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Sensor Placement and Diagnosability
Analysis at Design Stage

Yuhong Yan 1

Abstract. Adequate sensors are a necessary condition for fault di-
agnosability. Sensor placement for diagnosis task is to study where
to put the sensors so that they are the minimal set to diagnose cer-
tain faults. This paper presents a method of sensor placement based
on diagnosability analysis using the simulation model in the CAD
environment. The fault signature matrix is determined by the projec-
tions of different operation modes on observable variables. The min-
imal sensor set for detecting faults and for discriminating the faults
can be computed from the fault signature matrix. We also consider
that values of exogenous variables are a condition for diagnosabil-
ity. By introducing the concept of virtual sensors, faults can be de-
tectable/discriminable based on their signatures on virtual sensors.
The advantages of this approach are that not only the minimal sen-
sor set but also the conditions of causal scopes are obtained and the
procedure is fully automated.

1 INTRODUCTION

There are demands on the automobile industry to consider vehicle
maintenance and diagnosis at the early stage of design. The IDD (In-
tegrated Diagnosis and Design) project, a V framework EU project,
aims at the definition of a new design process for automotive sys-
tems. The goal is to integrate the process of diagnostic development
(FMEA, diagnosability analysis, etc.) in the early phase of the de-
sign process. Sensor placement for diagnosis task is to study where
to put the sensors so that they are the minimal set to diagnose cer-
tain faults. The diagnosis principles reveal that diagnosability of the
faults relies on adequate sensors to provide redundancy relations so
that the discrepancies of the predictions and the observations can be
detected. This paper presents a method of sensor placement based
on diagnosability analysis using the simulation model in the CAD
environment.

A. Short View of Sensor Placement Methods
The criteria for making sensor location decisions vary depending

on the goals of the task. In control theory, the sensor network is to
provide necessary information for the control of the process or the
system, so the study starts from the observability/controllability of
the variables. Madorn and Veverka [6] addressed sensor placement
for a linear process. Their method makes use of the Gauss-Jordan
elimination to identify a minimum set of variables that need to be
measured in order to observe all important variables while simultane-
ously minimizing the overall cost of sensors. Others consider sensor
failures and their effect on the observability of variables. [1] intro-
duced the concept of reliability of the estimation of a variable, which
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gives the probability of estimating a variable for any given sensor
network and specified sensor failure probabilities. [2] discussed the
redundancy of sensor network, i.e. more sensors than the minimum to
ensure the observabilities of variables when some sensors fail. Simi-
lar work can be found in [5].

This paper is in the model-based diagnosis domain. The goal of
sensor placement is to achieve the diagnosability, i.e. the sensor net-
work can detect and discriminate the faults of the components in a
system. Sensor failure is not considered in this paper. The observ-
ables from the point of view of diagnosis are the variables that can
be measured by sensors. This differs from the concept of control the-
ory, where the observable variables are the measurable variables plus
the unmeasured variables deducible from the measurable variables.
Though the terms used in the two domains are similar, the work in
this paper has little relation to the work described in the previous
paragraph.

Existing work of sensor placement in diagnosis is based on the An-
alytical Redundancy Relation (ARR) in [3]. In [9], AND-OR Graph
is drawn to show the dependency relation of a potential sensor and
components (faults). Then the HFS (Hypothetical Fault Signature)
matrix is built to analyse the redundant relation. HFS makes a corre-
spondence among the additional sensor, the resulting redundant rela-
tion and the involved component. The next step is to build an EHFS
(Extended Hypothetical Fault Signature) matrix. This latter matrix
takes into account the addition of several sensors at one time. If
one independent redundant relation is added by one additional sensor
and involves one component, the fault on this component is discrim-
inable. Though [9] presents appropriate conclusions, it is not easy to
use in practice because its complexity is beyond what an expert can
handle for even a small system.

B. Our Approach
Our analysis is based on diagnosability analysis [8]. Intuitively, if

the faulty behavior and the normal behavior have disjointed projec-
tions on some observables, the fault can bedetected; similarly,if two
faults have disjointed projections on some observables, the two faults
can bediscriminated.

Inspired by the signature of ARR, the projections of different
modes on the observables can be encoded into{0,1}, based on
wether the fault modes have the same or different values to the right
mode. This gives a signature for each mode. Therefore, if different
modes have different signatures, those modes can be discriminated.

