
Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez

la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous
n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the
first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Proceedings of the First International Conference on Open Source Systems,
2005

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :
https://nrc-publications.canada.ca/eng/view/object/?id=f7ba15f6-166f-48cc-8743-93f09a179fb2

https://publications-cnrc.canada.ca/fra/voir/objet/?id=f7ba15f6-166f-48cc-8743-93f09a179fb2

NRC Publications Archive
Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version.
/ La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version
acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Understanding the Open-Source Software Development Process: A

Case Study with CVSChecker
Liu, Y.; Erdogmus, Hakan

National Research

Council Canada

Institute for

Information Technology

Conseil national

de recherches Canada

Institut de technologie

de l'information

Understanding the Open-Source Software

Development Process: A Case Study with

CVSChecker *

Liu, Y., and Erdogmus, H.
July 2005

* published in the Proceedings of the First International Conference on Open

Source Systems. Genoa, Italy. July 11-15, 2005. NRC 47453.

Copyright 2005 by

National Research Council of Canada

Permission is granted to quote short excerpts and to reproduce figures and tables from this report,

provided that the source of such material is fully acknowledged.

Understanding the Open-Source Software Development Process:
a Case Study with CVSChecker

Ying Liu, Eleni Stroulia Hakan Erdogmus

University of Alberta National Research Council
Edmonton, Canada Ottawa, Canada

{yingl, stroulia}@cs.ualberta.ca Hakan.Erdogmus@nrc-cnrc.gc.ca

Abstract – The open-source process model is emerging as a
new lightweight paradigm for software development and has
already produced several successful products. This process is
fundamentally different from more traditional analysis- and
design-driven processes, which raises a set of interesting
research questions: what activities are carried out in
open-source projects and by whom? Are there typical or
exceptional patterns? CVSChecker is a tool designed to
analyze the performance of individual developers and the
work-distribution patterns of teams based on historical
source-code repository data. In this paper, we report on a case
study conducted using CVSChecker to examine a small
open-source project. We discuss the insights that the
CVSChecker analysis produced regarding this project and
compare them to results from previous case studies performed
with senior student teams.

I. INTRODUCTION AND MOTIVATION

A team is a group of people who share a common

objective and need to work together in order to achieve it. It
is a primary means for developing products in complex
situations. Good teamwork is an essential factor for
effective team performance [20]. We have developed a tool,
CVSChecker, for analyzing the development process of
software projects based on the history recorded by
source-management systems. CVSChecker is developed as
a plugin for the Eclipse IDE [21], and currently assumes the
Concurrent Version System (CVS) as the underlying
source-code repository. CVSChecker examines the
project-development process from several perspectives,
including team collaboration, individual-developer role and
source-artifact evolution.

Initial case studies with CVSChecker examined the
development process of senior undergraduate student teams
and identified several patterns. Some of these patterns can
be thought of as indicative of good teamwork and others as
symptoms of problematic performance. However, these
case studies were conducted in a controlled environment, in
the sense that the student teams followed a process largely
orchestrated by the instructor. Software teams vary greatly –
from small student teams in an academic environment, to
teams of various sizes in the software industry, to the
expanding open-source communities. More recently, our
interest has expanded to the open-source context, focusing
on the following questions:

1) Can CVSChecker also be applied to Open-Source
Projects (OSPs) to reveal developer collaboration
and file evolution patterns?

2) Can one easily and intuitively understand the
development trajectory of an OSP only with the help
of CVSChecker?

3) Can CVSChecker detect healthy and problematic
patterns in OSPs?

4) How similar (or different) are role-specific behaviors
and team-collaboration patterns in academic and

OSP teams?
5) What are the characteristic differences, among

different project-development processes (e.g.
inexperienced student teams in academic
environment following a design-driven process and
teams in self-regulating open-source communities)?

