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DISCUSSION

The paper presents our efforts to date on defining a domain independent
language and set of operators for representing and manipulating models and
behaviour. We have shown that a certain domain independent operator
(BPP) can be used to automatically identify appropriately sized models
for analysis of sensor data, for diagnosis, and for planning operating mode
changes. We have also shown how the domain independent representation
supports reasoning from multiple models. Two types of interaction are
shown: sharing of knowledge about the system (planning and QP model
interacting to solve operating mode change problem); and passing of control
(diagnosis task spawned by sensor data analysis task).

A critical issue in this research is the derivation and interpretation of
dependency information from domain specific models. This issue is rea-
sonably well understood in hierarchical and non-linear planning where the
strips assumption severely restricts the manner in which variables can in-
teract.

The same cannot be said for QP and discrete event simulation. In these
domains there seems to be a complex interaction between causal relation-
ships in the system being modelled, knowledge about system state provided
in the question, the specific reasoning strategy used, and the overall goals
of the reasoning tasks. In the work presented here, dependency information
was restricted to knowledge about system state derived from the question
and causal arguments derived from the system.

One important focus of this research in the immediate future will be
to extend and formalize the derivation of dependency knowledge.

A second immediate task to be undertaken is to extend the example
to include monitoring of plan execution, and to demonstrate the method on
more complex interpretation, diagnosis and planning problems.

A third task is to reimplement the MBP representation facility and to
extend its functionality by adding an interface to a discrete event simulation
tool.

Finally, the longer term research plan is to define and test other be-
haviour preserving transformation operators which simplify models by ag-
gregation rather than pruning, and to consider operators of both types
(pruning and aggregation) which aren’t strictly behaviour preserving but
for which the divergence in behaviour must be estimated empirically.
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Figure 5: Dependency Graph and Decomposition for Planning Model

such a graph would be unmanageably large. For this reason in the planning
literature, only that portion of the graph required for a given question is
constructed (see Knoblock [5]).

In the decomposed planning model, as in the decomposed QP model,
only those strongly connected components which contain literals mentioned
in the problem or which are “upstream” of such a component need be con-
sidered. As well, the reduced planning task can be profitably solved hierar-
chically, starting with the most dependent submodel and working upstream
(for a detailed discussion of this please see Knoblock [5]).

In the current problem, pruning allows us to eliminate all references to
valve-2, pipe-1, pipe—4, pipe-5, and pump-1. Solving the reduced planning
problem results in a set of four ordinal constraints between three operators
and the initial and goal states:

Initial-state before close-valve(valvel)
close-valve(valvel) before open—valve(valved)
open-valve(valve4) before open-valve(valveb)

open-valve(valve5) before goal-state

Both this reduced problem and the full problem were solved using a non-—
linear planner called Abtweak (Yang [13]). The same solution was produced
in both cases while performance improved by 31% to 40% (in both number of
nodes expanded and in processing time). While these results must be taken
as preliminary, they do support the argument that Behaviour Preserving
Pruning of the problem prior to solution is worthwhile.

In this simple problem, the resulting non-linear plan admits only one
ordering of the operators. This will not generally be the case, and we may
exploit other system models to provide further ordering constraints and to
check the plan for feasibility.



operator preconditions postconditions
name

open— valve(v), pipe(src), pipe(snk), be- | open(v),  has-
valve(v, tween(v,src,snk), outlet(src), has-
src, snk) —has-outlet(src), —has-inlet(snk), has- | inlet(snk)

inlet(src), ~open(v)

close— valve(v), pipe(src), pipe(snk), be- | —open(v), —has-
valve(v, tween(v,sre,snk), open(v) outlet(src),

src, snk) —has-inlet(snk)
start— pump(p), pipe(src), | on(p)

pump(p, pipe(snk), between(v,sre,snk), —on(p),

src, snk) has—inlet(src)

stop— pump(p), on(p) —on(p)

pump(p)

Table 5: Planning Operator Definitions

The drain—and-isolate problem’s goal state may be expressed as an
incomplete behaviour in the QP domain

amount—-A = ((0,0), std)
outlow-B = ((0, fmaz), std)

Completion of the resulting MBP yields flow rates through the various
pipes in the extended model. These flow rates in turn determine valve
settings consistent with the goal:

—open(valve-1)
open(valve-3, valve—4, valve-5)

on(pump-1)

Note that the goal state does not stipulate the state of valves 2 and 6
since their status is irrelevant to satisfaction of the goals.

