
Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez
pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the
first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Proceedings of the NATO Information Systems Technology Panel Symposium on
Commercial Off-the-Shelf Products in Defence Applications, 2000

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :
https://nrc-publications.canada.ca/eng/view/object/?id=fa7fcf14-2af9-441f-a023-f082a354f071

https://publications-cnrc.canada.ca/fra/voir/objet/?id=fa7fcf14-2af9-441f-a023-f082a354f071

NRC Publications Archive
Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. /
La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version
acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Maintaining a COTS-Based Systems
Vigder, Mark; Dean, Joh

National Research
Council Canada

Institute for
Information Technology

Conseil national
de recherches Canada

Institut de Technologie
de l’information

Maintaining a COTS-Based Systems*

M.R. Vigder and J. Dean
April 2000

Copyright 2000 by
National Research Council of Canada

Permission is granted to quote short excerpts and to reproduce figures and tables from this report,
provided that the source of such material is fully acknowledged.

*published in Proceedings of The NATO Information Systems Technology Panel

Symposium on Commercial Off-the-shelf Products in Defence Applications, Brussels,

Belgium. April 3-5, 2000. 6 pages. NRC 43626

1

Maintening a COTS-Based Systems
Dr. Mark R. Vigder

John Dean

National Research Council of Canada

Institute for Information Technology

Ottawa, Ontario

Canada

K1A 0R6

{mark.vigder|john.dean}@nrc.ca

Summary: After depoyment, all software

systems require an extensive and expensive

phase of maintenance and management

regardless of whether they are COTS-based

or custom built. Understanding how COTS-

based systems are maintained, and why they

are different from custom built systems, can

lead to systems that are better and more

cost-effective over their lifetime.

1 Introduction

After deployment software systems enter a

phase of maintenance, management, and

evolution that can last many years until final

decommissioning [3,5]. This post-

deployment phase is the longest and hence

the most expensive phase of the software

lifecycle. Success during this phase is often

the determining factor as to whether a

software system is cost-effective over its

lifetime.

Building a software system from COTS

products does not change the importance nor

the expense associated with maintenance,

evolution and management. COTS-based

systems must continue to satisfy evolving

user requirements, failures of the system

must be dealt with, the system must adapt to

the ever-changing environment, and

managers must be able to monitor and

control the deployed system. These activities

are necessary whether a system is built from

scratch or built using commercial products.

The nature of the post-deployment activities

changes when dealing with COTS-based

systems rather than with custom built

systems. If COTS-based systems are to be

successful over the many years that they are

expected to be in service, organizations

involved in building or acquiring COTS-

based systems must understand and

accommodate these differences.

2 COTS-based systems: why is

maintenance different?

Software maintenance includes all the

activities required to evolve a software

system over its lifetime. Although the

motivation for maintaining COTS based and

custom systems is the same, the nature of

the activities required of the maintenance

personnel is different. The different

activities required for maintaining COTS

intensive systems arise for a number of

reasons.

Primary among the reasons for the different

maintenance activities is the fact that the

evolution and upgrades for the individual

COTS products are outside the direct control

of the system developers and acquisition

organizations. The COTS products are

maintained and supported by the COTS

product developer or their agent. The system

developer must treat these products as single

black-box entities with little or no visibilty

into the internals of the product and perform

the maintenance at the level of large-scale

products rather than at the source code level.

The only source code being maintained by

the system developer is that required for

integrating the large-scale COTS products.

This includes code for wrapping and

tailoring the individual products, as well as

the “glue code” required to connect the

products together. Wrapping and tailoring of

the products (without accessing the products

source code) becomes necessary to

2

overcome architectural mismatch between

products, to customize the product to

conform to local requirements, and to build

workarounds to overcome the inevitable

bugs (and features) that are included in any

COTS product.

From the acquisition agencies’ perspective,

they have effectively ceded control over

maintenance and evolution of large parts of

the system to outside commercial agencies.

Maintenance of the COTS intensive system

is now driven in a large part by the vendors

of the different products rather than by the

system developer. In effect, having

amortized the cost of development and

maintenance among many different users,

acquisition agencies are now one among

many users driving the direction of the

COTS software evolution.

2.1 Maintaining a COTS-based

system

In order to more effectively maintain and

manage COTS-based systems it is necessary

to identify the activities of the maintenance

and management personnel. Once the

activities have been identified, strategies can

be developed to facilitate these activities.

COTS-based maintenance and management,

although similar in many respects to

maintaining custom-built systems, has

qualitative differences. These differences

result in the following activities in the post-

deployment phase (Table 1).

Component reconfiguration. Reconfiguring

components is the act of replacing, adding

and deleting components within the system.

