
Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez

la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous
n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the
first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Third International Symposium on 3D Data Processing Visualization and
Transmission (EDPVT 2006) [Proceedings], 2006

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :
https://nrc-publications.canada.ca/eng/view/object/?id=f43cd81a-e108-4e93-9554-05e16376c22b

https://publications-cnrc.canada.ca/fra/voir/objet/?id=f43cd81a-e108-4e93-9554-05e16376c22b

NRC Publications Archive
Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version.
/ La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version
acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Belief Propagation for Panorama Generation
Brunton, Alan; Shu, Chang

National Research

Council Canada

Institute for

Information Technology

Conseil national

de recherches Canada

Institut de technologie

de l'information

Belief Propagation for Panorama

Generation *

Brunton, A., and Shu, C.
June 2006

* published at the Third International Symposium on 3D Data Processing

Visualization and Transmission (EDPVT 2006). Chapel Hill, North Carolina,

USA. June 13-16, 2006. NRC 48722.

Copyright 2006 by

National Research Council of Canada

Permission is granted to quote short excerpts and to reproduce figures and tables

from this report, provided that the source of such material is fully acknowledged.

Belief Propagation for Panorama Generation

Alan Brunton

University of Ottawa

School of Information Technology and Engineering

Ottawa, Ontario K1N 6N5

abrunton@site.uottawa.ca

Chang Shu

National Research Council

Institute for Information Technology

Ottawa, Ontario

chang.shu@nrc-cnrc.gc.ca

Abstract

We present an algorithm for generating panoramic im-

ages of complex scenes from a multi-sensor camera. We

further present a programmable graphics hardware imple-

mentation to process the large data sets more quickly. Be-

cause the sensors do not share the same center of projec-

tion, nearby objects may not be properly aligned, creating a

ghosting or echoing effect in the generated panorama, un-

less correct depth information is taken into account. Tak-

ing a cue from the similar problem of dense stereo, we ap-

proximate our scene with a Markov random field and use

belief propagation to estimate the maximum a posteriori

panoramic image for that scene.

1. Introduction

This paper presents a Bayesian belief propagation ap-

proach to generating panoramic images of complex (in-

door/outdoor) scenes by fusing the overlapping images

from a multi-sensor camera system. Because there is par-

allax between adjacent sensors in this system, objects near

the camera will introduce “ghosting” or “echo” effects if a

simple blending and feathering approach is used to combine

the images into a panorama. Panoramas can also be cap-

tured using mirror/lens combinations and a single CCD sen-

sor, but we will concern ourselves only with multi-sensor or

multi-image systems for this paper.

Panorama mosaicking has been well studied. Chen pre-

sented QTVR in 1995 [11], in which the input images are

assumed to relate to one another by pure rotation, hence

there is no parallax between them. In such a scenario

feature-based stitching gives excellent results. Brown and

Lowe used more advanced features to automatically stitch

panoramic mosaics from a set of input images [12]. In their

work, the input images were not assumed to be related only

by rotation, but the scenes were distant from the camera

and therefore the images could be related by planar homo-

graphies.

These methods are effective because most panoramas are

of outdoor scenes, or of a large, open indoor environment,

where the geometry can be taken as planar. Our work, how-

ever, is motivated by the use of panoramic images for in-

teractive walk-throughs of complex environments1, where

the geometry is likely to be near enough to the camera

system that the parallax between sensors becomes a prob-

lem. We generate cubic panoramas, which are comprised of

six square, 90 degree field-of-view, axis-aligned perspective

images with a common center of projection. By reproject-

ing each pixel in the cubic panorama into the sensor images

we obtain a color for that pixel as well as a photoconsis-

tency, if it reprojects into more than one sensor image. For

complex scenes, we must find the correct reprojection (i.e.

depth) to avoid artifacts and sample the sensor images more

effectively.

This makes our task one of image-based rendering (IBR)

by dense correspondence. Obtaining dense correspondence

is essentially the stereo problem, and we look to stereo

methods which effectively combine data over large dis-

tances in the image to avoid local minima, which would

cause artifacts. As discussed further in Section 3, we are

only able to compute dense correspondence in the fractions

of the input images that overlap, hence an additional need

for a long-ranging method. Bayesian belief propagation

(BP) is such a method, and has been applied to the stereo

problem with success. Section 2 gives a brief overview of

belief propagation as applied to low-level vision problems.

