Towards a Service-Oriented Participatory Design Studio Supported by UCLP
Liu, Sandy; Spencer, Bruce; Brooks, Martin; Jemtrud, M.; Privalov, K.; Spence, John; Savoie, M.; Ho, B.

This publication could be one of several versions: author’s original, accepted manuscript or the publisher's version. / La version de cette publication peut être l'une des suivantes : la version prépublication de l'auteur, la version acceptée du manuscrit ou la version de l'éditeur.

Publisher’s version / Version de l’éditeur:

NRC Publications Archive Record / Notice des Archives des publications du CNRC :
https://nrc-publications.canada.ca/eng/view/object/?id=fbaf9873-0b40-4c53-817e-f4422846bec9
https://publications-cnrc.canada.ca/fra/voir/objet/?id=fbaf9873-0b40-4c53-817e-f4422846bec9

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at
https://nrc-publications.canada.ca/eng/copyright
READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site
https://publications-cnrc.canada.ca/fra/droits
LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Questions? Contact the NRC Publications Archive team at
PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.
Towards a Service-Oriented Participatory Design Studio Supported by UCLP *

Liu, S., Spencer, B., Brooks, M., Jemtrud, M., Privalov, K., Spence, J., Savoie, M., Ho, B.
September 2006

Copyright 2006 by
National Research Council of Canada

Permission is granted to quote short excerpts and to reproduce figures and tables from this report, provided that the source of such material is fully acknowledged.
Towards a Service-oriented Participatory Design Studio Supported by UCLP

Sandy Liu, Bruce Spencer, Martin Brooks
National Research Council Canada
Michael Jemtrud and Konstantin Privalov
Carleton University
John Spence, Michel Savoie, Bobby Ho
Communications Research Centre Canada

1. Introduction

The Participatory Design Studio (PDS) provides users across multiple sites the ability to effectively participate in a common design session. Users are provided a variety of shared resources, including the underlying high-speed network, cameras, displays, sound equipment, large data files, and software applications for communicating and for visualizing the artifact being designed. This paper explores the design and implementation of PDS, and describes how it leverages the benefits of a Service-oriented Architecture (SoA) to provide a highly adaptable, modular, and loosely coupled solution. PDS integrates systems that are hosted on a wide variety of platforms with different management and network domains. This integration goes beyond piping application data from one system to another. Web Services provide a cost-effective solution for integrating these systems into a comprehensive SoA.

The PDS’s target user community is architects of buildings, although our design will be generic and applicable to different user communities. Architecture and industrial design are advanced professions requiring collaboration of diverse teams exploiting powerful visualization and modeling tools. Challenging factors such as design complexity, economic and environmental factors, new materials, and construction/manufacturing planning require the design team to access diverse and often distributed expertise. Until now, insufficient bandwidth and crudely coordinated tools have resulted in distributed, task-based modes of collaboration, which often hinders the full participation by members of a distributed design team. Free-flowing multi-person participation is the key to successful problem solving at each stage of the design process. PDS allows manipulating designs, sharing them and visualizing them in 3D and video.

A broadband network (i.e. 1-10Gb/s) is ideal for transferring the bandwidth-thirsty multimedia content, although a dedicated broadband network is too expensive for most organizations. The debut of UCLP (User-Controlled Lightpath Provisioning) makes this option viable. The UCLP provisioning Web Services allow users to dynamically assemble a set of lightpaths into a private end-to-end optical network, a so-called APN (Articulated Private Network). Thus the users share the usage of the network and pay only for the time slot when the network is requested. This mechanism greatly enhances the utilization and affordability of the broadband network. It also increases the level of control by the end users, since APN creation is no longer dictated by network administrators, but by the users, e.g. the design teams, possibly with the assistance of the technical staff on site.

The high-speed low-latency APN removes the bandwidth bottleneck. Nevertheless, the design team requires many tools to be integrated, including video-conferencing devices and applications such as the Ruff system from Japan’s National Institute of Information and Communications Technology, 3D image rendering software such as AutoDesk’s Maya, and visualization tools such as IBM’s DCV - Deep Computing Visualization. Inspired by CANARIE’s vision, PDS will provide a user-friendly dashboard for architects to control these tools and instruments with the support of an SoA.

2. System Design

All the core functions of PDS will be provided by Web Services, either as a single service or a combination of services. Figure 1 shows the high level design of the system.

There are three categories of users identified: the physical network administrator, the UCLP user, and the end-user. The end-users are architects and designers who are participating in the design. The physical network administrators are responsible for administrating the optical network and managing the lightpath resources. The UCLP user works with the end-users, and is capable of assembling the light-
The development of PDS is challenging. Beyond simply wrapping existing equipment and applications, our design accommodates changing demands and includes innovations for issues that are not normally encountered in SoA implementation projects. In this section we discuss a few issues we have encountered.

Our services provision different tools, and for each tool there must exist a service platform to provide access to it. Using Web Services, the straightforward way is to have an HTTP server and an application server running on the machine that co-hosts the application controlling the resource. This is a labor-intensive approach as it requires installation of required servers, a set of related libraries, and configuration of the runtime environment on every machine that interfaces with one or more resources. As the number of Web Services increases, the maintenance work will become unmanageable. In addition, the number of entrances into the network also increases, opening many security holes for malicious access [1]. To increase the manageability, for each network domain we set up an HTTP server outside the firewall, and talk to the application server that is behind the firewall by a private channel (e.g. SSH). The application server then connects to the local resources.

To better manage the resource and workflow, it is desirable for the Resource Management Service to keep track of the states of different resources, but some resources are not designed to work as a service. Some parameters are set to prevent sequence violations, thus making it difficult to automate the workflow. To address these issues, we have introduced state tracking and workflow monitoring services. The Resource Management Service will be responsible for the initial setup and main service management, while the workflow monitoring service will be responsible for the monitoring and reporting of the state of the resources.

The PDS project applies SoA in a novel usage area. It provides a testbed for future research in process management and service computing.

References