Using BPP in Planning To solve the planning problem, the Behaviour Pre-
serving Pruning operator may once again be applied. As with QP models,
the domain independent dependency graph structure is determined by com-
ponent interconnections. In Figure 5 the full graph is shown. For space rea-
sons, names have been reduced so that p: refers to pipe—i, vy refers to valve-j,
and type relations (ie. valve(?x), pipe(?x), pump(?x)) are not shown. The
edges in this graph are oriented from preconditions to effects, and all the
effects of a single operator are forced into a single strongly connected com-
ponent by linking them with bi-directional edges.

Note that it is not normally possible to exhaustively construct this
graph. In domains without a sparse topology such as our pipe network




synthesizing operating mode changes, we approach the problem in three
phases: 1) define initial, goal and possibly intermediate (planning island)
states using a detailed model of the process; 2) plan a (non-linear) sequence
of valve and pump operations to solve each subproblem identified above
and, 3) derive additional temporal constraints for these subproblems from
detailed models of the process (and possibly from heuristics, predefined
operating procedures etc.) Such hybrid approaches to planning are often
required because of the representation language used in classical planning
often too restrictive (Chapman [2]).

pump-1 valve-4

pipe-1 @ pipe-2 $ pipe-8
<O valve-1 <O valve5 << valve-6
pipe-3
pipe-9
tankA valve-2
pipe-7
pipe-4 pipe-5 |
tankB
valve-3
pipe-6

Figure 4: Extended Two Tank System

In this presentation, the two tank system discussed above will be ex-
tended by addition of pumps, valves and by—pass piping. The resulting
augmented system is shown in Figure 4.

A simple axiomatization of the pump—and-valve domain will be used
which consists of four operators: open—valve(), close-valve(), start—pump(),
and stop—pump(). System state is represented by eight relations: open(),
on(), has-outlet(), has-inlet(), between(), valve(), pipe(), and pump()). Ta-
ble 5 shows the operators.

To continue with the sensor failure problem. We consider here the
problem of planning a sequence of valve and pump operations which drains
tank A while maintaining flow to tank B. This is the first stage of a repair
procedure which involves isolating and draining the tank with the failed
sensor, replacing the sensor and then bringing the tank back on-line.

Defining initial and goal states The initial state for the planning problem
is:

—open(valve—4, valve-5, valve—6)
open(valve-1, valve-2, valve-3)

on(pump-1)

and is assumed to be available from knowledge of previous control actions.



Diagnosis

Diagnosing sensor failures, equipment failures and process upsets are closely
related problems. In all cases, the sensor data interpretation task will have
encountered an inconsistency between the observed behaviour and the be-
haviour predicted by the no—fault system models. When the diagnosis task
starts, the fault has already been isolated to the submodel exhibiting the in-
consistency and those submodels upon which it depends. In the case of our
level sensor failure, submodel-1 from Table 3 (corresponding to Tank-A)
contains the fault.

The most straight forward approach to model based diagnosis involves
search through the space of possible fault hypotheses for the one which
most plausibly explains the observed behaviour. Sensor fault hypotheses
may be tested by disregarding individual sensors to determine whether the
remaining sensors are consistent. In the case of equipment diagnosis, the
fault hypotheses require libraries of component models corresponding to
the known failure modes for the components. Heuristics based on fault
frequency may be used to guide the search.

