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Abstract

A tree similarity algorithm for RNA (ribonucleic

acid) secondary structure comparison is presented. 

The elements (nucleotides and nucleotide-pairs) of an

RNA secondary structure are represented as 

normalized node-weighted trees. We show that our 

weighted tree representations of RNA secondary 

structures are informative and useful. Based on this

unique representation for RNA secondary structure, 

we propose a weighted-tree similarity algorithm for 

computing the similarity between RNA secondary 

structures. The algorithm is justified by computing

similarities among several well-known RNA secondary 

structures. For a given RNA secondary structure, the 

proposed algorithm provides a ranked list of RNA 

structures in a database according to their similarity

values with the query RNA. Hence, our algorithm is

helpful in predicting the functions and the class of a 

newly discovered RNA. 

1. Introduction 

The well known central dogma of molecular 

biology is “Information passes from DNA 

(deoxyribonucleic acid) to RNA to Protein” [9]. It is

believed that DNA carries the genetic material, but 

there are exceptions of special viruses such as HIV 

where RNA contains the genetic material. Therefore, 

RNA is an important part of a cell that regulates the 

functions of such deadly viruses. 

The comparison of RNA secondary structures is

one of the basic computational problems appeared in

literature [1, 4, 5, 7, 8, 10]. The objective is to find the 

relative common sections of known RNA structures, 

and consequently, find the overall similarities among 

the whole RNA structures. For a newly discovered 

RNA, it can give a clue to its functions and class to

which it might belong in a database. This can also be 

considered as a structural motif discovery problem in

RNA [1]. 

Basically, the primary structure of an RNA can be 

identified as a sequence of four nucleotides (bases): A

(adenine), C (cytosine), G (Guanine) and U (uracil). 

These bases can form base-pairs (nucleotide-pairs), 

conventionally A pairs with U and C pairs with G. In 

addition, G pairing with U is also frequently observed. 

It can be represented as an edge between two 

complementary bases involved in the bonds. It is

assumed that any base exists at most in one such pair

and the edges of the bonded pairs are non-crossing. 

This implies a node-labeled tree-like structure [10].  

A number of node-labeled tree models have been 

proposed in [7] and discussed in [1] for representing 

RNA secondary structures. The work on RNA 

comparisons using node-labeled trees [4, 5, 7, 8] does

not take into account the base-paired nucleotides and 

unpaired nucleotides, and lacks in defining semantics 

of the process of transforming one RNA into another. 

To overcome these difficulties the work proposed in 

[10] uses paired and un-paired nucleotides and applies 

basic tree edit distance operations such as insertion, 

deletion and relabeling on them. However, Allali et al. 

[1] found limitations of this approach and introduced 

two additional operations, the so-called node-fusion 

and edge-fusion and then proposed a dynamic 

programming algorithm for comparing two RNA 

structures. Another method for comparing two RNA 

trees [2, 3] is based on aligning the trees and using the 

score of alignment as a measure of the distance 

between the trees. 

However, trees only having node labels do not

contain the information of RNA secondary structures 

such as: (a) how to find the importance of a 

nucleotide/base-pair in an RNA tree, and (b) how to

guess and get information if some subtree(s) of an 

RNA tree are missing. Therefore, we propose a new 



representation for RNA trees, where not only node 

labels but also node weights are incorporated to

embody the semantics and importance of nodes in an

RNA tree. 

The contributions of the paper are two folds. We

first give formal definitions of node-labeled, node-

weighted and normalized node-weighted trees 

representing RNA secondary structures. We show that

the normalized node-weighted tree is more informative, 

useful and contains most of the attributes of an RNA 

secondary structure. Second, we propose a tree 

similarity algorithm for RNA tree comparison and

show that it is effective and useful for the comparison 

of RNA secondary structures represented as node-

weighted trees. To our knowledge, in the field of 

computational biology, node-weighted tree 

representations and their similarity measures for RNA 

secondary structures have not been studied. 

2. RNA secondary structures and 

representations

2.1. Tree representation 

Fig. 1 shows a simple RNA secondary structure [1]

and node-labeled tree. However, this kind of tree is

inadequate in representing the semantic information of

an RNA secondary structure. Here, we discuss the 

disadvantages of the node-labeled tree by examples 

and propose possible approaches to overcome them. 

Case 1. The importance of a nucleotide or a base-pair

in the node-labeled tree is not apparent.

Let us consider the base-pair C-G under the root

node in the RNA tree (Fig. 1). There is no information 

showing how significant this base-pair is for the whole 

tree or for the subtree underneath. Similarly, its

siblings (leaf nodes) do not reveal their importance 

compared to the C-G or the whole tree as well. We

propose to add node weight to each node to indicate its 

relative importance to its siblings and the whole tree.  

