
Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez

la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous
n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the
first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

The 19th Australian Joint Conference on AI (AJCAI06) [Proceedings], 2006

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :
https://nrc-publications.canada.ca/eng/view/object/?id=fc9c8d99-eb9f-4b43-86fc-e152b8b05389

https://publications-cnrc.canada.ca/fra/voir/objet/?id=fc9c8d99-eb9f-4b43-86fc-e152b8b05389

NRC Publications Archive
Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version.
/ La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version
acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Lazy Learning for Impoving Ranking of Decision Trees
Liang, H.; Yan, Y.

National Research

Council Canada

Institute for

Information Technology

Conseil national

de recherches Canada

Institut de technologie

de l'information

Lazy Learning for Impoving Ranking of

Decision Trees *

Liang, H., Yan, Y.
November 2006

* published at The 19th Australian Joint Conference on AI (AJCAI06).

December 4-6, 2006. Hobart, Australia. NRC 48785.

Copyright 2006 by

National Research Council of Canada

Permission is granted to quote short excerpts and to reproduce figures and tables

from this report, provided that the source of such material is fully acknowledged.

Lazy Learning for Improving Ranking of

Decision Trees

Han Liang1⋆, Yuhong Yan2

1Faculty of Computer Science, University of New Brunswick
Fredericton, NB, Canada E3B 5A3

han.liang@unb.ca
2 National Research Council of Canada

Fredericton, NB, Canada E3B 5X9
yuhong.yan@nrc.gc.ca

Abstract. Decision tree-based probability estimation has received great
attention because accurate probability estimation can possibly improve
classification accuracy and probability-based ranking. In this paper, we
aim to improve probability-based ranking under decision tree paradigms
using AUC as the evaluation metric. We deploy a lazy probability es-
timator at each leaf to avoid uniform probability assignment. More im-
portantly, the lazy probability estimator gives higher weights to the leaf
samples closer to an unlabeled sample so that the probability estimation
of this unlabeled sample is based on its similarities to those leaf samples.
The motivation behind it is that ranking is a relative evaluation mea-
surement among a set of samples, therefore, it is reasonable to yield the
probability for an unlabeled sample with reference to its extent of simi-
larities to its neighbors. The proposed new decision tree model, LazyTree,
outperforms C4.5, its recent improvement C4.4 and their state-of-the-art
variants in AUC on a large suite of benchmark sample sets.

1 Introduction

A learning model is induced from a set of labeled samples represented by the
vector of an attribute set A = {A1, A2, . . . , An} and a class label C. Classic de-
cision trees are typical decision boundary-based models. When computing class
probabilities, decision trees use the observed frequencies at leaves for estimation.
For instance, if a leaf contains 100 samples, 60 of which belong to the positive
class and the others are in the negative class, then for any unlabeled sample
that falls into the leaf, decision trees will assign the same positive probability
of p̂(+|Ap = ap)=60%, where Ap is the set of attributes from the leaf to the
root. However, this incurs two problems: high bias (traditional tree inductive
algorithm tries to make leaves homogeneous, therefore, the class probabilities
are systematically shifted toward zero or one) and high variance (if the number
of samples at a leaf is small, the class probabilities are unreliable) [9].

⋆ This work was done when the author was a visiting worker at Institute for Informa-
tion Technology, National Research Council of Canada.

Accurate probability estimation is important for problems like classification
and probability-based ranking. Provost and Domingos’ Probability Estimation

Trees (PETs) [7] turn off pruning and collapsing in C4.5 to keep some branches
that may not be useful for classification but are crucial for accurate probability
estimation. The final version is called C4.4. PETs also use Laplace smoothing to
deal with the pure nodes that contain samples from the same class. Instead of
assigning a probability of 1 or 0, smoothing methods try to give a more modest
estimation. Other smoothing approaches, such as m-Branch [2] and Ling&Yan’s
algorithm [6], are also developed. Using a probability density estimator at each
leaf is another improvement to tackle the “uniform probability distribution”
problem of decision trees. Kohavi [4] proposed an Näıve Bayes Tree (NBTree),
in which a näıve Bayes is deployed at each leaf to produce probabilities. The
intuition behind it is to take advantage of leaf attributes Al(l) for probability
estimation. Therefore, p(c|et) ≈ p(c|Ap(l),Al(l)).