In the case study reported in this paper, we examine some

of these questions.
The open-source model is an increasingly popular

paradigm for software development and has already
produced several successful products. The influential
“Cathedral and Bazaar” paper [17] discusses the
open-source development process as an almost silver-bullet
solution: “the open source movement consists of ideal
cooperative people, where conflicts are few and can be
resolved within a community.” In this case study, we try to
gain some insights on how this model works in practice: to
that end, we apply the CVSChecker tool to a typical
open-source project towards a better understanding of the
nature of teamwork and collaboration in such projects. As
an initial step, we are interested in the similarities and
differences between this style of development and the more
controlled styles observed in controlled academic settings.

The rest of this paper is organized as follows. Section 2
introduces the related work. Section 3 presents
CVSChecker with its underlying methodology. Section 4
reviews the results of the previous case studies on student
projects. Section 5 elaborates the case study on the chosen
open-source project with CVSChecker visualizations.
Section 6 gives the summary and future work.

II. RELATED WORK

Several tools and projects have been aimed at extracting

interesting information from the data captured in a CVS
repository. On the one hand, tools such as CVSMonitor [8],
CodeStriker [10], Hipikat [4] have been designed to support
goal-oriented navigation of the source code. On the other,
softChange [6], Cvsplot [11], Bloof [9], CVSAnalY [18],
Beagle [19], ROSE [23], Evolutionary Code Extractor [7],
IVA [3], JDEvAn [22] and others [5] have been designed to
analyze the evolution history of the source code. These tools
have been applied to a variety of software projects to study
(a) the volatility (or entropy) of the project as an indication
of the overall amount of changes occurring in its modules [3,
7], (b) the various distinct phases of the software evolution
history [6, 22], (c) the implicit coupling among software
modules that co-evolve [5, 22], and (d) internal code
restructurings that may have occurred [19, 22].

With the exception of JDEvAn, which analyzes design
entities, almost all of these works use as their primary input
the file-modification information of CVS. Although each of
the above projects targets its analysis at different levels of
granularity, from coarse-grained entities (system, module,

class, and file) to fine-grained entities (function, method,
attribute), they mostly start by grouping the CVS change
deltas into transactions (or modification requests) assumed
to represent all related modifications in response to changes
in functionality or bug fixes. An important distinction of our
work with CVSChecker is that it examines instead the
different CVS operation trails recorded in the repository.
We argue that this more elemental information is important
because the same operation executed under different
conditions will generate different trails. For example, there
are four possible consequences for the update operation:

1) C: a collision was detected as a result of more than one
developer modifying the same code area in the same file
revision;

2) G: a merge was necessary and it succeeded (this
happens when multiple developers change different code
areas of the same file revision without causing conflicts);

3) U: a working file was copied from the repository;
4) W: the working copy of a file was deleted because it

has already been removed from the repository.
Through tracking these CVS operations, CVSChecker

can help users to better understand the development history.
Another unique feature of CVSChecker is its
developer-perspective analysis: in addition to
understanding the modification history of software entities,
CVSChecker aims at understanding the contributions of
individual developers, as well as the nature of the
distribution of responsibilities within the development
team.

III. METHODOLOGY

CVSChecker is implemented as a plugin to the Eclipse

IDE and is one of the components of the JReflex [12]
system. The process of analyzing a project with
CVSChecker involves four steps, described in detail below.

A. Collection of Historical Data

CVSChecker examines the development-process trails
captured by the CVS repository of a project to be analyzed.
This is an information-rich data source. Not only does it
contain a sequence of revisions for each software module,
but also it records information regarding the interaction of
each developer with the source code artifacts. CVSChecker
has a suite of parsers that extract this information from the
source code repository and store it in a relational database
that can be easily queried.

B. Visualization

CVSChecker produces the following four types of
visualizations of the collected data for a project:

A. Temporal distribution of CVS activity, for each
team member

B. Distribution of CVS operation types, for each team
member

C. Distribution of CVS operation types, for each file
D. Added and deleted Lines of Code (LOC) by each

member, on each file

The first type of visualization (shown in Fig. 1) helps
users to grasp the development trends and notice some
special phases. The second type of visualization (Fig. 2)
shows the contribution of the team members over different

CVS operation types. The third type of visualization (Fig. 5)
displays what kinds of operations were committed on each
file and helps detect files with atypical histories. Finally, the
last type of visualization (Fig. 6) provides relevant
information for each file about who modified it and what the
impact of each developer was on that file.