Section 3 describes the multi-sensor camera system used

in this research. Section 4 discusses the application of be-

lief propagation to cubic panorama generation. Section 5

describes the implementation of this algorithm on program-

mable graphics hardware to speed the processing of large

data sets. Section 6 presents results and Section 7 draws

conclusions from them and considers areas for future work.

1Learn more about the NAVIRE project at

http://www.site.uottawa.ca/school/research/viva/projects/ibr/

2. Belief Propagation for Low-level Vision

We represent a Markov random field (MRF) Λ by a set

Φ of potential functions over cliques in an undirected graph

G = (V,E) where each node in the set V represents a ran-

dom variable and the edges E represent the dependencies

between pairs of these variables.

Typically for low-level vision problems a pairwise MRF

is used. That is, the potential functions are defined over

pairs of nodes connected by a single edge. The set V is

comprised of two subsets: Y = {yp} represent observed

random variables Yp, for every pixel p in the output image,

and X = {xp} represent hidden quantities Xp about the

scene, the values of which we wish to infer. Each random

variable can take one of L possible values or labels. For

every pixel p, (xp, yp) ∈ E. The hidden nodes X are con-

nected in a rectangular grid lattice such that (xp, xq) ∈ E

iff pixels p and q are non-diagonal neighbors in the image.

We now define the local evidence

φ (xp, yp) = P (Yp|Xp) (1)

as the likelihood of observing Yp (i.e. that the input images

could have been observed) given that a particular labelling

of Xp is the correct one. We define the compatibility matrix

ψ (xp, xq) = P (Xq|Xp) (2)

as the probability of Xq given Xp, which is the Markov

blanket property of Λ. The corresponding density functions

are denoted as

φp (f) = p (Yp|Xp = f) (3)

and

ψpq (f, g) = p (Xq = g|Xp = f) (4)

for labels f, g ∈ {0, 1, . . . , L− 1}. Abusing the notation

slightly to allow X and Y to refer to both the sets of nodes

and the corresponding sets of random variables, we can

write the overall joint probability of all nodes in V as [2]

P (X,Y) = cX,Y

∏

(p,q)∈E

ψ (xp, xq)
∏

p∈V

φ (xp, yp) (5)

where cX,Y is a normalization constant and (p, q) is short-

hand for the edge (xp, xq). We can also write the posterior

as

P (X|Y) = cX|Y

∏

(p,q)∈E

ψ (xp, xq)
∏

p∈V

φ (xp, yp) (6)

where cX|Y =
cX,Y

P (Y) is another normalization constant.

Maximizing either (5) or (6) is computationally in-

tractable for reasonable sized graphs, and certainly for

panoramic images. Hence the need for approximation al-

gorithms. We use the max-product version of belief propa-

gation to estimate the maximum a posteriori (MAP) proba-

bility of X given Y .

Belief propagation is most commonly compared to graph

cuts (eg. [7]). Tappen and Freeman performed a compari-

son of both algorithms as applied to the stereo problem [5]

for MAP estimation using identical MRF parameters and

found that results were generally comparable between the

algorithms, although graph cuts found lower energy config-

urations. However, these lower-energy solutions were not

necessarily closer to the ground-truth energies. In fact, the

ground-truth energy was often significantly higher than both

graph cut or BP due to occluded pixels that did not match

any in the other image.

In our case, labels denote discrete depth levels. Belief

propagation iteratively sends messages mt
pq from every hid-

den node xp to each of its (hidden) neighbors xq at each it-

eration t. Each message is a vector of length L, with each

component being proportional to how likely node xp “be-

lieves” it is that node xq will be have the corresponding la-

bel. In the max-product algorithm messages are updated in

the following way [3, 5]

mt
pq (g) = κmax

f



ψpq (f, g)φp (f)
∏

s∈N(p)\q

mt−1
sp (f)





(7)

where κ is a normalization constant. After T iterations, the

beliefs are computed [3, 2]

bp (f) = κφp (f)
∏

q∈N(p)

mT
qp (f) (8)

and the MAP labelling for node xp is

fMAP
p = arg max

f
bp (f) . (9)

Because BP is an iterative algorithm, finding opti-

mizations and improving the time to convergence by

either decreasing the number of iterations needed, or by

decreasing the amount of time required for each iteration,

can be very important. Sun et al. [3] achieve a speed-up in

the propagation step by about 30-60 percent by observing

that each row of the compatibility matrix is a unique peak

distribution and that most messages for distributions with a

unique peak. The product of two unique peak distributions

itself has a unique peak, which lies between the peaks of

the first two. This fact can be used to eliminate unnecessary

multiplications.