The main objective of this paper is to improve the ranking performance of
decision trees. The improvement comes from two aspects. Firstly, decision trees
work better when the sample set is large. After several splits of attributes, the
samples at the subspaces can be too few on which to base the probability. There-
fore, although employing a traditional tree inductive process, we stop the splits
once the samples are reduced to some extent and deploy probability estimators
at leaves. The probability estimators assign distinct probabilities to different
samples. Thus, the probability generated by such a tree is more accurate than
assigning a uniform probability for the samples falling into the same leaf. Sec-
ondly, and more importantly, we observe that probability-based ranking is indeed
a relative evaluation measurement where the correctness of ranking depends on
the relative position of a sample among a set of other samples. In our paper, a
lazy probability estimator that calculates the probability of an unlabeled sample
based on its neighbors is designed for better ranking quality. The lazy probability
estimator finds m closest neighbors at a leaf for the unlabeled sample and calcu-
late a weight for each neighbor using a newly proposed similarity score function.
We generate the probability estimates for this unlabeled sample by normalizing
all weights of the neighbors at the leaf in terms of their class values. The new
model is called LazyTree. AUC [3] is used to evaluate our method. On a large
suite of 36 standard sample sets, empirical results indicate that LazyTree per-
forms substantially better than C4.5, C4.4 and their variants with other methods
designed for optimal ranking, such as m-Branch, Ling&Yan’s algorithm and a
voting strategy–bagging, in yielding accurate ranking.

2 Using Lazy Learner to Improve Tree-Based Ranking

2.1 The Lazy Learner

Our work aims to calibrate probability-based ranking of decision trees. Improve-
ment comes from two aspects. Firstly, we want to trade-off between bias and
variance of decision trees by deploying a probability estimator at each leaf.
Probability Estimator is defined as:

Definition 1. Given a set of unlabeled samples E and a set of class labels C =
{ci}, a Probability Estimator is a set of functions pi : E 7→ [0, 1], such that

∀e ∈ E,
∑

pi(e) = 1.

The probability estimators give distinct probabilities to different samples. As a
result, the probability estimation generated by such trees is more precise than
the uniform probability assignment for the samples falling into the same leaf.

Secondly, and more essentially, we observe that probability-based ranking is
indeed a relative evaluation measurement where the correctness of ranking
depends on the relative position of a sample among a set of other samples. For
instance, for a binary-class problem, if assigned class probabilities of a positive
sample e+ and a negative sample e− satisfy p(+|e+) > p(+|e−), it is a correct
ranking. For multi-classes, the right ranking means pi(e ∈ ci) > pi(e

′ /∈ ci).

These inspire us to use a lazy probability estimator which calculates the
probability of a sample based on its neighbors. The lazy probability estimator
finds m closest neighbors at a leaf (here m means all the samples at this leaf)
for an unlabeled sample and calculate a weight for each neighbor using a newly
proposed similarity metric.

Assume that sample e can be represented by an attribute vector as < a1(e),
a2(e), ..., an(e) > , where ai(e) denotes the value of ith attribute. The distance
between two samples e1 and e2 is calculated in (1):

d(e1, e2) =

√

√

√

√

n
∑

i=1

δ(ai(e1), ai(e2)), (1)

δ(ai(e1), ai(e2)) outputs zero if ai(e1) is equivalent to ai(e2), otherwise it out-
puts one.

For an unlabeled sample et and a set of labeled samples {ei|i = 1, ..., n}
falling in a leaf, we assign a weight to each of the labeled sample ei based on its
distance to et (as in 2):

wi = 1 −
di

∑n

i=1 di

. (2)

In (2), di = d(et, ei) is the distance of an unlabeled sample ei to et. Notice that
for any two labeled samples ei and ej, the shorter the distance to et (assuming
that di ≤ dj), the larger weight the sample (wi ≥ wj). That implies a labeled
sample nearest to et contribute most when calculating the probability for et.

We generate the probability estimates of the unlabeled sample by normalizing
all weights of the labeled samples at a leaf in terms of their class values, as in
(3):

p(cj |et) =

∑m

k=1 wj
k + 1

|C|
∑n

k=1 wk + 1
, (3)

where n represents the number of samples at a leaf and m is the number of
samples that belong to cj .