Reconfiguration occurs for many reasons,

perhaps the most common being the

frequency with which commercial product

vendors release updated versions of their

software. It is not uncommon for each

product to be upgraded two or three times

per year. Often, system integrators are

forced to replace older product versions with

the upgrades in order to fix bugs or improve

functionality. Other reasons for

reconfiguring the components are to replace

aging components with better products from

competing vendors, or to add and delete

products as the functional requirements of

the system evolves.

Reconfiguring the components is an

expensive activity requiring the integrators

to go through a complete release cycle

including product evaluation, testing,

design, integration, and system regression

testing.

Troubleshooting and repair. All systems fail

and COTS-based systems are no different in

this respect. However, with COTS-based

systems maintenance and management

personnel generally cannot look inside

components when trying to isolate the cause

of the failure. Information must be gathered

by experimenting at the edges of the

components. Identifying the source of the

fault requires running a series of

experiments to determine the product or

products causing the problem [2].

Identifying and fixing the fault is no longer

an activity performed solely by the system

builders. Having used third-party products,

system builders must now work closely with

the support staff of the product suppliers,

and with the general product user

community. Where faults involve complex

interactions involving sets of products from

different vendors, many different

organizations may be involved in the

troubleshooting and repair of the system.

Configuration management. For COTS-

based systems configuration management is

done at the level of products rather than at

the level of source code. Issues that

maintainers must address include: change

history for each individual product;

availability and support level provided by

the product vendor; management of

configurations of the COTS-based system

that are installed at each deployed site;

compatibility requirements and constraints

between sets of products; and licensing

issues associated with each product.

Testing and evaluation. Testing and

evaluating COTS products is an ongoing

activity during maintenance. New product

3

versions as well as new products must be

evaluated for includion within the system

and products must be tested during

operational use.

Tailoring user level services. COTS

products provide a generic functionality that

can be used by many applications and

organizations. System integrators must

customize and tailor this functionality to

satisfy the local operational requirements

that are unique to the end-user organization.

Successful systems are those that can be

quickly modified and tailored to meet

evolving user requirements.

For COTS-based systems tailoring involves

an ongoing process of customizing and

configuring products, adding new

components to the system, and combining

services of multiple products in novel ways.

Since integrators do not have access to

product source code this must be done

through gluing products together to provide

enhanced functionality and using vendor

supported tailoring techniques to customize

the products.

System monitoring. System managers and

maintainers must continuously monitor a

system during its ongoing operation. This

must be done to measure performance and

resource usage, watch for failures, and

determine user behavior. Because COTS

software is black box, with limited visibility

into internal behavior, monitoring for

maintenance purposes can be difficult to do

effectively.

3 Planning for post-deployment

Systems are maintainable and evolvable

through their lifetimes because they were

explicitly designed to be so. Maintainability

cannot be built in “after the fact” but must

be considered during the early stages of

analysis and design.

For COTS-based systems, there are two

phases of construction during which system

builders must consider maintainability and

evolvability. The first is during product

evaluation and selection. The products used

to build the system have a great deal of

impact on the characteristics of the system

during its maintenance.

The second phase of construction that

impacts system maintenance and evolution

is the architecture and design of the system.

Different architectural styles have different

properties relative to the evolvability and

maintainability of a system. By identifying

the properties required of a COTS-based

Maintenance activity Description

Component reconfiguration Updating product versions, replacing COTS products with similar

products, adding/deleting products

Troubleshooting Identifying causes of failures among sets of COTS products, developing

workarounds with the products, liasing with the COTS product

maintainers

Configuration management Tracking versions of different COTS products, tracking deployment

configurations, determining compatible versions of products

Testing and evaluation Testing new product versions as they become available, within the context

of the system into which they will be integrated

Tailoring user level services Enhancing the services available to the end user by configuring COTS

products, combining services of multiple products, etc.

System monitoring Monitoring different aspects of system behaviour, such as communication,

resource usage, process invocation, etc.

Table 1. Maintenance/management activities for COTS-based systems.

4

system an appropriate architectural style can

be applied that provides these properties.

3.1 Product selection

System builders do not control the

individual products, but they do control

which products are selected for integration

into the system. There are many different

criteria used for product selection but system

evolution should be one of the factors

considered when developing criteria for

product selection. A number of properties of

a product affect the long-term evolution and

maintenance of the system.

Openness of the component. A component is

open if it is designed to be visible,

extendible and easily integrated into a wide

array of systems. In general, the more open a

component the easier it will be for

maintainers and managers to monitor,

manage, extend, replace, test, and integrate.

Many factors combine to make a component

open and among things to consider are:

adherence to standards; availability of

source code perhaps through open source

licensing; and ability to interwork with

products from many different vendors.

Tailorability of the product. Much of the

maintenance effort for COTS-based systems

involves tailoring the functionality to meet

evolving user requirements. One of the

criteria for product selection should be the

ease with which the product can be tailored

to satisfy local requirements. Although

products are black box and the source code

cannot be modified there are many

techniques product builders can use to make

their products tailorable. Examples of

tailoring techniques include scripting

interfaces, data configuration files, and

frameworks that can be extended through

the use of inheritance and plug-ins.