These visualizations can be produced for the whole
project history, or incrementally to provide a sequence of
views corresponding to smaller periods (such as between
releases, or on a weekly basis.)

From within Eclipse, users can explore these
visualizations through a special CVSChecker perspective.
They can focus on particular CVS operations, files, or team
members over specific periods of time. An up-to-date set of
these visualizations reflecting the complete project history
is maintained in the database. Developers also can access
them through a wiki-based collaborative environment,
WikiWikiDev [12], to get an up-to-date view of their
progress.

E. Data Analysis and Knowledge Extraction

In addition to producing visualizations, CVSChecker also
includes two different mechanisms for interpreting the
collected data. For bottom-up hypothesis generation and
knowledge extraction from the data, we have adopted
Apriori [1], an association-rule mining algorithm for
discovering interesting patterns of how team members use
and modify their software assets. As far the data related to
an individual team member are concerned, we are interested
in patterns that may exist in the types and frequency of CVS
operations a developer may perform, or in the software
assets that may be accessed and modified. For top-down
hypothesis-driven analysis, we have developed a set of
queries that correspond to our intuitions about relevant
behaviors of teams and individuals. Section 4 summarizes
the patterns mined from the initial case studies on student
projects as a benchmark for the open-source case study
discussed here, while Section 5 discusses how these patterns
relate to those discovered in the open-source case study.

In the long run, our intent is to provide context-specific
guidance to team managers and developers, based on the
actual patterns of behaviors that the team members exhibit
as individuals and as a whole. Data mining uncovers
correlations in the collected data that may or may not
correspond to interesting development behaviors; we would
have to assess these correlations in terms of how useful they
are as indicators of effective or problematic performance.
At the same time, in the academic setting we formulate our
own intuitions as educators about what types of teams
succeed (and what types of teams fail) as heuristic patterns
and validate than empirically. With this approach, we plan
to collect a suite of patterns that can be used as “sensors” of
when to intervene in a team and how.

F. Reporting

Reports are an alternative means of presenting
information, complementary to visualization. CVSChecker
produces two types of reports: consultation and
summarization reports. Consultation reports include the
detailed data on the basis of which the visualizations are
generated. These reports are meant as an auxiliary medium
for representing the visualization data, enabling the users
interpreting the diagrams to access the details behind any

interesting information they may glean from the diagrams.
Summarization reports contain selected data of interest and
the results of the analysis phase.

IV. ANALYZING SMALL STUDENT TEAMS WITH
CVSCHECKER

Our initial case studies with CVSChecker analyzed

several undergraduate teams with similar team sizes, project
lengths and backgrounds in the same academic
environment, i.e., a single-term senior software-engineering
course. We examined the projects developed by more than
15 four-member1 student teams, across several sessions of
the same third-year software-engineering course [13].
These projects spanned about 2 months, with 3 or 4 distinct
intermediate deliverables. During each term, all team
projects involved the same project requirements and used
the same development environments. Moreover, the teams
were homogeneous in terms of the members’ backgrounds
and professional experience (they were mostly junior
students who took the same set of prerequisite courses).
Projects in different terms were of similar difficulty.

The relative uniformity of the project setting reduced the
confounding factors that may skew results because of
individual variances, and enhanced our confidence in the
analysis results. We categorized the results into two types of
patterns: factual patterns and red flags. A factual pattern
expresses some characteristic of the development history of
no obvious negative or positive implication. A red flag
pattern captures a problematic situation whose persistence
may warrant a preventive action. They should ideally be
detected early and avoided. We summarize some of these
interesting patterns from the student case studies:
Factual patterns:

• Leaders vs. component developers. The two most
common roles in these case studies were team leader
(a core contributor who is de facto in charge of the
overall project and steers the development effort for
a given period) and component developer (an
exclusive contributor to a specific file or module for
a given period).