2.2 LazyTree Induction Algorithm

We deploy a lazy probability estimator at each leaf of a decision tree and call
this model LazyTree. To induce the model, we adopt a heuristic search process,
in which we exhaustively build all possible trees in each step and keep only
the best one for the next level expansion. Suppose that finite k attributes are
available. When expanding the tree at level q, there are k-q+1 attributes to
be chosen. On each iteration, each candidate attribute is chosen as the root
of the (sub) tree, the generated tree is evaluated, and we select the attribute
that achieves the highest gain ratio as the next level node to grow the tree.
We consider two criteria for halting the search process. We could stop splitting
when none of the alternative attributes can statistically significantly upgrade
the classification accuracy. Or, to avoid the “fragmentation” problem, there are
at least 30 samples at the current node. Besides, we still permit splitting if the
relative increment in accuracy is not a negative value, which is greedier than
C4.5. The tree model is represented as T . An unlabeled sample et is assigned a
set of class probabilities as in Algorithm 1.

Algorithm 1 LazyTrees(T, et) return {p(cj |et)}

T : a model with a set of leaves L
Sl: a set of labeled samples at a leaf l
et: an unlabeled sample
{p(cj |et)|cj ∈ C}: a set of probability estimates of et

Dispatch et into one leaf l according to its attributes
for each labeled sample etrain ∈ Sl do

Calculate the distance dtrain between etrain and et, by utilizing Equation 1
Calculate the sample weight wtrain, in terms of its similarity to et, by
utilizing Equation 2

for each class value cj ∈ C do

Use Equation 3 to compute p(cj |et)
Return a set of probability estimates {p(cj |et)} for the unlabeled sample et

3 Empirical Study

More details of empirical study can be found in [5]. We used 36 standard sample
sets from the UCI repository [1] and conducted three groups of experiments in
terms of ranking within the Weka [8] Platform. Table 1 lists the properties of
the sample sets. Numeric attributes were handled by decision trees themselves.
Missing values were processed using the mechanism in Weka, which replaced all
missing values with the modes and means from the training set. Besides, due to
the relatively high time complexity of LazyTree, we made a re-sampling within

Weka in sample set Letter and generated a new sample set named Letter-2000.
The selection rate is 10%.

Table 1. Brief description of sample sets used in our experiments.

Data Set Size Classes Missing Numeric Sample Set Size Classes Missing Numeric

anneal 898 6 Y Y ionosphere 351 2 N Y

anneal.ORIG 898 6 Y Y iris 150 3 N Y

audiology 226 24 Y N kr-vs-kp 3196 2 N N

autos 205 7 Y Y labor 57 2 Y Y

balance 625 3 N Y letter-2000 2000 26 N Y

breast 286 2 Y N lymph 148 4 N Y

breast-w 699 2 Y N mushroom 8124 2 Y N

colic 368 2 Y Y p.-tumor 339 21 Y N

colic.ORIG 368 2 Y Y segment 2310 7 N Y

credit-a 690 2 Y Y sick 3772 2 Y Y

credit-g 1000 2 N Y sonar 208 2 N Y

diabetes 768 2 N Y soybean 683 19 Y N

glass 214 7 N Y splice 3190 3 N N

heart-c 303 5 Y Y vehicle 846 4 N Y

heart-h 294 5 Y Y vote 435 2 Y N

heart-s 270 2 N Y vowel 990 11 N Y

hepatitis 155 2 Y Y waveform-5000 5000 3 N Y

hypoth. 3772 4 Y Y zoo 101 7 N Y

In the first group of our experiments, LazyTree was compared to C4.5 and its
PET variants including C4.5-L (C4.5 with Laplace estimation), C4.5-M (C4.5
with m-Branch) and C4.5-LY (C4.5 with Ling&Yan’s algorithm). In the second
group, we compared LazyTree with C4.4 and its PET variants, which contain
C4.4-nLa (C4.4 without Laplace estimation), C4.4-M (C4.4 with m-Branch) and
C4.4-LY (C4.4 with Ling&Yan’s algorithm). In the last group, we made a com-
parison between LazyTree-B (LazyTree with bagging) and C4.5-B (C4.5 with
bagging) and C4.4-B (C4.4 with bagging). Multi-class AUC was calculated by
M -measure[3]. The AUC value on each sample set was measured via a ten-fold
cross validation ten times, and we performed two-tailed t-tests with a signifi-
cantly different probability of 0.95 to compare our model with others. Now, our
observations are highlighted as follows.