Case 2. It is hard to find that if some subtrees 

(substructures) of the tree are absent or missing. 

For Fig. 1, let us consider the subtree that is rooted 

at the base-pair U-A at level 7. If the subtree is missing, 

it is difficult to guess that there is something missing

from the whole tree. However, if we assign weights to

the base-pair U-A, then the node-weight on U-A will

be larger than siblings in its neighborhood (other leaf 

nodes) because it has a subtree underneath. Thus, 

when a subtree is missing from U-A, we can easily 

guess that it has a subtree underneath from its node-

weight. We can also get clue even for a small part of a 

subtree such as a leaf node from the weight on the 

node if it is missing.  

It is very much likely that these situations (case 1 

and case 2) can also arise while comparing RNA 

secondary structures represented as trees. We propose

a new representation of node-labeled RNA trees by

assigning weight to every node (Fig. 2). The following 

subsection defines our new trees with examples. 

Figure 1. An RNA secondary structure [1] and its 
corresponding node-labeled tree 

Figure 2. A normalized node-weighted tree 
representation of an RNA secondary structure 

2.2. Definitions 

Definition 1. Node-labeled tree. A tree T = (V, E, LV)

is a 3-tuple where V, E and LV are sets of nodes, arcs 

and node labels, respectively, which satisfies the 

following conditions: 

1. One element in V is designated as the 'root'.  

2. Each element in E connects a pair of elements in V.  

3. There is a unique directed path, consisting of a

sequence of elements in E, from the root to each of the 

other elements in V. 

4. There is an (n 1, n 1) mapping from the elements

in V to the elements in LV (i.e. different nodes can 

carry the same labels).

Definition 2. Node-weighted tree. A node-weighted 

tree is a 4-tuple T = (V, E, LV, VW) of a set of nodes V, 

a set of arcs E, a set of node labels LV, and a set of

node weights such that (V, E, LV) is a node-labeled 

tree and there is an (n 1, n 1) mapping from the 



elements in V to the elements in VW (i.e. different nodes 

can carry the same weights).

Definition 3. Normalized Node-weighted tree. A

normalized node-weighted tree is a node-weighted tree 

T = (V, E, LV, VW) having a fan-out-weight-normalized 

(n 1, n 1) mapping from the elements in V to the 

elements in VW (i.e. the weights of every fan-out add up 

to 1.0). 

Such normalized trees are assumed in the rest of 

this paper. Node weights are assigned according to the 

importance of a nucleotide/base-pair in the tree and

described in the next subsection.  

2.3. Weight assignment 

The weight of a leaf node is assigned according to 

A
p

WL 1/(N (N NBi
)) (1)Li

i 1

A

where,

WL: weight of the leaf node

N: no. of siblings at the same level in the same subtree 

p: no. of non-leaf nodes at the same level in the same

subtree 

N
Li

: no. of leaf nodes that are the children of a non-leaf 

node

NBi
: no. of non-leaf nodes in the subtree of a non-leaf 

node

Note that the sibling leaf nodes must have identical

weights. The node weight of a non-leaf node is defined 

as follows. 

AWB AWL (N NB 1) (2)L

where, AWB represents the weight of a non-leaf node. 

Note that the weights of siblings at any level must 

add up to 1.0, as given below:
k

(A AWBi
) 1.0  (3)WLi

i 1

where, k represents the number of siblings at the same

level in a subtree. 

If a node does not have siblings, then its weight is

1.0. The base-pairs tend to have larger weights than the 

nucleotides because they probably have bigger 

substructures below them. And thus they have a larger 

effect on the whole RNA secondary structure. Let us 

consider the level 2 of the tree in Fig. 2 as an example. 

The number of nodes at this level is 3. The number of 

leaves that are children of the only non-leaf node A-U

at this level is 1, i.e. the leaf node A at level 3. And the 

number of non-leaf nodes in the subtree of A-U is 1, i.e.

the non-leaf node G-C at level 3. Thus, using (1) the 

node weight of the leaf nodes at level 2 is AWL = 

1/(3+1+1) = 0.2, and using (2) the node weight of

base-pair A-U is AWB = 0.2 (1+1+1) = 0.6, therefore, 

according to (3), (0.2 + 0.6 + 0.2) = 1.0. 