• Leaders are architects. Leaders tended to add a lot of
new files in the beginning of the project.
Consequently, they had the most influence over the
architecture and evolution of the system and the
division of labor.

• Component developers work on existing artifacts.
Unlike leaders, component developers tended to add
few files or no files at all.

• Leaders contribute heavily. Leaders usually also
performed a large number of CVS operations,
modifications in particular, that exceeded by far the
number of operations performed by their teammates.

• Leaders contribute steadily. Leader had a better
working habit. They started contributing early in the
project and had relatively even work curves.

• Component developers have limited focus. Not
surprisingly, most of the CVS operations of
component developers were modifications to a small
set of files, with relatively few collisions with their
teammates.

Red Flags:

1 There were a few variations to the team size: 1 or 2 teams had 3 or 5
members.

• Underuse of CVS. Most members used CVS very
little in the early phases, and they exhibited an
irregular workload curve – long idle times
interleaved with sudden peaks before deliverable
deadlines. This pattern is problematic because we
found that it often is either a symptom of
under-contribution or a source of future collisions.

• Multi-way collisions. Collisions usually involved
more than two members. This pattern may be
indicative of high coupling, poor modularization, or
poor division of labor.

• Watch for merges. Most files with collisions had
earlier successful merges. This pattern seems to
suggest that when successful merges of divergent file
revisions are noticed, the team should consider
redesigning their responsibilities around the affected
files to avoid future collisions.

• Miscellaneous. Several other less pervasive
problematic patterns were also identified, including
excessively large files, frequent collisions/merges,
and repeated alternating file additions and removals.

V. ANALYZING OPEN-SOURCE DEVELOPMENT:

A CASE STUDY

Open-source software is developed according to the
“bazaar” model of distributed software development, as
characterized by Eric Raymond [17], where the source code
is allowed to be studied, modified and redistributed. It
enjoys considerable patronage as the chosen development
model for a number of well-known and widely-adopted
projects including the GNU/Linux kernel, Apache and
Mozilla [15]. Beyond these long-term, large-scale projects,
the open-source process model is adopted by hundreds of
smaller, more short-term projects. These projects, created
and managed by several volunteers with limited experience,
are comparable to the student projects that have been
analyzed. Therefore we wanted to investigate to what extent
the team behavior was similar or different. Thus, the new
case study was designed with two goals in mind:

1) to gauge whether the CVSChecker tool is useful for
analyzing open source projects and whether its
functionality is sufficient to reveal interesting
information in the behavior of teams following this
type of process; and

2) to investigate whether the team-collaboration and
role-specific patterns identified in the initial case
studies are applicable, and identify new patterns that
are possibly unique to open-source projects.

To achieve these goals, we identified several open-source
projects comparable to the student projects we had studied.
Putnam et al. [16] claim that small size is the key to a
successful project. We have been following this adage in
organizing the student teams, and for our first OSP case
study, looked for a similarly small open-source project with
no more than nine members (according to Belbin’s [2] “9
team roles” theory). We also decided to constraint ourselves
to Java-based projects to be consistent with the earlier
student projects. Based on these considerations, we selected
an active project, which we will refer to as ProjectA in the
rest of the paper, from www.sourceforge.net. ProjectA is a
command-line Java application that generates HTML
reports from CVS repository. This project has six

developers and its first registration date in
www.sourceforge.com is 2002-07-10. We checked out a
copy of the project’s CVS repository on 2004-12-24.
Coincidentally, it appears that all the project developers
were volunteering university students.

The “CVS log” and “CVS history” data of ProjectA was
extracted and stored in the CVSChecker database under the
same schema as the one used for the previous student
projects. There were two sub-modules under the root node,
which we refer to as module1 and module2. All the six team
members contributed to the development of module1 while
member1 was the only developer for module2. Because we
focus on team collaboration and module2only includes
images or html files instead of program files, we focus on
module1 in this paper.

