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Abstract. This paper introduces a multi-objective optimization approach to the

problem of computing virtual reality spaces for the visual representation of rela-

tional structures (e.g. databases), symbolic knowledge and others, in the context

of visual data mining and knowledge discovery. Procedures based on evolution-

ary computation are discussed. In particular, the NSGA-II algorithm is used as a

framework for an instance of this methodology; simultaneously minimizing Sam-

mon’s error for dissimilarity measures, and mean cross-validation error on a k-nn

pattern classifier. The proposed approach is illustrated with an example from can-

cer genomics data (e.g. lung cancer) by constructing virtual reality spaces result-

ing from multi-objective optimization. Selected solutions along the Pareto front

approximation are used as nonlinearly transformed features for new spaces that

compromise similarity structure preservation (from an unsupervised perspective)

and class separability (from a supervised pattern recognition perspective), simul-

taneously. The possibility of spanning a range of solutions between these two

important goals, is a benefit for the knowledge discovery and data understand-

ing process. The quality of the set of discovered solutions is superior to the ones

obtained separately, from the point of view of visual data mining.

1 Introduction

According to the World Health Organization (WHO) http://www.who.int/

cancer/en/, from a total of 58 million deaths in 2005, cancer accounts for 7.6 mil-

lion (or 13%) of all deaths worldwide. This places cancer as one of the leading causes of

death in the world, with lung cancer (the main cancer leading to mortality) accounting

for 1.3 million deaths per year. Thus the importance of understanding the mechanisms

of lung cancer is clear. One approach is through the rapid quantification of the gene

expression levels of samples of healthy and diseased lung tissue. This new field blend-

ing the knowledge from biologists, computer scientists and mathematicians is known

as Bioinformatics and is yielding large quantities of data of a very high dimensional

nature that needs to be understood.

The increasing complexity of the data analysis procedures makes it more difficult

for the user (not necessarily a mathematician or data mining expert), to extract use-

ful information out of the results generated by the various techniques. This makes
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graphical representation directly appealing; for which Virtual Reality (VR) is a suit-

able paradigm. Virtual Reality is flexible, it allows the construction of different vir-

tual worlds representing the same underlying information, but with a different look

and feel. VR allows immersion, that is, the user can navigate inside the data, interact

with the objects in the world. VR creates a living experience. The user is not merely

a passive observer but an actor in the world. VR is broad and deep. The user may

see the VR world as a whole, and/or concentrate the focus of attention on specific de-

tails of the world. Of no less importance is the fact that in order to interact with a

Virtual World, no mathematical knowledge is required, and the user only needs min-

imal computer skills. A virtual reality technique for visual data mining on heteroge-

neous, imprecise and incomplete information systems was introduced in [24, 25] (see

also http://www.hybridstrategies.com).

The purpose of this paper is to explore the construction of high quality VR spaces

for visual data mining using a multi-objective optimization technique applied to the un-

derstanding of a publicly available lung cancer gene expression data set. This approach

provides both a solution for the previously discussed problem, and the possibility of

obtaining a set of spaces in which the different objectives are expressed in different de-

grees, with the proviso that no other spaces could improve any of the considered criteria

individually (if spaces are constructed using the solutions along the Pareto front). This

strategy clearly represents a conceptual improvement in comparison with spaces com-

puted from the solutions obtained by single-objective optimization algorithms in which

the objective function is a weighted composition involving different criteria.

2 The multi-objective approach: A hybrid perspective

In order to establish a formulation of the problem based on multi-objective optimiza-

tion, a set of objective functions has to be specified, representing the corresponding

criteria that must be simultaneously satisfied by the solution. The minimization of a

measure of similarity information loss between the original and the transformed spaces

and a classification error measure over the objects in the new space can be used in a first

approximation. Clearly, more requirements can be imposed on the solution by adding

the corresponding objective functions. Following a principle of parsimony this paper

will consider the use of only two criteria, namely, Sammon’s error (Eq-3) for the unsu-

pervised case and mean cross-validated classification error with a k-nearest neighbour

pattern recognizer for the supervised case.

The proximity (or similarity) of an object to another object may be defined by a

distance (or similarity) calculated over the independent variables and can be defined

by using a variety of measures. In the present case a normalized Euclidean distance is

chosen:

d←−x ←−

t
=

√

√

√

√(1/p)

p
∑

j=1

(xij − tkj)2 (1)
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2.1 Structure Preservation: An unsupervised perspective

Examples of error measures frequently used for structure preservation are:

S stress =

√

∑

i<j (δ2
ij − ζ2

ij)
2

∑

i<j δ4
ij

, (2)

Sammon error =
1

∑

i<j δij

∑

i<j (δij − ζij)
2

δij

(3)

Quadratic Loss =
∑

i<j

(δij − ζij)
2 (4)

For heterogeneous data involving mixtures of nominal and ratio variables, the Gower

similarity measure [11] has proven to be suitable. The similarity between objects i and

j is given by

Sij =

p
∑

k=1

sijk/

p
∑

k=1

wijk (5)

where the weight of the attribute (wijk) is set equal to 0 or 1 depending on whether the

comparison is considered valid for attribute k. If vk(i), vk(j) are the values of attribute

k for objects i and j respectively, an invalid comparison occurs when at least one them

is missing. In this situation wijk is set to 0.