Felzenszwalb and Huttenlocher [4] presented three

algorithmic techniques to substantially improve the running

time of BP for early vision problems. These optimizations

were implemented in programmable graphics hardware for

this work, and their algorithm forms the basis of ours. The

algorithm is further in Section 4.

First, they noted that for early vision problems, such as

stereo, the compatibility matrix is a function only of the

difference between the two labels, as opposed to the actual

values of the labels. This leads to a message updating

scheme, as described in Section 4, that is linear in L instead

of quadratic, as is generally the case.

Second, a four-connected image grid graph is a bipartite

graph. That is, X can be partitioned into two subsets A and

B such that any node xp ∈ A has only neighbors xq ∈ B.

Coloring X in a checkerboard pattern and taking A to be

one color and B as the other is such a partition. Given

the messages sent from nodes in A at iteration t, we can

compute the messages sent from nodes in B at iteration

t + 1, and in turn the messages sent from nodes in A at

iteration t + 2 without ever computing the messages sent

from nodes in A at iteration t+ 1. This means only half the

messages need to be updated each iteration.

Third, they use a “multiscale” or hierarchical scheme

for coarse-to-fine MAP estimation. Messages are typically

initialized to zero, but if they are initialized closer to their

point of convergence, they should take fewer iterations to

converge. This is achieved by defining nodes in level k + 1
to be the aggregation of four spatial neighbors in level k.

The BP algorithm is then iterated at higher levels first,

and the resulting messages are used as initial values for

messages between the child nodes in next (lower) level.

All of these MRF formulations require the definition of

parameters, such regularization weight, the values of which

can dramatically affect the performance of the algorithm.

These values often vary significantly from data set to data

set, and must often be hard-coded by trial and error. In

their comparison of graph cuts and belief propagation

[5], Tappen and Freeman use ten combinations of three

parameters for each data set. Zhang and Seitz recently

presented an expectation maximization (EM) approach to

estimating optimal values for these paramters [6].

3. Multi-sensor Camera System

In this paper we use the Ladybug panoramic camera sys-

tem [1] from Point Grey Research2. The Ladybug, pictured

in Figure 1, is comprised of six single-CCD (Bayer tiled)

sensors. Each sensor is 1024 × 768 pixels. One sensor

points vertically, while the other five point out raidally.

Using wide-angle lenses the Ladybug’s sensors combine

to view approximately three quarters of its surroundings

(it does not have a sensor pointing down) with 80 to 100

2http://www.ptgrey.com

Figure 1. The Point Grey Ladybug camera
system.

Figure 2. Simple blending and feathering pro-
duces ghosting or echoing effects, such as
above, on objects that are near the camera
and lie in the overlap region of adjacent La-
dybug images.

pixels overlapping in adjacent sensors. The wide-angle

lenses induce substantial radial distortion, which make

the images from the sensors impractical for use in image

processing algorithms that rely on at least approximate

pin-hole projection models, such as localization methods.

Further, because the Ladybug’s sensors do not share a

common center of projection, nearby objects seen by

adjacent sensors introduce parallax-related artifacts when

the images are blended using simple alpha feathering, e.g.

Figure 2.

Our objective is to resample the Ladybug images into

a rectified, i.e. perspective correct, format without the

parallax-induced artifacts. Kang et al. accomplish this

using a method called multi-perspective plane sweep

(MPPS) [13], which adjusts the center of projection from

one sensor to the next while estimating the stereo disparity

in the overlap region. This generates aligned, rectified

images, but these images do not have a common center of

projection. Instead we wish to generate a cubic panorama

in the form of six axis-aligned, rectified images that do have

a common center of perspective projection, as shown in

Figure 3. This simplifies the task of determining the relative

positions and orientations of two or more panoramas once

they are generated. Also, our algorithm handles all images

at once, whereas the MPPS operates pairs of images, and

the top image from the Ladybug has to be handled as a

special case.