1. LazyTree achieves remarkably good performance in AUC among C4.5 and
its variants. LazyTree performs significantly better than C4.5 (31 wins and
0 loss). As the results show, C4.5 variants can improve the AUC values of
C4.5. However, LazyTree considerably outperforms these models in AUC. In
addition, decision trees with m-Branch or with Ling&Yan’s algorithm can
not generate multiple probabilities for the samples falling into the same leaf.

2. LazyTree is the best model among C4.4 and its variants in AUC. LazyTree

significantly outperforms C4.4 (10 wins and 1 loss). Since C4.4 is the state-

of-art decision tree model designed for yielding accurate ranking, this com-
parison provides strong evidence to the ranking performance of LazyTree.
LazyTree also outperforms most of C4.4 variants in AUC.

3. LazyTree-B performs greatly better than C4.5-B and C4.4-B. C4.5-B has a
good ranking performance compared with other typical models. However,

LazyTree-B produces better AUC values than C4.5-B (15 wins and 0 loss)
and also performs better than C4.4-B (7 wins and 2 losses).

4. Besides having good performances on ranking, LazyTree also has better ro-
bustness and stability than other models. The average standard deviation of
LazyTree in AUC is 4.37, the lowest among all models.

Generally speaking, LazyTree is a trade-off between the quality of probability-
based ranking and the comprehensibility of results when selecting the best model.

4 Conclusion

In this paper, we analyzed that traditional decision trees have inherent defects in
achieving precise ranking, and proposed to resolve those issues by representing
the similarity between each sample at a leaf and an unlabeled sample. One key
observation is that for a leaf, deploying a lazy probability estimator is an optimal
alternative to produce a unique probability estimate for a specific sample, com-
pared with directly using frequency-based probability estimation based on the
leaf samples. Experiment results prove our expectation that LazyTree outper-
forms typical decision tree models in ranking quality. In our future work, other
parameter-learning methods could be used to tune the probability estimation at
a leaf. Additionally, we can find the right tree size for our model, i.e. based on
C4.5 we use the leave-one-out technique to learn a weight for each sample at
leaves, then continue fully splitting the tree, and at each leaf we normalize the
weights and produce probability estimation of that leaf.

References

1. C. Blake and C.J. Merz. Uci repository of machine learning database.
2. P. A. Flach C. Ferri and J. Hernandez-Orallo. Improving the auc of probabilis-

tic estimation trees. In Proceedings of the 14th European Conference on Machine
Learning (ECML2003). Springer, 2003.

3. D. J. Hand and R. J. Till. A simple generalisation of the area under the roc curve
for multiple class classification problems. Machine Learning, 45, 2001.

4. Ron Kohavi. Scaling up the accuracy of naive-bayes classifiers: a decision-tree hy-
brid. In Proceedings of the Second International Conference on Knowledge Discovery
and Data Mining, 1996.

5. H. Liang and Y. Yan. Lazy learning for improving ranking of decision trees.
www.flydragontech.com/publications/2006/LazyLeaveTree long.pdf, 2006.

6. C. X. Ling and R. J. Yan. Decision tree with better ranking. In Proceedings of the
20th International Conference on Machine Learning (ICML2003). Morgan Kauf-
mann, 2003.

7. F. J. Provost and P. Domingos. Tree induction for probability-based ranking. Ma-
chine Learning, 52(30), 2003.

8. I. H. Witten and E. Frank. Data Mining –Practical Machine Learning Tools and
Techniques with Java Implementation. Morgan Kaufmann, 2000.

9. B. Zadrozny and C. Elkan. Obtaining calibrated probability estimates from deci-
sion trees and naive bayesian classifiers. In Proceedings of the 18th International
Conference on Machine Learning (ICML2001). Springer, 2001.