In this problem, assume that sensor failures are equally likely and that
they are more common than equipment faults. Thus the search of the fault
space begins with a set of questions intended to test sensor failure hypothe-
ses. The partial behaviour in each of these questions disregards data from
one sensor but contains verified behavioural data from adjacent (consistent)
submodels. In Table 4 are the results of completing these behaviours. Test—
1 disregards tank level sensor data while test—2 disregards inlet flow sensor
data. Because the model is consistent with the inlet flow data but not with
the tank level data, the level sensor is identified as being at fault.

Time interval 1 interval 2 interval 3
Test | Variable amt dir | amt dir | amt dir
test- | Flow-in-A | fnorm std | fnorm std | fnorm std
1 Flow-A-B | (0,fmax) + | (0,fmax) + | (0,fmax) +
Netflow-A | (0,nmax) + | (0O,nmax)  + | (0,nmax) +
Pressure-A | (0,pmax) + | (0,pmax) + | (0,pmax) +
test- | Level-A (0,lmax) + | (0,lmax) std | 0 std
2 Flow-A-B | (0,fmax) + | (0,fmax) std | (0,fmax) ?
Netflow-A | (0,nmax) 710 ? | inconsistent
Pressure-A | (0,pmax) + | (0,pmax) std | inconsistent

Table 4: Results of Diagnostic Tests

Were the sensors to have passed these tests, search of equipment failure
modes would follow.

Planning
The final reasoning task to be discussed in this paper is planning operating
mode changes. Following Lakshmanan and Stephanopolous [7] work on



An added benefit is that this approach isolates inconsistencies to sub-
models. When inconsistencies are encountered in the completion of one of
the MBPs the problem is known to be either in that MBP or in one of
the MBP’s previously completed. Thus the resulting diagnosis task may be
directly stated as a question composed of only these MBPs.

Time interval 1 interval 2 interval 3
Variable amt dir | amt dir | amt dir
Flow-in-A | fnorm std | fnorm std | fnorm std
Level-A (0,Jmax) + | (0,lmax) std |0 std
Level-B (0,Jmax) + | (0,lmax) + | (0,lmax) +
Flow-out-B | (o,fmax) + | (0,fmax) + | (0,fmax) +
Table 2: Sensor Data Set
Time Interval interval 1 interval 2 interval 3

model | Variable amt dir | amt dir | amt dir

sub- Netflow-A | (0,nmax) + | (O,nmax) std | inconsistent

model | Pressure-A | (0,pmax) + | (0,pmax) std | inconsistent

1 Flow-A-B | (0,fmax) + | (0,fmax) std | inconsistent

sub- Netflow-B | (0,nmax) 7 | (0,nmax) ? | (0,nmax) ?

Model | Pressure-B | (0,pmax) + | (0,pmax) + | (0,pmax) +

2 Flow-A-B | (0,fmax) 4+ | (0,fmax) ? | (0,fmax) ?

full Flow-A-B | (0,fmax) 4+ | (0,fmax) std | inconsistent

Table 3: Results of MBP completions

To make this more clear, consider once again the two tank system of
Figure 3. In Table 2 is preprocessed sensor data in QP form (amt,dir). The
dependency graph and resulting decomposition of the QP model based on
this sensor set is just that shown in Figure 3.

Table 3 shows the results of completing the MBPs in order of their
dependency (so that Submodel-1 refers to the SCCs associated with Tank-
A and Submodel-2 refers to the SCCs associated with Tank-B). In the
first two intervals, no inconsistencies are encountered and the sensor data
interpretation task succeeds. In the third interval, an inconsistency is en-
countered in the first submodel.

Anticipating the next section, assume that a diagnostic task has de-
termined that it is the level sensor in tank A has failed. This fact forces
a redefinition of the sensor diagnosis task. The question defining this new
task uses the same model but the incomplete behaviour will no longer con-
tain information about the level of tank A. The new MBP is decomposed
to yield a new hierarchy of models and sensor data analysis continues.

Many issues of sensor data analysis have been disregarded in this pre-
sentation. For a discussion of these issues in the context of QP see De Coste

3].