The student case studies lasted for approximately two
months, with designing and coding as the two main
activities; the requirements were fairly well defined by the
instructor. The project deadline could be considered as
equivalent to the first product release date with stable,
complete end-to-and functionality. Most OSPs usually have
an initial release followed by long maintenance periods with

several new releases. It would have been impractical to
constraint the OSP length to be similar to the student
projects’ length. Therefore, we focused on the initial
development phases leading to the first couple of releases.
The implication is that we had to figure out when the initial
development phase ended and when the maintenance phase
began in the OSP. This information can usually be retrieved
from the supplementary project records, but it is not always
accurately recorded. Fortunately, locating the various
milestones, whether or not they coincide with explicit
releases or documented in project records, based on CVS
data is an important function of CVSChecker.

A. Inferring Development Milestones

CVSChecker generated visualizations for module1 at the

four levels mentioned in Section 2. Fig. 1 shows the
temporal distribution of CVS operations for each member
while Fig. 2 shows the distribution of CVS operation types
for each member for this module.

Fig. 1. ProjectA: temporal distribution of CVS activity from 2002-07-11 to 2004-12-24 for each member

Fig. 2. ProjectA: distribution of operation types from 2002-7-11 to 2004-12-24 for each member

From Fig. 1, we can make two interesting observations.
a) There are several peaks near days 48, 260, 520,

600, 830, etc. These dates should be significant

and they should be examined more closely.
b) Member1 was very active throughout, especially

after day 260. Member4 was very active before

day 260, but did almost no work later. Anonymous
developers had a long idle phase after day 350, and
resumed recently. Member6 and member2 almost
did not have any traces before day 260.

From Fig. 2, we observed the following:
a) The total number of CVS operations of member1

was far greater than that of his teammates;
similarly the number of his addition and
modification operations was larger than those of
his teammates.

b) Anonymous developers performed only three
operation types: O (checkout), P (patch), W
(removal of local file copy because file has been
deleted from repository).

c) Member2 almost had no CVS trail at all.
It seems, therefore, that member1 and member4 could

be the two core developers and day 260 could be an
important milestone. According to the project history, the
release date of version v0.1.3 is 2003-03-26. Since we
want to focus on the initial development phase, we first
separate the history into two main phases by this release
date: Phase 1 (from 2002-07-11 to 2003-03-26) and
Phase 2 (from 2003-03-26 to 2004-12-24).

B. Focusing on the Initial Development

Zooming in on Phase 1, we made the following
observations:

a) Member1 still had the most CVS operations in this
phase. More specifically, there were two busy
periods for member member1. The first was from

day 25 to day 50. Remarkably around date 48,
there was a significant peak. The second peak
covers the days just before the release of v0.1.3.

b) Member4 had an almost equally large number of
operations according to Fig. 2. There were also
two active periods for member4: one was around
day 30 and the other was around the days
approaching the release of v0.1.3.

c) There was a long, relatively quiet period from
around day 75 to day 200. Only member4,
member5 and anonymous developers had a few
sporadic actions during that time.

d) During Phase 1, no P (Patch) operations were
performed, which is not surprising since this is the
initial release of the system and outside
contributors did not have the opportunity to
participate to the project yet.

e) Most successful merges and collisions operations
in this project were caused by member5, and
almost all of them happened in Phase 1. This may
indicate that the responsibilities of this developer
are not clear since he appears to be interfering with
the development of other members.

The blown-up CVSChecker charts for Phase 1 (not

shown) indicated that just before day 50 could coincide
with another project milestone. We consulted the project
records and figured out that day 46 (August 25 2002) was
the delivery date of v0.1.2.b. In order to see the details
before this release, we zoomed in on a smaller period.
The result is shown in Fig. 3.