For quantitative attributes (like the ones of the datasets used in the paper), the scores

sijk are assigned as

sijk = 1 − |vk(i) − vk(j)|/Rk

where Rk is the range of attribute k. For nominal attributes

sijk =

{

1 if vk(i) = vk(j)
0 otherwise

This measure can be easily extended for ordinal, interval, and other kind of vari-

ables. Also, weighting schemes can be incorporated for considering differential impor-

tance of the descriptor variables.

2.2 Multi-objective Optimization Using Genetic Algorithms

An enhancement to the traditional evolutionary algorithm[1], is to allow an individual

to have more than one measure of fitness within a population. One way in which such

an enhancement may be applied, is through the use of, for example, a weighted sum of

more than one fitness value [3]. Multi-objective optimization, however, offers another

possible way for enabling such an enhancement. In the latter case, the problem arises

for the evolutionary algorithm to select individuals for inclusion in the next population,

because a set of individuals contained in one population exhibits a Pareto Front[19] of

best current individuals, rather than a single best individual. Most [3] multi-objective

algorithms use the concept of dominance to address this issue.

A solution
↼

x(1) is said to dominate [3] a solution
↼

x(2) for a set of m objective

functions < f1(
↼

x), f2(
↼

x), ..., fm(
↼

x) > if
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1.
↼

x(1) is not worse than
↼

x(2) over all objectives.

For example, f3(
↼

x(1)) ≤ f3(
↼

x(2)) if f3(
↼

x) is a minimization objective.

2.
↼

x(1) is strictly better than
↼

x(2) in at least one objective. For example, f6(
↼

x(1)) >

f6(
↼

x(2)) if f6(
↼

x) is a maximization objective.

One particular algorithm for multi-objective optimization is the elitist non-

dominated sorting genetic algorithm (NSGA-II) [7], [6], [5], [3]. It has the features

that it i) uses elitism, ii) uses an explicit diversity preserving mechanism, and iii) em-

phasizes the non-dominated solutions.

2.3 Original Study

Gene expressions were compared in [21] for severely emphysematous lung tissue (from

smokers at lung volume reduction surgery) and normal or mildly emphysematous lung

tissue (from smokers undergoing resection of pulmonary nodules). The original database

contained 30 samples (18 severe emphysema, 12 mild or no emphysema), with 22, 283
attributes. Genes with large detection P -values were filtered out, leading to a data set

with 9, 336 genes, that were used for subsequent analysis. Nine classification algorithms

were used to identify a group of genes whose expression in the lung distinguished se-

vere emphysema from mild or no emphysema. First, model selection was performed for

every algorithm by leave-one-out cross-validation, and the gene list corresponding to

the best model was saved. The genes reported by at least four classification algorithms

(102 genes) were chosen for further analysis. With these genes, a two-dimensional hi-

erarchical clustering using Pearson’s correlation was performed that distinguished be-

tween severe emphysema and mild or no emphysema. Other genes were also identi-

fied that may be causally involved in the pathogenesis of the emphysema. The data

was obtained from http://www.ncbi.nlm.nih.gov/projects/geo/gds/

gds_browse.cgi?gds=737.

2.4 Experimental Settings

Each sample in this study is a vector in a high dimensional space, and therefore, direct

inspection of the structure of this data, and of the relationship between the descriptor

variables (the genes) and the type of sample (normal or cancer), is impossible. More-

over, within the collection of genes there is a mixture of potentially relevant genes with

others which are irrelevant, noisy, etc. The need of simultaneously finding a visual rep-

resentation (3D) respecting (as much as possible) the set of object interrelationships

as defined by the original attributes, and the construction of a new feature space effec-

tively differentiating the two classes of objects present, makes this problem suitable for

a multi-objective optimization approach.

The collection of parameters describing the application of the NSGA-II algorithm

is shown in Table-1. A modest population size and number of generations were used,

with a relatively high mutation probability in order to enable richer genetic diversity.