Properly reprojecting the Ladybug images onto the faces

of a cube requires accurate calibration information for the

Ladybug’s sensors. We use the Ladybug’s API to retrieve

the extrinsic calibration of each sensor (position and orien-

tation relative to a common coordinate frame), but calibrate

the intrinsic parameters ourselves. Calibrating the sensors’

intrinsic parameters accurately is a challenging and inter-

esting problem, however it is beyond the scope of this paper.

3.1. Image Sampling

To generate each side of a cubic panorama from the

Ladybug images, we use a plane-sweeping technique: for

f = 0, ..., L − 1 we backproject each pixel p in the cube

side to a depth z (f) to obtain the 3D point Pf , which is

then reprojected into each input image from which it may

be visible. The general idea is shown in Figure 3. Because

of the overlapping sensor configuration, a point may project

into one, two or three images. Due to the high distortion of

the Ladybug images and the difficulty in properly calibrat-

ing such distortion, reprojections become less reliable the

farther from the optical center of a sensor they get. Drop-

ping the subscript f for clarity, let sj (p̂) be the color sample

taken from image j at the projection p̂ of P onto that image.

Let the visibility of P from sensor j be Vj (P) = 1 if it

Figure 3. Plane sweeping for one side of a cu-
bic panorama.

is visible, and 0 otherwise. Let the color of pixel p be the

weighted average of samples from sensors from which P is

visible

cp (f) =
1

W

∑

j

Vj (P)wj (p̂) sj (p̂) (10)

where wj (p̂) = rbound (p̂) − r (p̂) is a weight based on the

distance r (p̂) of the reprojection from the optical center of

sensor j and the distance from the same to the edge of the

image, through p̂, rbound (p̂); and W =
∑

j Vj (P)wj (p̂).
We now define the reprojection cost of pixel p at depth

z (f) to be the photoconsistency measure

Dp (f) =
1

W

∑

j

Vj (P)wj (p̂) (s̄j (p̂) − c̄p (f))
2

(11)

where s̄ and c̄ are the scalar luminances of RGB colors

s and c respectively. Note that since all input images are

used the same way and the photoconsistency cost (11) has

linear complexity in the number of images, if this method

was generalized to any number of images it would be

considered a “true multi-image” matching technique as

defined by Collins [14].

4. BP for Cube Generation

For numerical stability [4] we convert the MAP estima-

tion from max-product to min-sum form and minimize the

energy function

Γ (F) =
∑

(p,q)∈E

Upq (fp, fq) +
∑

p

Dp (fp) (12)

where F is a configuration or labelling with a label fp

for every node xp, and Dp (f) ∝ −ln (φp (f)) and

Upq (f, g) ∝ −ln (ψpq (f, g)) are the data cost and dis-

continuity cost, respectively. The message vector mt
pq is

defined over each label g by

mt
pq (g) = min

f



Upq (f, g) +Dp (f) +
∑

s∈N(p)\q

mt−1
sp (f)





(13)

where N(p) ⊂ X is the first-order neighborhood of xp.

After T iterations the belief vector bp is defined over

each label f by

bp (f) = Dp (f) +
∑

q∈N(p)

mT
qp (f) . (14)

The label fp corresponding to the minimal component of bp

is taken as the MAP solution for xp.

For the data cost Dp (f) we use the photoconsistency

measure (11) described in Section 3.1. In the hierarchical

scheme, for a node xk
b in the level-k MRF corresponding to

block b of 22k pixels, Dk
b (f) =

∑

p∈bDp (f).
For the discontinuity cost Upq (f, g) we follow the trun-

cated linear model

Upq (f, g) = min (λ ‖f − g‖ , dpq) (15)

where λ is a scale factor and dpq is the truncation threshold

for discontinuity between pixels p and q. A discontinuity

cost function like this one allows messages to be computed

in two passes over the set of labels, making the complex-

ity of computing a single message linear in L as opposed to

quadratic in general [4].

The message passing iterations are divided into a for-

ward pass and a backward pass over the set of possible la-

bels. In the forward pass, for each label f = 0, 1, ..., L− 1
we compute

mt
pq (f) = {

hpq (f) If f = 0
min

(

hpq (f) ,mt
pq (f − 1) + λ

)

otherwise

(16)

where hpq (f) = Dp (f) +
∑

mt−1
sp (f). In the backward

pass, for each label f = L− 2, L− 3, ..., 0 we compute

mt
pq (f) = min

(

mt
pq (f) ,mt

pq (f + 1) + λ
)

(17)

mt
pq (f) = min

(

mt
pq (f) ,min

g
hpq (g) + dpq

)

. (18)

At each iteration, we update in the above fashion only

the messages for the appropriate subset A or B of X

based on whether the iteration number t is even or odd,

respectively, as per the bipartite graph optimization de-

scribed in Section 2. In the multi-level or hierarchical MRF

setup, after T iterations at level k, the messages must be in-

herited to corresponding child nodes in the level-k−1 MRF.