Available support community. System

builders require extensive assistance from

external organizations to support

commercial software. This support comes

from the vendor and the user community.

Given that successful maintenance is

dependent on this support, system builders

must evaluate the support available for the

product during the product evaluation

process.

3.2 Designing for evolution

System builders do not own COTS software,

but they do own the architecture and design

used to integrate the software. By addressing

issues of maintainability during the software

design activity, designers can build a system

that facilitates the maintenance activities

associated with COTS-based systems and

avoids may of the pitfalls [1].

There are two major issues that can be

addressed when designing COTS-based

systems for maintainability. The first is the

management of dependencies between the

diverse software elements. Many

uncontrolled dependencies between products

make it exceedingly difficult to modify or

analyze a software system. Component

replacement or addition will be difficult due

to the affects that can ripple through the

various component dependencies. Many

intedependencies also make understanding

failures and isolating faults a more complex

task.

The second design issue that must be

addressed is visibility into the system. A

system is visible if maintenance and

management personnel can instrument and

monitor the system. This involves querying

the system to determine its operational

characteristics, current configuration, fault

incidents, etc. Visibility is a necessary

characteristic for testing and managing

systems. For COTS-based systems, where

there may be limited visibility into the

individual products, designers must build

visibility into the architecture.

3.2.1 Managing product dependencies

Complex and intricate product dependencies

result in a fragile system in which it is

difficult to upgrade, replace, add and remove

components. To alleviate these problems,

designers must manage the dependencies

5

between the products so that COTS-base

maintenance is possible.

There are many ways that software

components within a system may be

dependent. Some of these are explicit, such

as the direct transfer of data through an

exposed interface. Other dependencies are

implicit and subtle, such as conflicting

assumptions that different software products

can make regarding the environment under

which they are executing.

Table 2 summarizes the major causes of

component dependencies. It is important for

designers to recognize that they cannot

eliminate dependencies, but they can

manage them in a way that allows for more

effective maintenance [4].

3.2.2 Designing for visibility

Visibility is a property of a system that

permits inspection and instrumentation by

managers and maintainers. Capabilities

involved include event logging, raising

alarms, determining the current

configuration, etc. Visibility is necessary for

debugging, testing, isolating faults and

managing the system.

Designers have little or no control over the

visibility provided by the individual

software products. However, through the

architecture and design a great deal of

visibility can be built into the system by

using the glue and integration code as tools

for monitoring and viewing the system. An

example is shown in Figure 4 in which a

mediator exposes a management interface.

Through this interface different information

about the collaboration and the components

can be gathered such as the events generated

and received by the components, activiations

of the components, component versions, etc.

4 Conclusions

Although component-based software

systems provide many advantages, designers

and users must still expect that the majority

of the lifecycle cost will be incurred after the

initial deployment of the system. Reducing

this cost, and easing the maintenance and

management effort, requires designers and

architects to consider the post-deployment

activities during the earliest stages of

software development. By identifying the

activities that maintenance and management

personnel perform to support component-

based systems, and using a design that

supports these activities, systems can be

made more cost-effective.

Bibliography

[1] David Garlan and Robert Allen and

John Ockerbloom. Architectural

Mismatch or Why it's hard to build

Architectural view Entities

Interconnection topology Map of the data flow between the COTS components.

Connection infrastructure Mechanism used to transfer data and control among the software

elements, e.g., CORBA, DCOM, RMI.

Interfaces Exposed parts of the COTS software product.

Collaborations Ongoing behaviour required among a set of components in order

to provide a service.

Environment Dependencies made by the COTS product about the

environment in which they are operating, e.g., operating system,

software versions, file structure, etc.

Control mechanism Dependencies caused by assumptions about process structure,

control flow, activation, etc.

Table 2. Causes of component dependencies.

6

systems out of existing parts. In 17th

International Conference on Software

Engineering, pp179-185 1995.

[2] Scott Hissam. Correcting System Failure

in a COTS Information System. In

Proceedings of the International

Conference on Software Maintenance,

pp170-176, Nov 1998.

[3] Duane W. Hybertson and Anh D. Ta and

William M. Thomas. Maintenance of

COTS-Intensive Software Systems.

Journal of Software Maintenance,

9(4):203-216, 1997.

[4] Mark Vigder and John Dean. Building

Maintainable COTS-Based Systems. In

International Conference on Software

Maintenance, pp132-138, 1998.

[4] Mark Vigder. The maintenance,

management, and evolution of

component-based systems. In

Component-Based Software

Engineering: putting the pieces

together. Adison-Wesley, to be

published, 2000.

[5] Jeffrey Voas. Disposable Information

Systems: The Future of Software

Maintenance?. Journal of Software

Maintenance: Research and Practice,

11:143-150, 1999.