The values of exogenous variables and and/or inputs play a role
in diagnosability, i.e. a fault can only be detected under certain do-
mains. [8] implies that the domains of the variables can be partitioned
into serval areas that have different diagnosability. “Causal scope” is
used to represent the partitioned domains. A physical sensor work-
ing under different causal scopes can be mapped to severalvirtual



sensors. Then the fault signatures are built on the virtual sensors.
The minimal sensor set for detecting faults and for discriminating
the faults can be computed from the fault signature matrix. It is an
initial work that the domains of variables are taken into consideration
for sensor placement.

When the sensor placement analysis is conducted in the CAD en-
vironment, the nature of the simulation function of the CAD envi-
ronment actually does the work of constraint propagation. Thus we
avoid the complex manual method to build the dependency relation
between variables and components as in [9]. Therefore, the method
developed in this paper can be conducted fully automatically inside
CAD environment.

Section 2 discusses the diagnosability analysis; section 3 presents
the approach of sensor placement; section 4 is a small demonstration;
and section 5 contains the conclusions.

2 DIAGNOSABILITY ANALYSIS

From the diagnosis principle, a fault modifies the normal behavior of
a component, thus generates a discrepancy on the outputs of the com-
ponent. The discrepancy propagates by the components links until
the discrepancy is detected by sensors on the observable points. Di-
agnosability includes two notions[8]:Fault Detectability is whether
and under which circumstances the possible faults considered can
be distinguished from the right modes;Fault Discriminability is
whether and under which circumstances the faults (or the classes
of faults) can be distinguished. Discriminability is a stronger defini-
tion. The diagnosability is computed from the projections of different
modes on the observables [8]:

SITo−cause = PROJo−cause(OPCi)\ PROJo−cause(
PROJobs(MODELmode1∩OPCi)∩PROJobs(MODELmode2

∩OPCi)) (1)
wherePROJ is projection operation,OPC represents operating

conditions, andVobs is observables set.Vobs are divided into two
sets:Vo−cause which is the set of exogenous or “causal” variables
in Vobs, andVobs\ cause which is the set of rest variables inVobs.
Mode1 and mode2 are the two modes.SITo−cause is the range of
Vo−cause that the two modes are discriminable. It is calculated in
this way: calculate the projections on theVobs for the two modes
(by “PROJobs”); calculate the conjunction of the two projections
(by “∩” between the two“PROJobs”); calculate the subtraction of
the projection onVo−cause of the original modes and the projec-
tion of the conjunction onVo−cause (by “\ ”). OPCi is the variable
to describe different states of the system and its control. Examples
are engine idle, clutch engaged, cold engine. For diagnosability, it is
meaningful to compare the two modes only when the operating con-
ditions are the same. In modeling, it is difficult to distinguishOPC
andVo−cause as long asOPC variables are observable. It is solely
a matter of convenience.

The principle in (1) is that, if the projections onVobs are disjoint,
the discrepancy of the two modes can be observed, which is called
deterministically discriminable (DD). [8] also defines two other cat-
egories of discriminability:possibly discriminable (PD), andnon-
discriminable (ND). We are only concerned withDD in this paper.

The goal of our project, as introduced in Section 1, is to integrate
diagnostic tasks at system design time. The system model is available
in the CAD environment. Matlab/Simulink is the target platform in
our project because of its popularity in automobile industry. Design
engineers normally have excellent knowledge of fault modes and an-
alyze the fault effects by simulation. The approach developed in this
paper assumes that the knowledge of fault modes is available.

 

Figure 1. values propagate through component links.

Figure 1(a) is a system that contains two components, Comp1 and
Comp2.v1,v2, andv3 are their input and output variables, among
themv1 andv3 are observables (surrounded by the dotted square).
Comp1 and Comp2 have function asq1 : v1 7→ v2 andq2 : v2 7→ v3.
Qualitatively, when Comp1 and Comp2 are both in right modes, they
map qualitative tuples as shown in Figure 1(b):q1 maps[va, vb] to
[vc, vd], and q2 maps[vc, vd] to [ve, vf ]. When Comp1 has fault,
its model changes toq′1. q′1 maps[va, vb] to [v′c, v

′
d] , andq2 maps

[v′c, v
′
d] to [v′e, v

′
f ] , which is shown in figure 1(c). The graph, as

shown in Figure 1(b) or (c), is called a Tuple Mapping Graph and
displays the qualitative relations. In practice, we don’t normally draw
such a picture. Through the method in [10], the qualitative model is
abstracted from the numerical model automatically in the simulation
environment. Therefore, we can use the qualitative relations in the
following context directly.