Model bases
The final concept to formalize is that of a collection of models. We define
a model base to be a triple:

MB =< {M;},R,,R, >

where: M, are models,

R, is a binary relation {< v;%,v;; >} each tuple of
which relates a pair of variables from different
models,

R, is a binary relation {< ¢;;,c;; >} each tuple of
which relates a pair of components from different
models

Where models from different domains overlap with respect to the physi-
cal system being represented they will contain common components. Where
models from the same domain overlap, they must correspond both with re-
spect to components and with respect to variables.

EXAMPLES OF REASONING

This section continues from the tank example used above to describe the
BPP operator. While simple, this example is adequate for showing the
use of the language and operators in a range of reasoning tasks and for
showing how these reasoning tasks can share knowledge and interact. The
specific reasoning tasks which will be considered are: interpreting sensor
data; diagnosing equipment and sensor faults; and planning operating mode
changes.

Sensor data interpretation

Sensor data interpretation can be defined as completion of MBPs in which
partial behaviours contain only sensor data. Sensor data interpretation
stops short of diagnosing equipment and sensor failures. When it cannot
reconcile the sensor data with its model of the process, it passes the problem
on to another task dedicated to diagnosis.

The behaviour preserving pruning operation may be used to automati-
cally decompose a large model into appropriate submodels for interpretation
of sensor data. When changes occur to either the process model or the avail-
able sensor data (eg. due to sensor or equipment failures), these submodels
may be automatically redecomposed.

Given a sensor suite, the BPP operator identifies a dependency hier-
archy of submodels. Sensor data interpretation involves completion of an
MBP for each of these sub—models in the order of their dependency. The
completed behaviours from the submodels contain the desired system state
information. This approach reduces computational costs by reducing the
average model size.




Notice that many of the edges between variables are bidirectional. This is
a characteristic of the reasoning methods in a particular modelling domain
(Kuipers QSIM [6]). However, even in such domains, certain edges, such as
those associated with irreversible processes can be given a unique direction.
The meaning of these directed edges is that knowing the value of the variable
at the origin of the edge can change the value of the variable at the edge’s
destination. Knowledge of the value of the destination variable can only
restrict the value of the origin variable.

Now consider a question Q = {M, Bg,€}. Say ¢; = too for every vari-
able except pressure-A. Following the definition of questions, this indicates
that for this reasoning task only the pressure in tank A is of interest. Say
also that the partial behaviour Bg provides values for four variables: flows
into tank—A and out of tank-B, and fluid levels in both tanks. Hence all
edges incident on the node representing tank level will point away. The
resulting problem specific dependency diagram is shown in Figure 3.
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Figure 3: Dependency graph and decomposition of QP model

From this dependency graph it should be clear that the behaviour of
the down—stream tank is irrelevant to the question at hand. Our Behaviour
Preserving Pruning (BPP) operator identifies this fact by partitioning the
variables into sets (called strongly connected components or SCCs) where
any pair of variables in the same SCC are mutually dependent and any
pair of variables selected from different SCCs are either unidirectionally de-
pendent or are mutually independent. This partitioning of the dependency
graph is shown by the dotted lines in Figure 3. The submodels resulting
from this decomposition are also shown in Figure 3 (note that the uninter-
esting SCCs associated with single variables have been collapsed).

Algorithms for decomposing directed graphs into strongly connected
components can be found in any good algorithms text (eg. Aho Hopcroft
and Ullman [1]).

While the example given involves decomposing a QP model, BPP is
equally applicable to any other domain where dependency relations can be
identified between variables. Examples include planning (Knoblock [5]) and
discrete event simulation (Zeigler [14]).



interesting variables are given the first tolerance and uninteresting variables
are given the second. A question, Q, is defined as the 3-tuple:

Q =< M,B,e>

where: M is the (possibly incomplete) model
B is the (possibly incomplete) behaviour
€ 1is a vector of error terms, one per output variable

Behaviour preserving operations on MBPs
The most obvious behaviour preserving model transformations (BPT) are
the domain dependent operators. Examples of these operators are simula-
tors and planners which take well formed domain specific models and derive
behaviour from them. By definition, if these operators are implemented cor-
rectly, then they are behaviour preserving.

