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Generating Smooth Surfaces with Bicubic Splines
over Triangular Meshes:
Toward Automatic Model Building from Unorganized 3D Points

Toshio Ueshiba
Intelligent Systems Division
Electrotechnical Laboratory
Tsukuba-shi, Ibaraki, 305-8568 Japan
ueshiba@etl.go.jp

Abstract

This paper presents a new algorithm for constructing
tangent plane continuous (G') surfaces with piecewise
polynomials over triangular meshes. The input mesh can
be of arbitrary topological type, that is, any number of faces
can meet at a mesh vertex. The mesh is first refined to one
solely with quadrilateral cells. Rectangular Bézier patches
are then assigned to each of the cells and control points are
determined so that G' continuity across the patch bound-
aries is maintained. Since all the patches are rectangular,
the resulting surface can be rendered efficiently by current
commercial graphic hardware/software. In addition, by ex-
ploiting the fact that all the faces of the original mesh are
triangular, the degree of each patch is optimized to three
while more general method dealing with arbitrary irregular
meshes requires biquartic patches. Several surface exam-
ples generated from real 3D data are shown.

1 Introduction

Recent progress in range sensing technology has made
it possible to directly capture 3D information of an object
with great accuracy. This development makes it possible to
create CAD models of existing organic or sculptured shapes
automatically. Once such models have been acquired, it is
possible to incorporate or modify existing parts into a new
design, which is referred to as reverse engineering.

An important issue in creating a CAD model is the
descriptive ability of its representation. Tensor-product
non-rational/rational B-spline surfaces{3, 10] are the most
widely used representations for modeling free-form objects.
There is, however, a severe limitation with these surfaces;
they can model only a small subclass of surfaces which are
topologically isomorphic to planes or tori. This is because
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the tensor-product surfaces have a regular structure, that
is, every patch is quadrilateral (4-sided) and exactly four
patches meet at every vertex. In order to model a wider
class of objects, therefore, a surface reconstruction method
over irregular meshes needs to be developed.

Maintaining smoothness between the patches is a key
problem in shape description with piecewise polynomi-
als. B-splines can represent complicated free-form surfaces
while automatically keeping parametric continuity (C™).
Surfaces defined over irregular meshes, however, cannot at-
tain C™ continuity because no uniform parameterization is
possible. This difficulty can be overcome by relaxing the re-
quirement of parametric continuity to that of geometric con-
tinuity (G™). As for first derivatives, G* continuity means
that the associated surface normal varies smoothly when a
point moves over the surface. In this paper, we shall restrict
our concern only to G continuity.

In order to make the problem tractable, most of the meth-
ods for constructing G! surfaces proposed so far refine
meshes of arbitrary topology into simpler ones instead of
directly handling them in their original forms.

The first approach is to refine general irregular meshes
into ones allowing faces with arbitrary number of edges
but vertices of 4-valent only. (The term valence denotes
the number of faces meeting at a vertex.) S-patch([8] yields
G! surfaces over meshes of this type and its quadratic ver-
sion has been successfully applied to smooth surface recon-
struction from unorganized range data sets[13]. Computing
the control points of S-patches, however, is computationally
rather expensive for faces with a large number of edges, e.g.
over 6 or 7. Moreover, most of the current graphic hardware
supports high-speed rendering only for tensor-product non-
rational/rational B-spline surfaces. It is therefore desirable
that the mesh consists of only quadrilateral faces.

Another approach which exhibits duality with the above
meets this requirement; An n-sided polygon can be parti-



tioned into n quadrilaterals by inserting new vertices at the
midpoints of each eédge and connecting them with the cen-
troid of the n-gon. Applying this midpoint refinement, we
can convert general irregular meshes into ones with solely
quadrilateral faces. Moreover, this mesh has a distinctive
feature that every vertex adjacent to the irregular (non 4-
valent) vertex is regular (4-valent) which makes it simple
to construct a smooth surface over this mesh. Loop[7] pro-
posed a G surface construction technique with polynomial
patches. It requires, however, not only quadrilateral but also
triangular patches of up to degree four. Peters[9] presented a
simple method of generating smooth surfaces with biquartic
(4 x 4 degree) rectangular Bézier patches. Reif[11] showed
it possible to construct a G spline surface with biquadratic
patches. In order to apply this technique, however, the re-
finement process must be repeated until all the irregular ver-
tices are surrounded by three or more layers of regular faces.