If we want to compare our method with other method where the
structural knowledge is used to set up the relation between faults
and components, we can find that simulation indeed does the work
of constraint propagation, in which the values of variable are propa-
gated through the links of components. Therefore, we can obtain the
relation of sensor and components (faults) without structural knowl-
edge. One can argue that the simulation model does have the struc-
tural knowledge about the connections of the components. But we
don’t make extra effort to find how the discrepancy is propagated
through the connections. The simulation does it for us. The method
developed here takes the advantage of the CAD environment and
can be integrated into the CAD environment to provide an automatic
analysis of sensor placement.

We observe that the modes actually have the same values for vari-
ables inVo−cause, thus the diagnosability analysis reduced into com-
parison of projection onVobs\ cause. In Figure 1, assume is the only
element inVo−cause and is the only element inVobs\ cause, since
takes the same value of , the necessary and sufficient condition of
DD is that [ve, vf ] ∩ [v′e, v

′
f ] = ∅. It is obvious that the values of

Vo−cause is a condition of diagnosability. We call the intervals of
Vo−cause ”causal scope”.

Definition 1 (Projection from causal scope) a qualitative relation
q : v 7→ u projection on variableu under causal scopeva = [vx, vy]
is U = {∪ui | q : va 7→ ui}

Definition 1 says thatq : v 7→ u mapsva to severalui, the union
of ui is the projection ofq under the scope ofva = [vx, vy]. The
importance of definition 1 is in including the causal scopeva as a
condition of projection.

Proposition 1 (Discriminability within causal scope) two modes
mapv to u respectively:q1 : v 7→ u and q2 : v 7→ u. If the pro-



jections ofq1 and q2 on u under a causal scopeva = [vx, vy] are
disjoint asU1 ∩ U2 = ∅, modesq1 andq2 are discriminable byu
under scopeva.

The proof is quite straightforward and eliminated here. Proposi-
tion 1 says that if the qualitative models for two behavior modes take
the same value forVo−cause, the necessary and sufficient condition
for DD is that the projections onVobs\ cause are disjointed.

3 SENSOR PLACEMENT ANALYSIS

3.1 Minimal Sensor Set

Our approach is inspired by ARR which uses a fault signature matrix
to discriminate faults [4]. The difference is that our fault detectability
matrix is built on projections. More specifically, since the variables in
Vo−cause always take the same values for different modes, the fault
signature matrix is built onVobs\ cause. In order to present the values
of Vo−cause as the condition of diagnosability, we define:

Definition 2 (V-sensor) a virtual sensor is a physical sensor associ-
ated with a causal scope.

V-sensor is written as VS(v, scope), wherev is the physical vari-
able that the sensor measures; the scope is a qualitative value of
Vo−cause (can be multi-dimension).

Using definition 2, a physical sensor may be mapped to several
V-sensors if the causal scopes are different. For example, assume a
sensor S1 measures variablev1. Then its V-sensors can be VS1(v1,
scope1) and VS2(v1, scope2), where scope1 and scope2 are two dif-
ferent causal scopes. A fault can be detectable under a certain causal
scope but not the others. Using V-sensor gives us a more precise view
on sensor placement.

Definition 3 (Fault Detectability Signature): Given a vector of V-
sensorsVS={VS1, VS2,...,VSn}, the detectability signature of fault
fj is a binary vectorFSj = [s1j ,s2j ,...snj ] in which si is given by :

VS× FS 7→{0,1}

where(VSi, FSj)7→ sij=1 if fj causes discrepancy at VSi; sij=0 if fj
causes no discrepancy at VSi;

Computing Fault Detectability Signature: discrepancy is com-
puted by the intersection of the values of VSi at mode fj and at right
moder, i.e.:
if value(VSi | fj)∩ value(VSi | r) =∅, sij = 1
if value(VSi | fj)∩ value(VSi | r) 6= ∅, sij = 0

It is obvious that for the right mode, all the elements in the vector
are 0. Table 1 is an example offault detectability signature matrix.

Table 1. fault detectability signature matrix

F1 F2 F3 F4 F5
VS1(v1,scope1) 0 0 0 0 0
VS2(v2,scope2) 1 1 1 0 1
VS3(v3,scope3) 1 1 1 0 1
VS4(v4,scope4) 1 0 1 1 1
VS5(v5,scope5) 0 1 1 1 0

Computing minimal sensor set to detect fault fj : It is easy to
know that one sij=1 is sufficient to detect the fault. The minimal
sensor set (MSS) to detect fault fj is

MSSij = {VSi} with sij=1

All MSSij defines a set MSSSj={MSSij}.