Fig. 3. ProjectA: temporal distribution of CVS activity for each team member from 2002-07-11 to 2002-08-25

From the distribution of operations in this sub-period

(not shown), we realized that the contributions of each
member was not remarkably different than they were in
the enclosing period, Phase 1. However, Fig. 3 quickly
revealed that the days between day 25 and 30 constituted
another peak period in development activity. Moreover,
two core developers (member1 and member4) had an
overlap around this period. Could it be that the former
was handing over the project leadership to the latter?

Records showed that on day 32 (August 11 2002), a
new version, v0.1.1.a, was released. Because this date
coincided with the only peak before this release date, we
identified the period from 2002-07-11 to 2002-08-11 as
the initial development phase for comparison with the

previous student projects. Afterwards, most likely the
maintenance and updates started. Therefore, we decided
that the team collaboration and individual performance
patterns of this new period can be compared to the student
case studies, which did not involve maintenance and
updates. Figs. 4-6 drill down again to illustrate what
really happened in this new period. Fig. 4 shows the
operation type distribution for each member while Figs. 5
and 6 show file views for this period. In Fig. 5, each bar
indicates a file, with differently colored sections whose
lengths are proportional to the number of operations for a
specific category of operations. Files removed are plotted
below the x-axis for easy identification. In Fig. 6, the
differently colored sections of the bars represent team

members and the heights of the bars modified lines of
code (LOC). Added LOC are plotted above the horizontal
while deleted LOC are plotted below it.

While comparing Fig. 4 with Fig. 2 confirmed our

hypothesis of a handover of leadership, Figs. 5 and 6 also
revealed several other patterns that were identified in the
academic case studies. We discuss these next.

Fig. 4. ProjectA: distribution of operation types for each member from 2002-07-11 to 2002-08-11

Fig. 5. ProjectA: distribution of operations by type, on each file from 2002-7-11 to 2002-08-11

Fig. 6. Added and Deleted LOC of each member, on each file from 2002-7-11 to 2002-08-11

C. Patterns Extracted

Applying the heuristics developed during the analysis of

the student projects, CVSChecker extracted the following
patterns for ProjectA.

Factual Patterns:

• Leaders vs. component developers. Member4 and
member1 s are team leaders. Comparing the initial
development phase with the visualizations from later
phases, it appears that member4 was the team leader in
the initial development phase, but did not manage the
project after v.0.1.2.a was released. After this release,
member1 took over the lead role. This result generated
by the CVSChecker was confirmed by project records.
As for component developers, except for member1,
nobody else independently took charge of individual
files. This is different from what we have observed in
the academic case studies, where multiple team
members almost exclusively owned specific files.

• Leaders contribute heavily. Leaders performed a large
number of CVS operations (especially modifications)
that exceeded that of their teammates in their respective
phases. This pattern was also pervasive in the academic
case studies.

• Leaders are architects. Similar to those in student
projects, the leaders in this project added a lot of new
files and therefore had the largest impact on the overall
structure and evolution of the project.

Red Flags:

• Multi-way collisions. As in the student case studies,
more than two members were involved in collisions. 11
files were modified by at least three members. The
numbers of collisions and merges on these files were
higher than that of other files. This pattern is apparent
in Fig. 6.

• Watch for merges. We did not observe this pattern as is
in the open-source case study because we think the
project had a small code base before it was moved to
sourceforge. However, the sourceforge initial
development phase was still responsible for the files
that were overall subjected to the highest number of
collisions and merges. These files were not removed
later, and continued to cause collisions in the later
phases. This variation on the original pattern is visible
from Fig. 5.

We did not observe the pattern “underuse of CVS” in
ProjectA . In addition, since there was only one component
developer and only for a limited period, patterns relating to
component developers were not present. The pattern
“leaders contribute steadily” was not detected either, and
perhaps this pattern is unique to the course projects in an
academic setting and is not typical of OSPs. However,
Michlmayr [14], argues that steady contribution is a factor
in an OSP’s success, and perhaps the absence of this pattern
constitute an early warning sign.