Figure 3. The Bulge (B), Interior (I), Hairpin (H) and 
Bifurcation (M) loops and corresponding node-weighted 
trees

Figure 4. The node-weighted tree of the RNA [1] given
in Figure 1 

2.4. Tree representations for RNA loops 

The RNA secondary structure consists of four 

important loops, the Bulge (B), Interior (I), Hairpin (H)

and Bifurcation (M). All the RNA secondary structures 

can be represented as a tree (Fig. 3) from these loops, 

the base-pairs and unpaired nucleotides [4]. Fig. 4 

represents the node-weighted tree of the RNA in Fig. 1, 

which contains all the four loops. 



3. Comparison of RNA trees 

After defining RNA secondary structures as node-

weighted trees, we compare our RNA trees (i.e. node-

weighted RNA trees) and calculate the similarities 

between them according to the algorithm given in Fig. 

5.

3.1. RNA tree similarity algorithm 

Figure 5. Algorithm for computing the similarity
between RNA secondary structures 

The pseudocode of our RNA tree similarity

algorithm is given in Fig. 5. The main function 

RNAtreesim(t, t') recursively traverses the two trees t

and t' in a depth-first strategy and then computes their 

similarity bottom-up. The equation embedded in this

function that computes the similarity of two RNA trees 

is shown below. 
n

( (S t, t ') ((w w ' ) / 2)S t , t ' ) (4)i i i i

i 1

where,

S(t, t'): similarity of two input trees t and t'

S(ti, t'i): intermediate similarity of the i
th subtrees of the

two trees t and t'

wi and w i: node weights of the i
th child of the root

node of tree t and t', respectively

When two trees t and t' both have subtrees 

underneath with different root nodes, the similarity of

two trees is 0.0. However, if they have identical root

nodes, i.e. the similarity of root nodes is 1.0, then the 

similarity of the two trees is computed via 

RNAtreesim(ti, t'j) by a recursive top-down traversal 

through the subtrees, ti and t'j. If branches of a tree (t)’s

reach the end during the traversal at the same level, all 

the remaining branches in the other tree (t') are missing. 

The similarity of the missing subtrees is found by

using their simplicity value multiplied by 0.5, using

simplicity function RNAtreeplicity(t'j). The equation 

embedded in the RNAtreeplicity(t) that computes the 

simplicity of the missing tree is shown below. 

)dDI (D  if is a leaf node,t

( ) 1 m (5)Simp t

F

w Simp t j ) otherwise.j (
m j 1

where,

Simp(t): simplicity value of a single tree t

Di and DF: depth degradation index and depth

degradation factor  

d: depth of a leaf node 

m: root node degree of tree t that is not a leaf 

wj: node weight of the jth child of the root node of tree t

tj: subtree below the jth node with node weight wj

With a single tree t as input, this simplicity measure 

is defined recursively to map an arbitrary single tree t

to a value from [0, 1], decreasing with both the tree 

breadth and depth. The recursion process terminates 

when t is a leaf node. For a (sub)tree, the simplicity is

computed by a recursive top-down traversal through its

subtrees. Basically, the simplicity value of a tree t is

the sum of the simplicity values of its subtrees 

multiplied with node weights from [0, 1], a subtree 

depth degradation factor (DF  0.5), and a subtree 

breadth degradation factor from (0, 1].  

The similarity of the missing subtree and the 

corresponding empty subtree in the other tree is

computed by multiplying the simplicity value of the 

missing subtree with 0.5. If only one of t and t' is a leaf 

node, for example t is a leaf node, then this leaf node is

missing in the other tree t'. We call the simplicity 

function RNAtreeplicity(t) and continue the 

comparison between the next (right) sibling of the leaf 

node t and t'. Finally, if t and t' are both leaf nodes, 

then their similarity is 1.0 when they have identical 

root node. Otherwise, their similarity is 0.0. 

3.2. Illustrative examples 

We give an illustrative example to show how the 

proposed algorithm works step by step (Fig. 6). The 

comparison starts at the identical ROOT nodes of the 

trees a and b (level 0), and traverses to level 1. After

finding that the root node labels are both identical, i.e. 

both are A-U, it goes to level 2 and starts comparison

from left to right. In Fig. 6, U at the first branch of the 

tree a matches U at the first branch of the tree b. When 

two Us at the second and third branches of the tree a

are missing in the tree b, the simplicity function in



equation (5) is called. The simplicity value for one

missing node is 0.9 (0.5)0 0.9 . Here, we assume in

our case, DI = 0.9, DF = 0.5, and d = 0 because they 

are leaf nodes. As we defined in Section 3.2, the 

similarity value of the missing U with the 

corresponding empty leaf node is 0.9 0.5 0.45 , i.e.

the simplicity value 0.9 is multiplied with 0.5. Next, 

the base-pair U-A at the fourth branch of the tree a

matches U-A at the second branch of the tree b. Their 

two trees is 1(0.809((1.0+1.0)/2)) = 0.809 which is

reasonable because the trees a and b are very similar.