Randomization of the set of data objects was applied in order to reduce the bias in the

composition of the cross-validated folds by providing a more even class distribution be-

tween successive training and test subsets. The number of folds was set in consideration

of the sample size.
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Table 1: Experimental settings for computing the pareto-optimal solution approximations by the

multi-objective genetic algorithm (PGAPack extended by NSGA-II).

population size 100 number of generations 500

chromosome length 90 (= 3 · 30) ga seed 101

No. new inds. in (i + 1st) pop. 20 objective functions should be minimized

chromosome data representation real crossover probability 0.8

crossover type uniform (prob. 0.6) mutation probability 0.4

mutation type gaussian selection type tournament

tournament probability 0.6 mutation and crossover yes

population initialization random, bounded lower bound for initialization -2

upper bound for initialization 2 fitness values raw

stopping criteria maximum iterations restart ga during execution no

parallel populations no

number of objectives 2 number of constraints 0

pre-computed diss. matrix Gower dissimilarity

evaluation functions mean cross-validated k-nn error and Sammon error

cross-validation (c.v.) 5 folds randomize before c.v. yes

knn seed 101 k nearest neighbors 3

non-linear mapping measure Sammon dimension of the new space 3

2.5 Results

The set of non-dominated solutions obtained by the NSGA-II algorithm is shown in

the scatter plot of Fig-1(a), where the horizontal axis is the mean cross-validated knn

error and the vertical axis the Sammon error. The approximate location of the Pareto

front is defined by the convex polygon joining the solutions provided by chromosomes

2, 1, 10, etc. Chromosome 2 defines a space with a perfect resolution of the supervised

problem in terms of the “no or mild emphysema” and “severe emphysema” classes (knn

error = 0), but at the cost of a severe distortion of the space. Whereas, chromosome 1

approximates a pure unsupervised solution (with low Sammon error). Its classification

error is large indicating that few non-linear features preserving the similarity structure

lacks classification power. This may be due to the large amount of attribute noise, re-

dundancy, and irrelevancy within the set of 22, 283 original genes.

Clearly, it is impossible to represent virtual reality spaces on a static medium. How-

ever, a composition of snapshots of the VR spaces using the solutions along the Pareto

front approximation is shown in Fig-1(b-d). Different mappings (even with important

differences from the point of view of the mapping error) lead to similar 3D visual rep-

resentations, which indicates good reproducibility of the solutions. The similarities are

associated to the main distributions of the clouds of points, which are preserved, while

there might be local discrepancies with respect to the placement of some objects.

A solution satisfying classification error as much as possible (actually with 0-error)

is shown in Fig-1(b) where both classes are separated into 2 main clouds of points and

a distinct point, Object 6, positioned separately from the clouds. It can be seen that Ob-

ject 6 is positioned relatively differently in the spaces that comprise the best Sammon

error Fig-1(d) and tradeoff between the classification error objective and Sammon er-
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ror objective Fig-1(c). This is why, visually, the latter space represents a compromised

solution between the two goals and a tradeoff between the two objective functions. It

should be remembered that the class information is not used at all for computing the

spaces. Chromosome 10, according to Fig-1(a) and Fig-1(c), can be considered to be

the best multi-objective compromised solution in which both error criteria are simulta-

neously as low as possible. It shows a reasonable class discrimination with a non-large

similarity structure distortion, which is a very meaningful result.

3 Conclusions

A multi-objective optimization approach was introduced for the problem of computing

virtual reality spaces in the context of visual data mining and knowledge discovery ap-

plied to relational structures (e.g. databases). The multi-objective procedure was based

on NSGA-II using two objective functions representative of unsupervised and super-

vised criteria (mean cross-validated knn error as a measure of miss-classification, and

Sammon error as a measure of similarity structure loss). This methodology was applied

to the analysis of high dimensional genomic data collected in the framework of Lung

cancer research. A Pareto front approximation was recognizable from within the solu-

tions provided by the final population. Selected solutions from along that approximation

were used for the construction of a sequence of visualizations showing the progression

from spaces with complete class separation and poor similarity preservation to spaces

with reversed characteristics. A solution with a reasonable compromise between the

two criteria was identified and clearly contained properties of both extreme solution

spaces. These research results, although preliminary, showed large potential and further

investigation is required.
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1981.

5. K. Deb, S. Agarwal, and T. Meyarivan. A fast and elitist multi-objective genetic algorithm:

Nsga-ii. In IEEE Transaction on Evolutionary Computation, volume 6 (2), pages 181–197,

2002.



Hybrid Unsupervised/Supervised Virtual Reality Spaces 7

 0.075

 0.08

 0.085

 0.09

 0.095

 0.1

 0.105

 0.11

 0  0.05  0.1  0.15  0.2  0.25  0.3

O
b
je

ct
iv

e 
2
: 

S
am

m
o
n
 e

rr
o
r

Objective 1: 5-fold cross-validated k-nn error

Chromosome 2

Chromosome 10 (tradeoff solution)

Chromosome 1

(a) Front obtained by multi-objective opti-

mization (NSGA-II) that approximates the

true Pareto Front.