Less obvious are BPTs applicable to many different types of models.
Such operators trade off predictive power for generality. They are of use
in specializing models to particular questions and in decomposing large
problems into computationally tractable subproblems.

Domain independent BPTs may be characterized by the type of op-
erations they apply to models, and the types of guarantees of behavioural
fidelity they provide. In this paper we discuss only BPTs which use delete
operations (the other major class uses aggregate operations). Also, we are
concerned with operations which provide formal guarantees of behavioural
equivalence (instead of empirical guarantees).

Behaviour Preserving Pruning The Behaviour Preserving Pruning (BPP)
operator is implemented in two parts. The first part specializes the depen-
dency graph of the model to the particular question being addressed, and
the second part decomposes this graph into strongly connected components.

inflowA

inflowA netflowA inflowA nefflowA — amounta
= o
tankA outflowA
——
—l ressureA
/ outflowA oP
pressureA tankB netflogB——__
amountB
pressureB \ outflowB inflowB 0 «—~.0
[T :\\
O
~_ >
outflowB pressureB

Figure 2: Two Tank System

Consider the model M of a pair of tanks each with one outlet and one
inlet. The schematic and component representations are shown in Figure 2.



produces a single behaviour over the state space defined by adjoin(V?, V?)
(where adjoin({a,b,c},{d,b,e}) = {a,b,c,d,e}. Each pair of tuples (b;,b3)
which agree on all shared variables (V! N V?) including time, produces a
tuple in B3. This operator allows us to express both simple concatenation of
behaviour sequences (where the time points have no overlap and the variable
sets are identical) as well as the reconstruction of partial behaviours (where
the time sets do overlap and the variable sets are distinct).

The variable—domain transformation operator If V' is the variable set in
B! with variable-domains D! and V? is the variable set in B? with variable—

domains D?, and a mapping fp : D' — D? exists from D' to D?, then
B? = Dom(fp, B")

will yield behaviour in the new state space.

Other operators on behaviour such as aggregation operators which
serve to collapse sets of variables to single variables (eg. spatial averaging)
or to collapse sequences to single quantities (eg. time averaging) may also

be defined.

Model-Behaviour Pairs

Behavioural and modelling knowledge are linked through their common ref-
erences to variables. This relationship is made explicit by grouping models
and behaviours into pairs (Model-behaviour pairs or MBPs).

MBP =< M,B >

where: M is a model of some system
B is behaviour syntactically consistent with M

Minimally, these pairs must correspond with respect to number and
type of variables. However since M is a weakened representation of some
domain specific model, B must also be consistent with this more restric-
tive modelling knowledge. One of the central ideas in this research is that
domain independent model transformations can be defined which do not
disturb this deeper relationship.

The notion that many types of reasoning can be expressed as oper-
ations on MBPs was presented briefly in the section on reasoning with
models. In this view, a problem or question is simply an incomplete MBP,
and problem solving involves using behaviour and model transformations
to complete it.

We must extend the definition of a MBP in order to capture the ideas
that questions are incomplete MBPs and that some of the variables might
be uninteresting in the context of a specific question. The extension takes
the form of a MBP augmented with a vector of error bounds. The error
bounds specify the tolerance to which we wish to know each variable. For
the purposes of this paper, tolerances are restricted to {£+0,+o00}. Where



Time interval 1 interval 2 interval 3

Variable | amt dir | amt dir | amt dir
Inflow fnorm std | fnorm std | 0 std
Netflow | (0,nmax) + | (0,nmax) std | (nmin,0) +
Outflow | (0,omax) + | (0,omax) std | (0,omax) -
Amount | (0,Jmax) + | (0,lmax) std | (0,lmax) -
Pressure | (0,pmax) + | (0,pmax) std | (0,pmax) -