5. Implementation

Belief propagation is well suited for parallel execution.

While conceptually message updates are performed in par-

allel, a single CPU will perform the computations sequen-

tially. Graphics processing units (GPUs) are highly paral-

lel single-instruction-multiple-data (SIMD) processors built

into modern graphics cards along with up to 256 or even 512
MB of high-speed memory. Vertex and fragment progams,

or shaders, allow developers to perform custom, complex

arithmetic and texturing operations in hardware. GPUs

and their programmable interface have become so versa-

tile that much research has been done on performing gen-

eral purpose computation in graphics hardware (GPGPU).

For many such examples, the interested reader is referred

to http://www.gpgpu.org. Core computer vision algorithms,

such the Canny edge detector and feature extraction, have

been implemented for the GPU [8]. Gong and Yang use

image gradients in their real-time stereo algorithm for the

GPU [9] and Yang et al. presented a plane-sweep algorithm

on the GPU for real-time view synthesis [10] that is similar

to the process presented here for generating a side of a cubic

panorama.

By storing the message data and the data cost in textures,

we can use fragment programs to perform the message up-

date scheme described in Section 4 in a much more paral-

lel way than in a CPU implementation. (Newer GPUs can

process as many as 16 or 24 fragments in parallel.) Each

message is a vector of length L, and each node xp sends a

message to each of its four neighbors. By component-wise

interleaving the messages from xp to each of its neighbors

we can store corresponding components of those messages

in a four-channel floating-point texture element. Thus, the

message data for a given label is stored in a single texture.

A one-channel floating-point texture is used to store the data

cost for each label.

The storage complexity for this algorithm is O (ML),
where M is the number of output pixels. For most binocu-

lar stereo data sets, modern graphics cards have enough on-

board memory to store all the required data. However, for a

cube side that is 1024×1024 pixels, the message data alone

requires L×4×1024×1024 32-bit floats. For 16 labels this

is 256 MB. Hence, we keep in graphics memory the mes-

sage data for only a cached subset of labels, while main-

taining the full message data in main memory. We swap

data to and from main memory as needed by the algorithm,

thus greatly improving the scalability of this approach. The

bipartite graph optimization described in Section 2 allows

us to further cut in half the amount of message data that

must be kept in graphics memory by packing the message

data as shown in Figure 4, which also halves the amount of

message data that must transfered to and from main mem-

ory each iteration. In the hierarchical scheme, at level k,

message data for 22k labels can be stored in the same size

texture as stores the message data for a single label at level

0. The same goes for the data cost. This in turn cuts the data

transfered each iteration by a factor of 22k. Packing the data

in texture memory like this also improves the texture cache

performance of the GPU for k > 0.

A0,0 B0,0 A1,0
B1,0 A2,0 B2,0

B0,1 A0,1 B1,1 A1,1 B2,1 A2,1

A0,2 B0,2 A1,2 B1,2 A2,2 B2,2

B0,3 A0,3 B1,3 A1,3 B2,3 A2,3

A0,0 A1,0 A2,0

B0,0 B1,0 B2,0

A0,1 A1,1 A2,1

A0,2 A1,2 A2,2

A0,3 A1,3 A2,3

B0,1 B1,1 B2,1

B0,2 B1,2 B2,2

B0,3 B1,3 B2,3

Figure 4. Bipartite partitioning of the image
grid. Red arrows indicate messages incom-
ing to A0,1 and blue arrows indicate mes-
sages incoming to A2,2. The left side shows
how the nodes are located relative to one an-
other in the MRF, while the right side shows

how incoming messages from the previous
iteration are read with the bipartite optimiza-
tion in effect.