Next, we provide more examples of computing 

similarity using all RNA trees presented in Fig. 3

which are calculated analogously. The similarity

values of the four basic loops are given in Table 1. 

Table 1. Computational results for the examples given 
in Figure 3 

similarity is 1.0. Since our algorithm traverses the two

input trees in a left-right depth-first strategy, so the 

similarity function first recursively traverses the 

subtree under base-pair U-A at level 2, then continues 

the comparison among the remaining branches. The 

comparison traverses to level 3 and finds two identical 

base-pairs C-G, and then continues to level 4. At level

4, i.e. the bottom of the two trees, the comparison

starts from left to right. The leaf nodes at the first,

second and the third branches are identical. So, the 

similarity is 1.0. The U at the fourth branch of the tree 

a mismatches C at the fourth branch of the tree b.

Therefore, their similarity is 0.0. And C at the fifth 

branch of the tree a is missing. Consequently, the 

similarity value is 0.45, i.e. 0.9 (0.5)0 0.5 0.45 .

Figure 6. An example of computing the similarity
between two RNA trees 

Now, the algorithm starts to calculate the similarity 

bottom-up. The similarity of the subtree with root node

C-G at level 3, according to (4), is 3(1.0((0.2+0.25)/2)) 

+ 1(0.0((0.2+ 0.25)/2))+ 1(0.45((0.25+ 0.0)/2))= 0.731. 

The similarity of the subtree with the root node U-A at 

level 2 is 1(0.731((1.0+1.0)/2)) = 0.731 using (4). At

level 2, the leaf nodes C and U at the fifth and sixth 

branches of the tree a match the leaf nodes C and U at 

the third and fourth branches of the tree b. Therefore, 

the similarity is 1.0. However, the leaf node C at the 

seventh branch of tree a is missing. Its similarity value 

is 0.45, i.e. 0.9 (0.5)0 0.5 0.45. The similarity of

the subtree with the root node A-U at level 1 is 

3(1.0((0.125+0.2)/2))+3(0.45((0.125+0.0)/2))+1(0.731

((0.25+0.4)/2)) = 0.809. Finally, the similarity of the 

Tree Tree Similarity

B1 B2 0.816

B1 B3 0.267

B2 B3 0.120

H1 H2 0.720

I1 I2 0.733

M1 M2 0.446

4. Computational results 

Figure 7. The node-weighted tree representation of 
the precursor tRNA.Tyr

In this section, we provide the computational results

of several well-known RNA secondary structures and 

their corresponding node-weighted trees. Fig. 7 and 8 

display the secondary structures and corresponding 

node-weighted trees of the precursor and mature yeast

tRNA.Tyr [6]. The similarity value between them is

0.741, i.e. most of their substructures are identical. The 

similarity between the RNAs shown in Fig. 9 and the 

example in Fig. 1 is 0.086. In addition, we compare the 

similarity between the RNA in Fig. 10 and the mature 

tRNA.Tyr (Fig. 8), and we obtain the similarity value 

0.16. Based on all of the examples described above, we 

can conclude that if two RNA secondary structures are 



intuitively more similar, the similarity value should be 

higher. Otherwise, it should be closer to 0. 

Figure 8. The node-weighted tree representation of 
the mature tRNA.Tyr

Figure 9. The RNA secondary structure [10] and the 
corresponding node-weighted tree representation 

Figure 10. The RNA secondary structure [1] and the 
corresponding node-weighted tree representation 

5. Conclusion 

RNA databases are growing rapidly and therefore it

is essential to develop appropriate representations for 

RNAs to incorporate all of their attributes. Further, 

efficient algorithms to find similarity of RNA

secondary structures are required. In this paper, we 

have proposed a new representation (node-weighted 

tree) of RNA secondary structure. Our representation 

contains most of the information of an RNA secondary

structure. We have also showed that our proposed tree 

similarity algorithm can find the similarity between

RNA secondary structures and give similarity values to

consistent with our intuitive understanding. At present, 

we plan to build a database with our RNA trees and

cluster them according to their groups/functions. This 

would be used to compare and find similarities with

newly discovered RNA structures and thus predict

their functionality. Further, we plan to carry out

extensive comparison with other similarity algorithms

in terms of accuracy, efficiency and complexity. 
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