In contrast to the above-mentioned techniques dealing
with general meshes, we here propose a novel method of
constructing G surfaces over triangular meshes. Since the
triangular mesh is the most common polygonal representa-
tion for objects with general topological type, it is sensible
to develop a method specialized for triangular ones. The
input to our algorithm is a triangular mesh built from multi-
view 3D data[4, 12, 1]. Each triangle in the mesh is then
partitioned into three quadrilaterals called cells. These cells
are represented by tensor-product bicubic Bézier patches.
All the control points are determined so that G! continu-
ity is maintained between adjacent patches. By exploit-
ing the fact that all the mesh faces are triangular, degree
of the patches is constrained to three while the more gen-
eral method[9] requires patches of degree four. In addition,
since all the patches are rectangular, the generated surface
can benefit in rendering from current commercial graphic
hardware/software in contrast to the G! triangular splines

'[6] composed of Bézier triangles up to degree-6.

This paper is organized as follows: We begin by deriving
sufficient conditions for G! continuity between two Bézier
patches in section 2. The first step of the proposed algorithm
is to refine given triangular meshes and compute intermedi-
ate points called generating points. This is discussed in sec-
tion 3. Section 4, the key part of this paper, presents a new
algorithm to compute control points of bicubic G? spline
surfaces defined over the refined meshes. We validate the
proposed method through experiments in section 5. Finally
we give concluding remarks and the future direction of our
work.

2 Sufficient conditions for G' continuity be-
tween Bézier rectangles

In this section, we first derive sufficient conditions for
G continuity between two Bézier patches. Then we re-
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interpret these conditions in terms of constraints at mesh
vertices.

2.1 Continuity between two Bézier patches

We here consider two rectangular d x d degree Bézier
patches defined by

d d

S(u,v) = >3 B(u)B(v)Py
i=07=0 (w,v € [0,1])
i=05=0

where P;; and P;j are control points in 3-space and

Bé(u) = (‘Z) w(l-wdt (E=0,...,d)

are Bernstein polynomials. Suppose that these two patches
meet at common boundary B which forms a degree-d
Bézier curve S(u,0) = S’(u,0). This implies S and
S’ share common control points along B, that is, P;y =

o (i =0,...,d). Versal and transversal derivatives of S
and S’ along B are then computed by[3]

as 88’ S
3, (w0 = Z-(u,0) = ngi (u)(Pis10 — Pio)
as &
_a—(uv 0) = dzBid(u)(Pil —Py)
v i=0
s’ ¢
5o w0) = dy " Bi(u)(P}, - Py).
i=0

Since a tangent plane of S (resp. S’) at a point on B is
spanned by g% and g—f (resp. %—i’ and %55:), tangent plane
(G1) continuity between S and S’ implies co—plgnarity of
these three vectors, i.e. ¢(u)‘g—f(u,0) + ¢’(u)%—51;-(u,0) =
w(u)g—i(u, 0) holds for some scalar-value functions ¢, ¢’
and . We here consider a special case in which

d d
1 d 1 d ’
3 2 BiWPu=Pu) + 53 Bl -~ Pu)

1=0
. d—1
= {M1-wu)— pu} Z B;]H (W)(Piy10 ~ Pio)
i=0

holds for unknown scalars A and p. Noting that the right
side of the equation above can be rewritten as

d-1
{21 =) — pu} Z BFN(u)(Piy10 — Pio)

i=0



Figure 1. Continuity between two Bézier
patches.

d-1
= SO - wBF @) - B (0} (Pso - Pro)
i=0
d-1 . .
d—i i+1
= {/\TBf(U) - uTBfH(u)} (Piy10—Puo)
i=0
¢ i
= ZBii(U) { (1 - E) A(Pir10 — Pio)
i=0
)
_E,U(Pi'o - Pi*lo)}
we have
P+ P 3 i i
— = EILPi-—10+ L=sp—{1-7 ArPao

0,...,d)

.+ (1 - %) )\Pi+10 ('L
by equating and rearranging the coefficients of Bf(u).
Equation (1) yields sufficient conditions for G' continuity
between the two patches S and S’.