We compute the forward and backward passes of the

message passing iterations described in Section 4 by ren-

dering a screen-aligned rectangle textured with the neces-

sary input fields. For each label in the forward pass, for

every pixel p and each of its neighbors q, textures storing

mt−1
pq (f), mt

pq (f − 1) and Dp (f) are applied and a frag-

ment program computes mt
pq (f) per (16) and stores it in

another texture. Figure 5 illustrates how the fragment pro-

gram computes the intermediate quantity hpq (f) in (16).

Similarly, a fragment program is used to compute (17)

and (18) for each label in the backward pass from tex-

tures storing mt
pq (f), mt

pq (f + 1), ming hpq (g) and op-

tionally dpq, which is otherwise constant. The texture stor-

ing ming hpq (g) is written in the forward pass fragment

program using the ability of the GPU to render to multi-

ple textures at once.

Figures 4 and 5 show how the forward pass fragment pro-

gram handles the texture addressing for mt−1
sp (f) under the

bipartite grid packing scheme by switching texture coordi-

nate offsets based on whether p is in an even or odd row in

the image. Other calculations are made in both the forward

and backward pass fragment programs to offset the texture

look-ups to handle multiple labels within the same texture

for k > 0. By setting the viewport, we ensure that only

the appropriate rectangular region of the output texture is

updated for a given level k and label f .

l r

d

u

d

l r

u

r u l d

OR

neighbors
neighbor texture locations

channel

mup

mrp

mlp

mdp

mlp

mdp

mrp

mup

hpr

hpu

hpl

hpd

×

1 1 0 1

=
1 1 1 0

0 1 1 1

1 0 1 1

incoming message channel mask

read

0/r

1/u

2/l

3/d

Dp

Dp

Dp

Dp

+

Figure 5. Combining incoming messages to
compute outgoing message. Beginning at
the top-left with the bipartite neighbor pattern
for the given node xp, messages from right,
up, left and down neighbors are read into four
separate registers, combined into one incom-
ing message register, which is then multi-
plied by the incoming channel mask matrix
and then added to the data cost.

We also make use of the GPU for the image sampling

described in Section 3.1, with fragment programs to

compute cp (f) and Dp (f) according to (10) and (11)

respectively.

6. Results

Figures 6 and 7 are the faces of cubic panoramas gener-

ated for an indoor scene and an outdoor scene respectively.

The overlapping regions of the input images have not been

blended so the reader can see where they are. The front

face in Figure 6 is generated from the same input images as

were blended and feathered to produce Figure 2. Note that

the echo artifacts on the number 1 and on the red block in

front of it have been removed.

Figure 7 is illustrates the results of applying the method

to an outdoor scene. Blending and feathering performs

nearly as well in this case since objects in the scene are

generally far from the view. Space constraints prevent a

comparison figure, but Figure 7 is intended only to show

the the proposed method handles such scenes without

modification from indoor scenes.

Notable remaining artifacts, particularly the light in

the rear-view of Figure 6, result from a lack of overlap

(i.e. correspondence information) in the view and some

combination of numerical instability, calibration errors and

noise. Work is ongoing to rectify such errors.

We also applied GPU accelerated BP to standard stereo

data sets, which require less storage and can therefore be

executed entirely on the GPU without the need to swap

data to and from main memory. The GPU implementation

shows a promising speed-up, averaging 0.489 s on a NVidia

GeForce 6800 GT to produce a MAP disparity estimate

comparable to that produced by [4] on a Pentium 4 3.4 GHz

in an average of 1.189 s. Both averages were computed

over 20 trials under similar conditions. It should be noted

that the method of Felzenszwalb and Huttenlocher runs

many times faster than other stereo algorithms that produce

comparable results.

For generating cube sides, data must be swapped

between graphics and main memory, and the GPU imple-

mentation performs much more comparably to the original

CPU version. To perform the message passing iterations

for a cube side, the CPU implementation takes around 20 s,

while the GPU implementation takes more like 17 s for the

message passing iterations, and up to 25 s to generate the

data cost and execute the message passing iterations. The

main bottleneck is reading back data from the graphics card

to main memory. In fact, our experiments show this to be

up to 10 times slower than sending data to the graphics card.