Table 1: Behaviour for a Single Tank

As an example of behavioural information Table 1 contains three state
vectors for the single tank example presented in Figure 1. In the table,
each tuple corresponds to a pair of columns where “amt” defines an interval
representing quantity, and dir is direction or time derivative represented
using the sign algebra ({—,std,+,?}). The boundaries of the intervals (0,
lmax, fmax, pmax...) are drawn from sets of “landmark” values which
define the variable-domains of the variables in QP models (where an amount
is represented by a single landmark its value is considered to be exactly equal
to that landmark, so fnorm = (frorm, frnorm)). The three intervals shown
correspond to filling, steady state (inflow matches outflow) and draining
(where the fixed flowrate source has been turned off).

Operations on Behaviours The basic domain independent operations on mod-
els consist of the relational operators join, project and select along with a
mapping operator to convert behaviour conforming to one models schema
into behaviour conforming to another models schema.

The Project Operator If V! is the variable set of the source behaviour B*
and V2 C V' is the variable set of the destination behaviour, then the
operation

B? = Proj(V*, BY)

will drop those variables not in V2 and will collapse adjacent states when
they are identical to produce the destination behaviour B?

The Select Operator If O(V?!) is a function which maps state vectors from
V! to {true, false} then the select operator

B? = Sel(0, BY)
will select only those tuples from B! for which O is true.
The Join Operator Finally, we may define a “join” operator to construct

a single behaviour from two behaviours. If B! and B? are behaviours which
share the same timeset then

B? = Join(B', B?)



Notice that the dependencies in this model are all bi-directional. This
is a characteristic of the particular domain (the qualitative physics (QP)
of Kuipers [6]): as with arithmetic equations, there is no directionality
implied by a QP constraint. More specific dependency information arises
from causality arguments and from problem specific knowledge.

Operations on Models The basic operations on models involve adding and
deleting model elements. Elements may be variables or constraints. By
composing them in the obvious way, components may be added or removed.

The Cut Operator If M' = (C*, R') is a model and ¢; € C! then
M? = (C*,R?) = cut(M*, ¢;)

yields a model identical to M* but with component ¢; removed from C'? and
all variable bindings in R' referring to the variables in ¢; removed from RZ.

The Add Operator If M* = (C', R') is a model then a component ¢ may
be added to it by specifying a relation of variable bindings R' = {(v;,v;)}
such that each tuple in R’ contains at least one variable from c

M? = add(M',c,R)
= (C'Uc¢,R"UR)

Note that not all variables of ¢ need to be mentioned in R’ since they may
be internal to ¢ or may be input or output variables not connected to any
other component.

Behaviour

Unlike models, the domain independent representation of behavioural knowl-
edge is quite complete. This results from the fundamental role of be-
havioural information in reasoning about dynamic systems. We have to
be able to at least compare behaviours at the domain independent level
if we wish to select appropriate models, control reasoning or express goals
with respect to system state. Fortunately, we can define quite general op-
erators for editing, transforming and comparing behavioural knowledge so
this need to represent behaviour completely is not too onerous.

We adopt a relational representation for behaviour in which each 2-
tuple contains a timestamp (key) and a vector of values drawn from the
variable-domains of the variables in the model to which the behaviour is
attached. That is the behaviour B is represented as:

B={<S,t>}

where: S 1is a vector of values drawn from the variable—
domains of the variables v; in V (alternatively, a
token drawn from the state set X),
t 1is drawn from the time set.



variable and an edge for each unique dependency. This is represented by
the 3-tuple:

M =<T,V,E >

where: T is the time set,
V' is the set of unique variables {v; } one for each set
of equivalent variables found in R,
E is a binary relation {< wvy,v; >} representing
all the unique dependencies between variables ex-
pressed in the components’ edge sets 5;
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Figure 1: Single tank with two ports

In Figure 1 is a 3 component model of a simple hydraulic system. The
schematic depiction of this model shows the three components: a pump
which provides a constant inlet flow rate; a tank; and an outlet whos flow
rate depends upon pressure.