Example 1: (Get MSSS (MSS Sets) for detecting a fault)
From table 1, the MSSS for detecting F1 is
MSSS1={{VS2}, {VS3}, {VS4}}
the MSSSs for F2, F3, F4 and F5 respectively are
MSSS2={{VS2}, {VS3}, {VS5}}
MSSS3={{VS2}, {VS3}, {VS4}, {VS5}}
MSSS4={{VS4}, {VS5}}
MSSS5={{VS2}, {VS3}, {VS4}}

Detectability is about discriminating a fault from normal be-
haviour. A detectable fault may or may not be discriminated from
other faults. To discriminate multiple faults, we have proposition 2:

Proposition 2 If the two faults have different fault detectability sig-
natures, they are discriminable.

Proof: If the two modes have different signatures, there exists at least
one V-sensor taking value 0 in one mode and value 1 in the other. The
projections onVobs of the two modes, for the causal scope defined
by the V-sensor, are thus disjoint (by definition 3). These modes are
thus discriminable.

Example 2: (faults with different signatures are discriminable)
Using table 1, for F1 the signature is FS1 ={0, 1, 1, 1, 0} and F2’s
signature is FS2 ={0, 1, 1, 0, 1}. Since FS16= FS2, the two faults
are discriminable. For F1 and F5, since their signatures are equal, the
two faults are not discriminable.

Remark of Proposition 2: Proposition 2 gives sufficient conditions
of discriminability because the fault modes are compared with only
the normal mode in the fault detectability signature. If we compare
fault modes not only with the normal mode, but also with each other,
we need more values than{0, 1} to describe their relations. If so, we
can get the necessary and sufficient condition for discriminability. To
do this, the projections of different modes (including the right modes)
have to be compared by pairs and assigned different values if they are
disjoint. In this case, the following proposition 3 does not hold. The
following proposition 4 can be modified to hold. But in the following
context, we still use{0, 1} basedfault detectability signature.

If we haven V-sensors, we can get2n possibilities of thefault
detectability signature, including the right mode with a zero vector
as the signature. Thus the maximum number of faults to be discrim-
inable byn V-sensors has a limitation:

Proposition 3 : given n V-sensors, the maximum number of faults
to be discriminable is2n− 1.

If we havem faults, we can determine from proposition 3 how many
V-sensors we need to discriminate them:

Corollary 1 The minimum number of V-sensors to discriminatem
faults is equal todlog2(m + 1)e

Proof: If n is the minimum number of V-sensors to discriminate
m faults, thenn satisfies:

2n−1 − 1 < m ≤ 2n − 1

We can getn− 1 < log2(m + 1) ≤ n
Thus,n = dlog2(m + 1)e

Proposition 4 gives the selections of minimal sensor sets:



Proposition 4 : For m faults, selectdlog2(m + 1)e rows from the
fault detectability signature matrix to form a new matrix. If them
column vectors in the new matrix are different and non-zero, the cor-
respondent V-sensors on the row are a MSS to discriminate the group
of faults.

Example 3: (Get MSSS for discriminating two faults) The fault
matrix of F1 and F2 are{{0,1,1,1,0}, {0,1,1,0,1}}. To discriminate
the faults, we need at least two V-sensors. We select two rows in the
matrix, that the new matrix has different non-zero column vectors.
We have several choices here:{2,4}, {2,5}, {3,4}, {3,5}, {4,5}.
Thus we get the MSSS for F1 and F2 are MSSS={{VS2, VS4},
{VS2, VS5}, {VS3, VS4}, {VS3, VS5}, {VS4, VS5}}.

Example 4: (Get MSSS for discriminating multiple faults) con-
sidering F1 through F4, we need three V-Sensors to discriminate
4 faults. We then select three rows in the matrix, that the col-
umn vectors are non-zero and different. We get only two solutions
MSSS={{VS2, VS4, VS5}, {VS3, VS4, VS5}}.

Notice that the MSSS used in this paper are on V-sensors. The
correspondent physical sensors are the real physical MSSS. If we get
several physical MSSS, we can use other criteria to select the best
one. [7] discussed other criteria, e.g. cost.

3.2 Sensor set for Recovery Actions

Due to the scarcity of sensors, the diagnosis requirement is some-
times relaxed from discriminating each individual fault to detecting
a group of faults. The criterion to group the faults is their common
recovery action. Since the faults have the same recovery action, it is
not necessary to discriminate them other than just to detect them.

We assign a signature for the group of faults in this way: if all the
faults have the same signature at a sensor, the group takes the same
signature. If the faults have different signatures, a question mark is
used to show the ambiguity. Then the signature of a group is treated
as the one of a fault.

