting growth rate.  

The relationship between the deterioration rate 
and  may be approximated using a linear 

model that is given by: 

CoP

  (1) dCoPmDR +⋅=
where  and  are the slope and intercept of the 

line, respectively. If the expected values of the 

slope and intercept are 

m d

)(mE=m  and )(dEd = , 

and mε and dε  are the slope and intercept standard 

errors, the confidence interval for DR  can be 
estimated using normally distributed slope and 
intercept. The equation of the line shown in Fig. 2 
is obtained based on the available data using the 
least squares method, which is given by, 

  (2) 026.0041.0 += CoPDR

where the mean absolute error for this linear fit is 
approximately 0.08 and the coefficient of 

determination (R2) is ≈ 0.34. The result of curve 
fitting seems reasonable by considering the nature 
of the data and aforementioned uncertainties 
involved. However, more field data are required to 
improve the objective modeling process and 
determine a more rigorous relationship between the 

corrosivity potential and deterioration rate.  
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IV. CONCLUSIONS 

A fuzzy expert system is proposed to determine 
the deterioration rate of cast and ductile iron water 
mains based on the backfill soil properties. The 
expert system predicts corrosivity potential ( CoP ) 

for a given soil sample and uses a linear regression 
model to relate the CoP  value to deterioration rate. 

The expert system yields not only a defuzzified 
value (crisp) of  but also an output fuzzy set in 

the form of a membership function, 

CoP

)(CoPµ . 

Fig. 2 Deterioration rate ( DR ) versus
corrosivity potential ( ). CoP

Unlike the binary form of the corrosiveness 
measure (corrosive vs. non-corrosive) obtained 
from the 10-P method, corrosivity potential can be 
used to gauge the level of required corrosion 
protection. Specifically, the interval [0 1] of the 
corrosivity potential can correspond to the six 
levels of corrosion protection measures 
recommended for ferrous pipe materials [18]. A 
more rigorous approach to match the corrosivity 

potential with a specific corrosion protection 
measure would require further research including 
cost-benefit analysis.  

It is shown that CoP is “reasonably” correlated 

with the deterioration rate, according to the field 
data. As a result, the deterioration analysis is 
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facilitated significantly by considering only one 
parameter affecting the deterioration of the pipes. 
Further, corrosivity potential can be used to 
perform a cost-benefit analysis and determine the 
optimal level of corrosion protection required in 
municipal infrastructure based on the soil 
properties. 
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