2.2 Tangent and twist constraints

Now we rewrite (1) for ¢ = 0 as

] .P()l + P6]

5 = (1 - A)Poo + APy

)
which implies that the midpoint of Pg; P}, is on PgoP1o
and its separation from Py is represented by X (see Fig.
1). We therefore call A displacement factor. In addition, the
plane defined by Poo, P19, Po1 and Py is a tangent plane

of the resulting G surface at Pog. We therefore call (2)
tangent constraint.

M
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Figure 2. Triangles partitioned into three
quadrilaterals.

Similarly, rewriting (1) for ¢ = d gives the tangent con-
straint at the other end P4 of the boundary and p is a dis-
placement factor at P 4.

(-

)ojr

We also rewrite (1) forz = 1 as
I
Ep 1-£ -
00 + P
3)

d { d
+(1-3)ap
d 20-

Since Py, (resp. P’u) determines the twist, that is, cross
derivative with respect to two parameters v and v, of S
(resp. S') at Pgy, we call (3) mwist constraint.

Similarly, the twist constraint at P4 is given by rewrit-
ing (1) fori =d — 1.

P+ P’ll
_——2 =

In

3 Mesh refinement and computation of gen-
erating points

Suppose that a closed triangular mesh with arbitrary
topology is given. The first step of the proposed surface
construction algorithm is to refine this mesh into one solely
with quadrilateral faces called cells. This is accomplished
by inserting a new point (type G) at the centroid of each
triangular face and connecting it with three points (type M)
inserted at the middle of the surrounding edges. Though
valence, i.e. the number of faces meeting at a vertex, of ver-
tices of the original mesh can be an arbitrary number greater
than two, the valence of type G and type M vertices are al-
ways three and four respectively.

Next, we compute the intermediate points called gen-
erating points and smooth the mesh using them. We here
adopt a simplified version of Peters’ blending method([9].

Let U be a vertex of the original mesh and M and M’
denote midpoints of two edges incident on U. In addition,
let G represent the centroid of the triangle involving these
edges (see Fig. 2). Then the generating point for the quadri-
lateral UM G M/ is computed as a convex combination of



Figure 3. Labeling scheme for Bézier control
points.

these four points such that

] (1-a)*U+( -a)aM

+(1 - a)aM’ + a*G 0<a<l). &
The parameter a is called blend ratio and controls the shape
of the final surface. If a increases, C is pulled toward G
and a surface with round shape results. Conversely, C ap-
proaches U for small value of a and produces a flat shaped
surface close to the original triangular mesh.

We then smooth the mesh by shifting U toward the cen-
troid of n generating points C; (j = 0, ..., n—1) surround-
ing it:

n—1
UE(l—a)ﬁ+%ZCj O<a<l) (5
: j=0

where n stands for valence of U. The shift parameter o also
plays a role of shape controller as well as a. :

4 Bicubic G' spline surfaces over refined
meshes

In this section, we construct a G' continuous surface
over the refined mesh obtained in the previous section. We
assign a bicubic Bézier patch to each quadrilateral cell of
the mesh and determine control points so that the adjacent
patches join in a tangent plane continuous manner.

We use the labeling scheme shown in Fig. 3 for control
points of the Bézier patches. U defined by (5) stands for
an n-valent vertex of the refined and smoothed mesh. We
use subscript j to index control points surrounding U. V;
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Figure 4. Configuration of displacement fac-
tors.

represents a 3-valent vertex corresponding to the centroid of
the original triangular face. We also introduce superscript &
to index control points around V;. Indices j and £ must
be taken as modulo n and 3 respectively. W is a 4-valent
vertex which corresponds to the midpoint of the original
edge.

Since all the patches are bicubic (d = 3), we have four
constraints derived in §2.2 for each boundary between two
patches: two tangent constraints and two twist constraints at
both ends. Consequently, satisfying tangent and twist con-
straints at every vertex of the mesh is enough to guarantee
overall G continuity.