(b) Chromosome 2 (5-fold CV k-nn

Error: 0.0000, Sammon Error: 0.1082)

(c) Chromosome 10 (5-fold CV k-nn

Error: 0.0667, Sammon Error: 0.0826)

(d) Chromosome 1 (5-fold CV k-nn

Error: 0.2667, Sammon Error: 0.0797)

Fig. 1: Set of 100 multi-objective solutions. Those along the Pareto front approximation progres-

sively span the extremes between minimum classification error and minimum dissimilarity loss. 3

solutions were selected and snapshots of VR spaces computed. Geometries: “light grey spheres”

= no or mild emphysema samples, “dark grey spheres encased within a convex hull” = severe

emphysema samples. Behavior = static.



8 Julio J. Valdés and Alan J. Barton

6. K. Deb, S. Agarwal, A. Pratap, and T. Meyarivan. A fast elitist non-dominated sorting genetic

algorithm for multi-objective optimization: Nsga-ii. In Proceedings of the Parallel Problem

Solving from Nature VI Conference, pages 849–858, Paris, France, 16-20 September 2000.

7. K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multi-objective ge-

netic algorithm: Nsga-ii. Technical Report 2000001, Kanpur Genetic Algorithms Laboratory

(KanGAL), Indian Institute of Technology Kanpur, 2000.

8. R. O. Duda and P. E. Hart. Pattern Classification and Scene Analysis. Wiley New York,

1972.

9. U. Fayyad, G. Piatesky-Shapiro, and P. Smyth. From data mining to knowledge discovery. In

U. F. et al., editor, Advances in Knowledge Discovery and Data Mining, pages 1–34. AAAI

Press, 1996.

10. K. Fukunaga. Introduction to Statistical Pattern Recognition. Academic Press, 1972.

11. J. C. Gower. A general coefficient of similarity and some of its properties. Biometrics,

1(27):857–871, 1973.

12. A. K. Jain and J. Mao. Artificial neural networks for nonlinear projection of multivariate

data. In 1992 IEEE joint Conf. on Neural Networks, pages 335–340, Baltimore, MD, 1992.

13. M. Jianchang and A. Jain. Artificial neural networks for feature extraction and multivariate

data projection. IEEE Trans. On Neural Networks, 6(2):1–27, 1995.

14. J. Kruskal. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothe-

sis. Psichometrika, 29:1–27, 1964.

15. D. Levine. Users Guide to the PGAPack Parallel Genetic Algorithm Library. Argonne

National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, January 1996.

16. J. Mao and A. K. Jain. Discriminant analysis neural networks. In 1993 IEEE International

Conference on Neural Networks, pages 300–305, San Francisco, California, March 1993.

17. J. Mao and A. K. Jain. Artificial neural networks for feature extraction and multivariate data

projection. IEEE Trans. on Neural Networks, 6:296–317, 1995.

18. T. Masters. Advanced Algorithms for Neural Networks. John Wiley & Sons, 1993.

19. V. Pareto. Cours D’Economie Politique, volume I and II. F. Rouge, Lausanne, 1896.

20. J. W. Sammon. A non-linear mapping for data structure analysis. IEEE Trans. Computers,

C18:401–408, 1969.

21. Spira, A., Beane, J., Pinto-Plata, V., Kadar, A., Liu, G., Shah, V., Celli, B., Brody, J.S.:

Gene Expression Profiling of Human Lung Tissue from Smokers with Severe Emphysema.

American Journal of Respiratory Cell and Molecular Biology 31 (2004) 601–610

22. J. Valdés. Building virtual reality spaces for visual data mining with hybrid evolutionary-

classical optimization: Application to microarray gene expression data. In 2004 IASTED

International Joint Conference on Artificial Intelligence and Soft Computing, ASC’2004,

pages 161–166, Marbella, Spain, September 2004. IASTED, ACTA Press, Anaheim, USA.

23. J. J. Valdés. Similarity-based heterogeneous neurons in the context of general. Neural Net-

work World, 12(5):499–508, 2002.

24. J. J. Valdés. Virtual reality representation of relational systems and decision rules:. In

P. Hajek, editor, Theory and Application of Relational Structures as Knowledge Instruments,

Prague, Nov 2002. Meeting of the COST Action 274.

25. J. J. Valdés. Virtual reality representation of information systems and decision rules:. In

Lecture Notes in Artificial Intelligence, volume 2639 of LNAI, pages 615–618. Springer-

Verlag, 2003.

26. P. Walker, B. Smith, Y. Qing, F. Famili, J. J. Valdés, L. Ziying, and L. Boleslaw. Data mining

of gene expression changes in alzheimer brain. Artificial Intelligence in Medicine, 31:137–

154, 2004.

27. A. R. Webb and D. Lowe. The optimized internal representation of a multilayer classifier.

Neural Networks, 3:367–375, 1990.