In the component oriented depiction of the model the specific vari-
ables and constraints associated with each component are shown: the pump
is represented by a single variable with no dependencies; the tank is repre-
sented by a mass balance constraint between the three flowrates, a derivative
relationship between amount (level) and netflow, and a monotonic (M)
relationship between amount and pressure at the outlet; finally, the outlet
component is a monotonic relationship between flowrate and pressure.

In the domain independent representation the constraints have been
replaced with edges representing dependencies and the edges and variables
have been labeled according to the scheme presented above. Thus v, ; is the
j-th variable in component i, r; is an equivalence edge between variables in
different components, and s, ; is the j-th dependency in component i.

The variable oriented representation (not shown) would appear very
similar to the component oriented dependency graph. The only differences
would be that those sets of variables connected by equivalence edges (r;)
would collapse to single variables.



Models

Domain independence takes the form of a weak representation of constraints
between variables. Where domain specific model representation languages
express specialized constraints between variables, our language can express
only dependency relations between variables. As a result, this language isn’t
expressive enough to support the derivation of behaviour from models. One
must return to the domain dependent representation to perform tasks such
as simulation or planning. However, the dependency based representation
proves to be quite useful in guiding model transformations.

Another important feature of the domain independent representation
is the ability to represent subsystems or components. This is especially im-
portant in the current context because we are interested in the relationships
between multiple models of a single system in different modelling domains.
Identification of common components is often the most natural way to ex-
press these relationships.

A third feature is representation of variables and the variable-domains
from which values may be taken. Together these features allow variables
to defined and interconnected by dependency relationships which may in
turn be clustered into components. This yields two related representations:
one emphasizing the component structure and the other emphasizing the
variable/dependency structure.

For the component oriented view, a model M is defined as a 3-tuple:

M=<T,C,R >

where: T 1is the time set,

C is the set of components in the model. Each com-

ponent ¢; =< V;, S; > is a 2-tuple composed of a
set of variables, V; = {v;;} and a set of directed
edges between these variables S; = {< v; ;,v; 1 >}
representing dependencies.
Each variable has a type which depends upon the
domain of the underlying model v;; : D. A vari-
able’s variable-domain may be further restricted if
such information is available,

R is a set, {< v;j,vk; >}, of 2-tuples which cap-
tures the manner in which components are inter-
connected. Each tuple in R is composed of a pair
of variables drawn from the components’ variable
sets and serves to equate them.

The variable oriented view may be derived from the component ori-
ented view. The variables in the new representation include all the variables
from the components in M but with the equivalent variables (defined in R)
represented only once. All dependency edges are inherited, but redundan-
cies may be removed. This yields a graph with a node for each unique



first question. Since the final form of the knowledge will be model centered,
it follows that the development process must involve model construction,
modification and verification.

In conclusion, implementation and maintenance of high level control
systems can benefit from organizing knowledge into models. For each spe-
cialized model type, specialized representation and reasoning tools will be
required. In order to integrate these specialized representations, we need a
domain independent framework for keeping track of relationships between
models, for selecting models for specific reasoning tasks, and for moving
knowledge from one model to another.

MODEL BASED KNOWLEDGE ORGANIZATION

Model Based Knowledge Organization (MBKO) is an attempt to resolve
certain problems surrounding the development and maintenance of KBS’s
by coercing knowledge into a representational framework reminiscent of that
commonly used in dynamic, quantitative physical systems modelling.

A detailed knowledge representation scheme based on MBKO has been
developed and presented by the authors elsewhere (Wylie and Kamel [12]).
The current paper avoids most of the detail of this representation and in-
stead focuses on the role of a domain independent model representation
language and transformation operators to improve efficiency and flexibility
in model based problem solving.