Table 2. fault detectability matrix for fault group

G F4
VS1(v1,scope1) 0 0
VS2(v2,scope2) 1 0
VS3(v3,scope3) 1 0
VS4(v4,scope4) ? 1
VS5(v5,scope5) ? 1

Example 5:(Sensor Set for Recovery Action) Uses the data in ta-
ble 1. If F1, F2, F3 are in the same recovery group, we determine
the signature of this group. We reduce the columns for F1, F2, and
F3 into one column G. The value for each sensor depends on the
individual values. For VS1, the three give 0, so (VS1, G) is 0. For
VS4 and VS5, some fault gives 1, some gives 0, we put a question
mark. So the signature for G is{0, 1, 1, ?, ?}, see table 2. So we
have four solutions{{VS2, VS4}, {VS2, VS5},{VS3, VS4},{VS3,
VS5}}. F5 can’t be discriminated with F1, so we just consider how
to discriminate G from F4.

4 DEMONSTRATION

A simple air conditioning system has three components: blower;
distribution; and cabin (figure 2).Figure 2 is the model in Mat-
lab/Simulink.

Figure 2. A Simplified AC System with 3 Components.

P is pressure, f is airflow rate, E is the electrical power driving the
blower. When the blower works, air will pass through the system. We
only consider the behavior at a stable point. The right behavior mode
is shown in Table 3.

Table 3. qualitative model for AC system

Input Output
Blower

E P0 f0 P1 f1
[1 125] [0 0] [0.004 0.042] [200 2345] [0.004 0.042]
[125 250] [0 0] [0.042 0.06] [2345 3317] [0.042 0.06]
[250 375] [0 0] [0.06 0.074] [3317 4060] [0.06 0.074]
[375 500] [0 0] [0.74 0.085] [4060 4700] [0.074 0.085]

Distribution
P1 f1 P2 f2
[200 2345] [0.004 0.042] [19 213] [0.004 0.042]
[2345 3317] [0.042 0.06] [213 301] [0.042 0.06]
[3317 4060] [0.06 0.074] [301 370] [0.06 0.074]
[4060 4700] [0.074 0.085] [370 427] [0.074 0.085]

Cabin
P2 f2 P0 f3
[19 213] [0.004 0.042] [0 0] [0.004 0.042]
[213 301] [0.042 0.06] [0 0] [0.042 0.06]
[301 370] [0.06 0.074] [0 0] [0.06 0.074]

We consider two fault modes. One is the lower efficiency of the
blower, which causes a change on output flow rate and pressure.
Another fault is the leak at distribution, which causes a lower out-
put flow rate and pressure at the outputs of distribution. For this
system, the pressures are measurable, but not the flows. By sim-
ulating the fault modes, we get the fault signature as table 4. We
have two solutions:{{VS6(P2, [125 250][0 0]), VS7(P2, [250 375][0
0])},{VS6(P2, [125 250][0 0]), VS8(P2, [375 500] [0 0])}}. Physi-
cally they are correspondent to the sensors on P2. TheVo−cause is
E,P0. The discriminable causal scopes are E={[125 250] [250 375]
[375 500]}, P={[0 0]}. We can distinguish faults within these scopes
by observing the fault signature.

Some faults are so-called dynamic faults which are detectable only
at the dynamic process. It is possible to use our approach for dynamic
faults. As in [10], pseudo variables, which are the derivatives of
“flow” or “effort” variables (as in bond graph modelling approach),
are added to model the dynamic. Treating the pseudo variables as
the normal variables, the approach developed here can be used for
the dynamic faults. Actually, this demo system is a dynamic system.
Due to the length of the paper, the demonstration for the dynamic
faults is not covered.

5 CONCLUSION

This paper considers sensor placement based on discriminability
analysis at the design stage. The approach we have presented gives
us not only the minimal sensor set but also the causal scopes for fault



Table 4. fault signature matrix

F1(Blower) F2(Distribution)
VS1(P1,[1 125] [0 0]) 0 0
VS2(P1,[125 250] [0 0]) 0 0
VS3(P1,[250 375] [0 0]) 1 0
VS4(P1,[375 500][0 0]) 1 0
VS5(P2,[1 125] [0 0]) 0 0
VS6(P2, [125 250] [0 0]) 0 1
VS7(P2, [250 375] [0 0]) 1 1
VS8(P2, [375 500] [0 0]) 1 1
VS9(P3, [1 125] [0 0]) 0 0
VS10(P3, [125 250] [0 0]) 0 0
VS11(P3, [250 375] [0 0]) 0 0
VS12(P3, [375 500] [0 0]) 0 0

detectability and discriminability. Using the causal scope concept,
we can make more precise conclusions on sensor placement. The
sensor placement analysis takes place in the simulation environment
and is an automatic approach with no structural knowledge needed.
This approach is practical for analysis of real world applications.
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