4.1 Displacement factors

Displacement factors introduced in §2.2 must be set to
appropriate values to attain G! continuity of the surface.
Figure 4 shows their configuration used in the proposed al-
gorithm. For U and V;, we set displacement factors to
the same value A and p respectively for every direction. For
‘W, however, four displacement factors are chosen to be dif-
ferent values: zero for boundaries toward U and U’, v to-
ward V; and ~v toward V;_,. If v is non-zero, two patch
boundaries toward U and U’ form a bend at W. The pa-
rameter v introduces an additional degree of freedom which
is essential to satisfy twist constraints at W. This will be
clear in §4.2.

4.2 Construction of the control points

Now the control points are determined so that tangent
and twist constraints are satisfied at every vertex.

First, we consider constraints at n-valent vertex U. From
the configuration of the displacement factors shown in Fig.
4, tangent and twist constraints ((2) and (3) respectively) at



U have the following forms:

A1 +A4
2
= (1-ANU+ A (G=0,...,n-1), (6)
R]'_1 +R]'
2
2 2 .
= (l—g/\> Aj+§/\Bj (]=0,...,1’l—1). @)

Following Peters’ scheme[9], we define new intermedi-
ate points D; (j = 0,...,n—1) from the generating points
Cy,...,Cp-1around U as

n—1 .
2n(j — k
D, = U+ EZCOSMCJC
n n
k=0
0<a<l;5=0,...,n-1). (8)

Since D; satisfies the following relation (see appendix A)

:<1

tangent constraints (6) are satisfied by defining A and A ; as

D,_,+D; 27
—gm1 7 gt — COs —
n

2
5 )U—f—cos?D]-, ()

2
A= cos—z
n
(10)
D, ; + D
A, = ——’12—+—’ (G=0,...,n-1)

The twist constraints (7) are then satisfied by defining B;
and R; as

Ej_l -+ Ej
2

(1-2) 0,
an

respectively where E; is another intermediate point.
Though E; can be determined arbitrarily from the view-
point of G* continuity, we choose

B;

il

9 (7=0,...,n-1)

R; 3

"

AE;

1 1
50]' + ED]

which produces, in our experience, smooth surfaces with
pleasing shape for a wide range of values of the blend ratio.
Next, we rewrite tangent constraints (2) for the internal

vertex V; as

P*l 4 pEH!
% =(1-p)V;+uPs (k=0,1,2). (13)

It is easy to confirm that (13) is satisfied by defining V;
as the centroid of three points P?, PJI- and P? and setting
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pt = — 1. We therefore determine /1, Pf and V; as

1
=3
DL Dl
Py = % (k=0,1,2) (14)
0 1 2
v, = E} + E] + E
3

where Ef (k = 0,1,2) are the intermediate points defined
by (12) surrounding V ;.

Thirdly, let us consider constraints at W. Here we drop
superscript k for notation convenience. From the configura-
tion shown in Fig. 4, the tangent constraints (2) become:

Qm+Q = W (15)
2
EL?l = (1-)W+0Q;
= (1+v)W -vQ, ;. (16)

On the other hand, also from the configuration shown in
Fig. 4, the twist constraints (3) in four directions toward U,
Vj—l’ UI and V]' are

Tj.] + Tj _ A A )

2 = 3W—f- 1 3 B; a7
Tja+ T, 1 7 2 2
f = _6W+ 6+§U Qj_lf'gupj—l(ls)

T , + T N N
T o Zwa(1-2) B 19
2 3 +( 3 ) I (19)
T, + T; 1 7 2 2
it R ~_z 41 E0P. @
5 6W+<6 31/)Q1+3u 5 (20)
respectively because, from (14), we already know that the
displacement factors at V; and V;_; equal —-%. Noting
that (17) — (18) + (19) — (20) = 0 holds, we have
1 A+ N 72 7 2
- W-_|[-+2 (=== )
(3 3 ) (6 * 3”) Q- (6 3”) Q;