There appears to be significant overlap between the
behavior of the open-source team and that of the student
teams studied earlier. Given that students also constitute the
main contributors in ProjectA, it may be that the
contributors’ background is a more decisive characteristic

of development style than the process model adopted by the
team.

An important differentiator between the academic case
studies and the OSP case study is that contribution was
mandatory in the former while it was voluntary in the latter.
The absence of certain patterns in the OSP case study could
perhaps be explained by this differentiator.

One pattern that was observed in the OSP project, but not
in the academic case studies was “inactive developer”,
where members drop in and out of the project in different
phases. Whether the tool can extract other, more interesting
patterns unique to OSPs is yet to be investigated.

VI. SUMMARY AND CONCLUSIONS

The open-source software development process is being
increasingly adopted by teams of various sizes and skills for
projects of variable durations and complexity. Although
compelling success stories exist, it is still relatively
unknown how the open-source lifecycle model applies to
projects of various types. The CVSChecker tool is a
component of the JRefleX system [21]. It analyzes the
nature of the developers’ roles by collecting, visualizing,
and analyzing historical project data from a CVS repository.
In this paper, we discussed a case study using CVSChecker
on an open-source project (OSP). We selected a small-scale
project in order to compare it with previous case studies that
were conducted with university student teams undertaking
projects of similar complexity and duration. Using
CVSChecker, we were able to identify the project
milestones, the core developers, and their main roles. We
discovered that a number of patterns identified in the
student case studies also occurred here.

Based on this OSP case study, we believe that
CVSChecker could be useful for analyzing small OSPs
although it was initially developed as a pedagogical aid.
First the tool enabled us to identify evolving contributor
roles (leaders and component developers) exclusively from
the contributors’ CVS activities. That OSPs exhibit a
non-uniform, centralized contribution pattern has been long
hypothesized, and documented for well known projects
[15]. This analysis suggests that similar patterns can also be
inferred for smaller projects using only information about
source code repository actions. Second, the tool enabled us
to identify significant dates along the project life cycle,
suggesting that it is possible to infer project milestones from
high-level data even in the absence of accurate project
records. Next, recursively zooming in shorter periods of
interest and applying the heuristics developed in the context
of the academic case studies, we were able to recognize a
number of similar patterns in the selected OSP.

With a coherent view of the team collaboration and the
evolution of the project’s software assets, we expect that
technical leads and educators will be able to better steer
their projects and provide relevant, timely, and informative
feedback. Furthermore, we believe that teams who are
aware of their own collaborative process, reflect upon their
progress, and make adjustments as needed are more likely
to make the right decisions when new challenges arise. In
the open-source context, the identification of patterns of
volunteer contributions could enable preventive measures
that maintain the project’s health [14].

In the future, we plan to conduct further case studies of
sets of OSPs with similar characteristics to evaluate the
validity of these results and identify new patterns. We
would also like to analyze the data from maintenance phases
to see whether different phases exhibit different patterns.
Additional visualizations are currently being developed to
display process-related information from several new
perspectives.

VII. ACKNOWLEDGMENT

This work has been conducted in part while the first
author was at the Institute for Information Technology,
National Research Council Canada, as a participant in the
SEG Graduate Student Workshop. The authors wish to
acknowledge the Software Engineering Group of NRC–IIT
for their support.

VIII. REFERENCES

[l] R. Agrawal and T. Imielinski and A. N. Swami,

“Mining Association Rules between Sets of Items in
Large Databases,” in Proceedings of the 1993 ACM
SIGMOD International Conference on Management of
Data, Washington, DC, May 26-28, 1993

[2] M. Belbin, Management Teams -- Why they succeed
or fail, John Wiley and Sons, New York, 1981.

[3] J. Bevan, IVA, “Instability Visualization and
Analysis,” in Proceedings of ISR – NASA Ames
Collaborative Software Engineering Tools Workshop,
Irvine, August 2002.