7. Summary and Conclusions

We have presented a novel approach to generating

panoramic images from a multi-sensor camera system, bor-

rowing the success of Markov random fields and belief

propagation as applied to the similar problem of stereo

matching. We have shown a significant running time im-

provement, nearly 60 percent, over the CPU implementa-

tion of belief propagation algorithm of Felzenzwalb and

Huttenlocher for stereo, which in turn is an order of magni-

tude faster than any other published stereo method (to our

knowledge) that produces comparably accurate results. The

speed advantage of the GPU decreases on the larger data

sets for panorama generation, when data must be swapped

Figure 6. The front, right, back and left faces
of a cubic panorama of an indoor environ-
ment generated using the proposed method
(the top and bottom faces are omitted to save
space since they are not very interesting).

Figure 7. The front, right, back and left faces
of a cubic panorama generated for an out-
door scene (the top and bottom of the cube
are omitted to save space since they are not
very interesting).

to and from main memory.

The remaining artifacts may be fixed by improved cali-

bration, or by a more connected model. Currently, each side

is considered separately, and since photoconsistency infor-

mation is available only in the overlap regions, the sides are

not guaranteed to align perfectly. A possible improvement

would be to consider a fully connected panoramic MRF, for

example a cubic MRF. A cubic MRF is topologically differ-

ent than a planar MRF and the bipartite optimization could

not be used. Research into this method is on-going.

Further considerations also include assuring temporal

consistency in a panoramic sequence, as well as other types

panoramic images. This method could be modified to gen-

erate spherical or cylindrical panoramas.

Acknowledgments

We would like to thank Dr. Eric Dubois of the Univer-

sity of Ottawa for his expertise and suggestions regarding

Markov random fields. This work was funded through the

NAVIRE project of the VIVA Lab of the School of Informa-

tion Technology and Engineering at the University of Ot-

tawa.

References

[1] Ladybug Spherical Digital Video Camera System User Man-

ual and API Reference, Version 1.1, 2002-2003, Point Grey

Research, Inc.

[2] Jonathan S. Yedidia, William T. Freeman and Yair Weiss,

“Understanding Belief Propagation and its Generalizations”,

International Joint Conference on Artificial Intelligence IJ-

CAI 2001, 2001.

[3] Jian Sun, Nan-Ning Zheng and Heung-Yeung Shum, “Stereo

Matching Using Belief Propagation”, IEEE Transactions on

Pattern Analysis and Machine Intelligence, Vol. 25, No. 7, pp.

787–800, July 2003.

[4] Pedro F. Felzenszwalb and Daniel P. Huttenlocher, “Efficient

Belief Propagation for Early Vision”, IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), Washing-

ton, DC, pp. 261–268, 2004.

[5] Marshal F. Tappen and William T. Freeman, “Comparison of

Graph Cuts with Belief Propagation for Stereo, using Identi-

cal MRF Parameters”, Internation Conference on Computer

Vision (ICCV 2003), pp. 900–906, 2003.

[6] Li Zhang and Steven M. Seitz, “Parameter Estimation for

MRF Stereo”, IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), San Diego, pp. 288–295, June

2005.

[7] Yuri Boykov, Olga Veksler and Ramin Zabih, “Fast Approx-

imate Energy Minimization via Graph Cuts”, IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, Vol. 23,

No. 11, pp. 1222–1239, November 2001.

[8] James Fung, “Computer Vision on the GPU”, GPU Gems 2,

editted by Matt Phar, NVidia/Addison-Wesley, Toronto, pp.

649–666, 2005.

[9] Minglun Gong and Ruigang Yang, “Image-gradient-guided

Real-time Stereo on Graphics Hardware”, Proceedings of

3DIM 05, pp. 548–555, 2005.

[10] Ruigang Yang, Greg Welch and Gary Bishop, “Real-Time

Consensus-Based Scene Reconstruction using Commodity

Graphics Hardware”, Pacific Graphics 2002, pp. 255–234,

2002.

[11] Shenchang Eric Chen, “QuickTime VR - An Image-Based

Approach to Virtual Environment Navigation” Proceedings of

ACM SIGGRAPH 95, pp. 29–38, 1995.

[12] M. Brown and D. G. Lowe, “Recognising Panoramas” In-

ternational Conference on Computer Vision (ICCV 2003), pp.

1218–1225, Nice, France, 2003.

[13] Sing Bing Kang, Richard Szeliski, Matthew Uyttendaele,

“Seamless Stitching using Multi-Perspective Plane Sweep”,

Microsoft Research Technical Report, MSR-TR-2004-48.

[14] R.T. Collins, “A space-sweep approach to true multi-image

matching”, IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pp. 358–363, San Francisco, CA, June,

1996.