/\I

3 I/(P]'—Pj_l)=0

(2)s (i

which produces

2
)%=

A+ XN 2 A+XN 2
(1 — _6 + §IJ) Qj—l + (1 - 6 - §U> Q]
A X 2
= (1 — §) B]‘ + (1 — —3—) B; — EU(P]' — P]‘_l) 1)

by using (15) and rearranging. On the other hand, eliminat-
ing W from (15) and (16), we obtain

(1-v)Q;_1 +(1+v)Q; =B, + Bj. (22)



Equations (21) and (22) can be regarded as a linear system
with two unknowns Q;_; and Q;. If v is zero, this sys-
tem has no solutions unless A = A’ holds, which means the
valence of U is equal to that of U’. Parameter v therefore
plays an essential role in our surface construction procedure
to guarantee the existence of the solution even if the valence
of U is different from that of U’. The solution for Q;_; and
Q, is given by

1 1
U1 = o H(f" - Q—C}Bf
’ 1 ’
+{(5—/\)+%}Bj
RO NNE R
QG = oox H““”*%}BJ’
/ 1 ’
+{2 - 2c(A = \)}P, — P,_1)
where v is determined as
v=cA-X) (24)

for an arbitrary non-zero scalar ¢ (see Appendix B).
Once Q;_; and Q; are computed, we can set four twist
points around W as follows:

( J-7
Tj—l = Kj—l + >
J-7
T& = I(j + )
P (25)
T}4 = Kﬁ—l“ B
J-J
Tg = I(j —»‘*5——

where J,K;_1,J and K; are the right sides of equations
(17), (18), (19) and (20) respectively. Noting that (21)
means (17) + (19) = (18) + (20), we can easily confirm
that (25) satisfies (17) through (20).

Finally, we consider twist constraints (3) around V;. Let
v% (k = 0,1,2) be displacement factors at three vertices of
W type around V. Noting that p = —%, we have three
twist constraints

k+1 k—1
SJ. +Sj
2
vk 4

_VJ.+<___

3 3

vk pr_Lokt (k=
5 ) Fi—3Q *k=0,1,2)026

which can be uniquely solved for S* (k = 0,1, 2) as
4

ve

3

Vk—l

k=1 _ 1 k1
)R-

k-1
14
Sk =

{5

3
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vF

4 Vk k 1 k
—{3V1+( —§>Pj—§Q1

3
I+l k+1
v 4 v k+1
+ { T) Pit

1
V. 2_ 2ok b7
T Vit (3 3Q7 @D
4.3 - Summary of computation of Bézier control
points
We have described our procedure to compute control
points so far, which can be summarized as follows:

1. For each cell, compute intermediate points D; and E;
by (8) and (12) respectively.

. At each vertex U, compute the displacement factor A
and surrounding control points A ;, B; and R; by (10)
and (11).

. Ateach 3-valent vertex V;, compute the displacement
factor u, control points Pf and the vertex itself by (14).

. At each 4-valent vertex W, compute the displacement
factor v and surrounding control points Q;, T, etc.
by (24), (23) and (25). The vertex itself is determined
by (15).

. At each 3-valent vertex V;, compute Sf determining
twists by (27).

5 Experiments

The proposed algorithm was implemented and validated
through experiments. The input meshes were generated by a
volumetric triangulation method[12] in different resolutions
from unorganized 3D point sets captured by NRCC range
Sensor.

Figure 5 shows the original input mesh with 290 trian-
gles and several views of the generated surface. All the sur-
faces are rendered with flat shading. Though the blend ratio
a may vary vertex by vertex, we here set them to an uniform
value: @ = 0.7. The shift parameter o was fixed to 0.8. It
was proved that the bending parameter ¢ in (24) scarcely
affects the surface shape for the values ¢ € {0.5,2.0]. We
therefore uniformly set ¢ = 1.0. The CPU time required for
computation of the control points was within a second on a
Sun Ultra 2 workstation.

The shape of the resulting surface can be controlled by
varying the blend ratio a. Figure 6 shows the generated sur-
faces and corresponding control nets for two different val-
ues of a: 0.15 and 0.9. It can be observed that the density of
the control points is high in the neighborhood of the edges
of the original triangular mesh for a small a value, which
produces a flat shaped surface. On the other hand, the con-
trol points distributes more uniformly for large a and the
round shape results.