Reasoning with models

In the context of high level control many reasoning tasks may be expressed
as either identification of a model which explains behaviour or derivation of
behaviour implied by a model. Examples of this are:

e sensor data interpretation. Given a model of the system and a partial
behavioural description (from sensors), derive a complete description
of the system’s state.

o diagnosis. Given a model of some system and behavioural information
which doesn’t correspond to the model, find the most plausible variant
of that model which does explain the observations.

e planning. Given an incomplete description of the behaviour of the
system (ie current state and goal state) and a model for the system,
complete the behaviour using only feasible control actions.

LANGUAGE

This section presents a domain independent language for representing mod-
els, behaviour, and questions about dynamic physical systems.



Model selection and construction is supported by a set of model trans-
formation operators. A special type of operator called a behaviour pre-
serving pruning operator (BPP) is presented. It has the desirable property
of simplifying a model without compromising its predictive power in the
context of a specific question.

The rest of the paper is structured into 5 sections. The first presents
an overview of the problem domain: high level control of large industrial
systems. The second discusses the benefits of adopting a model centered
view of knowledge in this (and other) application areas. The third presents
the proposed language and operators. The fourth presents some examples
of their use. The paper is concluded by a discussion of the work to date
and the direction in which this research will continue.

HIGH LEVEL CONTROL

In the management and control of large industrial systems, there are a
number of significant problems which are not amenable to solution by ei-
ther conventional control techniques or MIS/DSS (Management Information
System/ Decision Support System) software. Examples of these problems
are: equipment and sensor diagnosis; process tuning (optimization); and
planning changes in mode of operation of the plant (eg. Wylie and Kamel
[12], Meystel [9]). These tasks are usually left to operators and plant engi-
neers. Recently, an assortment of solutions to these types of problems have
been demonstrated which exploit reasoning strategies derived from research
in Artificial Intelligence (eg. Venkatasubramanian and Rich [11], Laksh-
manan and Stephanopolous [7, 8], Sykes and Cochran [10], Gallanti et. al.
[4]). While these systems have achieved reasonable technical success, the
cost, risk, and expertise required for their development make them not yet
commercially viable.

To reduce the cost, risk and expertise required to build and maintain
such systems two related questions might be asked: what organizing prin-
ciples underlie the sort of KBS’s which solve these problems; and how are
these high level control systems to be built efficiently and reliably.

The first of these questions can be partially answered by referring to
the literature for examples. This will show that realistic solutions to these
problems usually entail reasoning from multiple representations of the sys-
tem being controlled. Examples of this include planners which exploit both
a STRIPS-operator model and a detailed simulation model of the situ-
ation (Lakshmanan and Stephanopolous [7, 8]). Other examples include
diagnostic systems which exploit both model and classification based rep-
resentations (Venkatasubramanian and Rich [11]). Not only do individual
reasoning tasks often require multiple models of the situation, but because
of the integrated character of the high level control, distinct tasks must also
be able to share modeling knowledge and pass control.

The answer to the second question, that of the methodology to be
used in constructing such KBS’s, follows directly from our answer to the
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ABSTRACT

Reasoning about the behaviour of large industrial processes is a difficult
and complex computational task. To perform it efficiently requires the use
of numerous specialized representations of the system. Any successful in-
formation processing system in such an environment must have effective
ways to manage these representations, the individual reasoning tasks which
use them, and the flow of information between them. This paper addresses
these issues by proposing a model centered view of knowledge and presents a
domain independent representation language along with operators for man-
aging multiple overlapping models of dynamic physical systems. Examples
are given of its use in sensor interpretation, diagnosis and planning in a
simple pipe—and—tank network.

INTRODUCTION

This paper presents a domain independent scheme for representing and
manipulating models of dynamic physical systems. It is intended for appli-
cations in which one physical system is the focus of a diverse set of reasoning
tasks. To be useful in such an environment, the representation must sup-
port dynamic model selection and construction as well as communication
between tasks using different types of models.

Communication between tasks across modelling domains is directly
supported by a uniform representation for models because it allows match-
ing of components and variables across domains. This in turn provides a
foundation for communicating behavioural, structural and control informa-
tion across domain boundaries.