[4] D.Cubranic, G. C. Murphy, “Hipikat: Recommending
pertinent software development artefacts,” in
Proceedings of the 25th International Conference on
Software Engineering (ICSE), Portland, Oregon, May
2003, pp. 408 – 418.

[5] H. Gall, M. Jazayeri, J. Krajewski, “CVS release
History Data for Detecting Logical Couplings,” in
Proceedings of International Workshop on Principles
of Software Evolution (IWPSE), Helsinki, Finland,
Sept. 2003.

[6] D. German and A. Mockus, “Automating the
Measurement of Open Source Projects,” in
Proceedings of ICSE '03 Workshop on Open Source
Software Engineering, Portland, Oregon, May 3-10
2003.

[7] E. Hassan and R. C. Holt, “Studying The Evolution of
Software Systems Using Evolutionary Code
Extractors,” in Proceedings of International
Workshop on Principles of Software Evolution, Kyoto,
Japan, September 6-7, 2004.

[8] http://ali.as/devel/cvsmonitor
[9] http://bloof.sourceforge.net
[10] http://codestriker.sourceforge.net
[11] http://cvsplot.sourceforge.net

[12] Y. Liu, E. Stroulia, “Reverse Engineering the Process
of Small Novice Software Teams,” in Proceedings of
the 10th Working Conference on Reverse Engineering
(WCRE), IEEE Press. Victoria, Canada, Nov. 2003.

[13] Y. Liu, E. Stroulia, K. Wong, D. German, “Using CVS
Historical Information to Understand How Students
Develop Software,” in Proceeding of International
Workshop on Mining Repositories (MSR), Edinburgh,
Scotland, UK, 25th May 2004.

[14] M. Michlmayr, “Managing volunteer Activity in Free
Software Projects,” in Proceedings of the FREENIX
Track: 2004 USENET Annual Technical Conference,
Boston, MA, June-July 2004.

[15] A. Mockus, R. Fielding, J. Herbsleb, “Two Case
Studies Of Open Source Software Development:
Apache And Mozilla,” ACM Transactions on Software
Engineering and Methodology, volume 11, number 3,
2002, pp. 309–346.

[16] L. Putnam, W. Myers, Five Core Metrics: The
Intelligence behind Successful Software Management,
Dorset House, 2003.

[17] E. Raymond. The Cathedral & the Bazaar, Musings on
Linux and Open Source by an Accidental
Revolutionary, O'Reilly UK 2001.

[18] G. Robles, S. Koch, J. M. Gonzalez-Barahona,
“Remote analysis and measurement of libre software
systems by means of the CVSanalY tool,” in
Proceedings of the Second International Workshop on
Remote Analysis and Measurement of Software
Systems (RAMSS '04), ICSE 2004, Edinburgh,
Scotland, 2004, pp. 51-55.

[19] Q. Tu and M. W. Godfrey, “Growth, evolution, and
structural change in open source software,” in
Proceedings of International Conference on Software
Engineering. Proceedings of the 4th International
Workshop on Principles of Software Evolution,
Vienna, Austria, 2001, pp.103 - 106.

[20] M. Winter, Developing a group model for student
software engineering teams, Master thesis, Univ. of
Saskatchewan, 2004.

[21] K. Wong, W. Blanchet, Y. Liu, C. Schofield, E.
Stroulia, Z. Xing, “JRefleX: Towards supporting small
student software teams,” in Proceedings of Eclipse
Technology exchange workshop, OOPSLA2003,
Anaheim CA, Oct. 27 2003.

[22] Z. Xing, E. Stroulia, “Design Mentoring based on
Design Evolution Analysis,” in Proceedings of Eclipse
Technology eXchange workshop, OOPSLA2004,
Vancouver, British Columbia, Canada, October 25,
2004.

[23] T. Zimmermann, S. Diehl, A. Zeller, “How History
Justifies System Architecture (or Not),” in Proceedings
of the Sixth International Workshop on Principles of
Software Evolution (IWPSE'03), Helsinki, Finland,
Sept. 2003.