Figure 5. The original mesh (duck) with 290 faces and generated surface: « = 0.7, a = 0.8, c=1.0

Three more examples are displayed in figures 7, 8 and 9.

6 Conclusions

A new algorithm for constructing a tangent plane con-
tinuous spline surface has been presented. This algorithm
can create G surfaces with bicubic Bézier rectangles over
closed triangular meshes of arbitrary topological type. Each
triangle is partitioned into three quadrilaterals and rectan-
gular Bézier patches are assigned to them. Because the fact
that all the original mesh faces are triangular is fully ex-
ploited, the degree of each patch is optimized to three while
the more general approach[9] requires degree four patches.
The construction procedure is affine invariant, that is, an
affinely transformed G surface can be obtained by apply-
ing the same transformation to the control points. .In addi-
tion, since all the control points are computed locally, the
algorithm is very efficient. The surface shape can be intu-
itively controlled by changing values of blend ratio.
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An important problem not solved yet is to extend this
method so that the meshes with boundary or non-closed
meshes are allowed. The surface should interpolate the
boundary curve while satisfying some boundary conditions
specified in terms of tangent functions.

In the future, we plan to apply our method to automatic
model building from unorganized range data[2, 5, 13].
In this case, mesh vertices, generating points, blend ra-
tios, shift parameters and intermediate points are adjusted
through some optimization process so that the resulting sur-
face well approximates the given data. In addition, some
procedure which adaptively splits or merges mesh faces ac-
cording to the distribution of the input data points should be -
incorporated in order to attain the best approximation with
small storage. The proposed algorithm would provide an
initial guess for this process.



(a) Generated surface: a=0.15,00=0.8,c=1.0

==
N wyb\\
g >

% l%\?%:@.w A

o s
7‘.$v=“;! =3

(c) Generated surface: a=0.9, a=0.8,c=1.0 (d) Control net for (c)

Figure 6. Generated surfaces and control nets for diferrent values of blend ratio.

Figure 7. The original mesh (elephant) with 352 faces and generated surface: ¢ = 0.6, a = 0.8, ¢ = 1.0
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Figure 8. The original mesh (boat) with 372 faces and generated surface: ¢ = 0.5, « = 0.8, ¢ = 1.0

Figure 9. The original mesh (grapple) with 256 faces and generated surface: ¢ = 0.5, « = 0.8, ¢ = 1.0
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B Verification of the solution (23)

Substituting (23) into the left side of (21) and using (24),
we have

A+ XN 2 A+X 2
(1*——6—+§V)Qj_l+<l——6—-—§l/)Qj

A /
= (1 - —-E‘%\_) (Qju +Qj) - EV(Q]- - Qj1)

- 10_%\_/\/ [(1 i A;Al) (2(5-\)B;

+ 2(5—/\I)B; - 4C(/\—/\l)(Pj - Pj..])}

2 Nl 1.,
—gC(/\—')\ ) {EB] - ZB] + 4(P] - Pj—l)}]

o [{ (e - 3) 26

~3=6-2+ 6-X)} B,

= e
+§-(—(5—A)’+(5—A’))}B}
_ { (1 - %A—) + %}4C(A;,\‘)(Pj - Pj—l)}
- ioT;j [{(m-’A-A')«;—

~2(-2+ (6= ) | By

+ {(10-;\4’)?%1 (G (5—X))} B,
-(3- *—gi) 1A= N)(P; - PH)]

5-X 2 5-N 2\ _,
—(T‘g)Bf+(’3—‘§)Bf

~ 2= X)(P; ~P)

A N 2
= (1 - -3-) Bj + (1 - —5) B; - g’I/(PJ‘ - Pj_]).

Similarly, substituting (23) into the left side of (22) and us-
ing (24), we have

(1- V)Qj—l +(1+ V)Qj
Q1 +Q; +v(Q; — Q).

[2(5-)B; +2(5-X)B

I

10-A=)
—4e(A=X)(P; — P1y)

1 1
+e(A-X) {EBj — =B +4(P; - Pj_l)}]

311

I

S {2(5- 2+ (A= N)}B

10-A
+{2(5-X) = (A-X)}Bj]
B, + Bj.
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