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Abstract

The three-dimensional trajectory of a small
lifeboat in a surface wave is computed via the
methods of Lagrangian dynamics. It is assumed
that the motion normal to the wave surface is
small and can be neglected, i.e. the boat moves
along the propagating wave profile. Wave diffrac-
tion and reflection are also assumed to be negli-
gible. A Stokes’ second order wave is used and
the wave forces are applied using Morison’s equa-
tion for a body in accelerated flow. Wind loads
are similarly modeled using drag coefficients. The
equations are solved numerically for various initial
conditions in a typical severe sea state. The model
is expected to be useful for predicting the motions
of small bodies such as bergy bits and lifeboats in
waves.

1 Introduction

The present study is motivated by the research
programmes at the National Research Council of
Canada dealing with the motions of small bod-
ies such as lifeboats and bergy bits in severe seas.
The first attempt at addressing the problem seems
to be Rumer et al.[1] who derived a slope sliding
model for predicting ice transport in waves. How-
ever, as pointed out by Grotmaack [2], the model
of Rumer et al.[1] does not account for the normal
component of the body’s acceleration as it moves
along the curved wave profile. The problem was
also considerd by Marchenko[3] who used a vector
based approach but neglected the inertia aspects
of the wave loads on the body. A thorough com-
parison of these models was presented by Grot-
maack [2]. In the above models the body is con-
sidered to be a point mass and the motion is two-
dimensional, i.e. confined to a vertical plane. Here
we consider the rotational inertia of the boat as
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Figure 1: Problem Definition

well as the three dimensional nature of the trajec-

tory on the wave surface. The governing equations "
are derived using Lagrange’s equations of motion.

It is assumed that the body’s dimensions are small

relative to the wavelength so that wave reflection

and diffraction are negligible. We also assume that

the motion of the body normal to the wave sur-

face is small and can be neglected. Numerical re-

sults are presented for various initial conditions in

a typical severe sea state.

2 Equations of Motion

The problem is illustrated in Fig. 1 Point O is the
origin of a fixed inertial coordinate system with x
and z axes, and a small boat B moves along the
surface of a wave which is propagating in the posi-



tive z direction with speed c. Point O is the origin
of a coordinate system (axes Z,7,% ) moving with
the wave speed c in the positive z direction. The
unit vectors of both systems are i,j,k in z,y, 2
directions respectively and Z = x — ¢t where t is
time. The equation of the wave profile in the mov-
ing coordinate system is

Z=n(Z) 1)

where 7 is a specified function. The unit tangential
and normal vectors to the wave surface at point
(Z,n) in the moving coordinate system are denoted
by t and n respectively. Fig. 1 also illustrates the
orientation of B relative to the wave tangent t.
The unit vectors by, by and bs are fixed in B and
the b; — bs plane is parallel to the wave surface.
The mean boat heading is specified by the angle 0
(assumed constant) measured anticlockwise from
t. If boat B is at point (Z,7,Z) on the wave sur-
face (relative to the moving coordinate system),
its position vector relative to the fixed coordinate
system is

r(t) = (g1 + ct) i+gaj+n (q1) k (2)

where ¢; (t) = Z (t) and g2 (t) = § (¢) are the gen-
eralised coordinates of the motion.. We denote
differentiation with respect to g; and ¢t by primes

and overdots respectively. The absolute velocity
of B is

v = (a1 +e) i+ai+n'a,k (3)
where 7/ = 58% and ¢; = 4. The unit vectors
t,n are given 13y
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where T is the boat’s position vector relative to the
moving T — Z coordinate system. If ¢ is the angle
made by the tangent vector t with the positive
direction, the angular velocity of the boat is

- n//ql .
w=—gi=-{LL i (g
{ 1+ () }
The Lagrangian L is the difference between the
kinetic and potential energies and is written as

L=gmlvf + 3 () [} —mon  (7)

where {w} and [I] are respectively the angular ve-
locity vector and inertia matrix of the boat in the
B frame (unit vectors b;), m is the mass of the
boat and g is the acceleration due to gravity. In
terms of the generalised coordinates (7) becomes

2
L = %m{(cﬁ +c)2 tant (n’éf) }
+af (q1) s —mgn (8)
where
1 " 2
fla) = 3 (1—+2(77’_)2> 9
a = Ij;sin® (6) + Iy cos® (6) (10)

Here, I;1 and Iso are the moments of inertia of
B about the by, by axes respectively. Let the net
non-conservative external force on B be FZ and
let its components in the t,n and j directions be
FFP,FF and FP respectively, i.e.

F¥ = FPt+FPn+Ffj (11)
The virtual work of the noﬁ-conservative force F¥
il Whpe = FE.6r (12)
where the virtual displacement ér is given as
or = 0g1(i+n'k) 4 dgaj (13)
Using (11), (4) and (5) we write (12) as
| Whe = Q16g1 + Q20q2 (14)

where the generalised non-conservative forces

Q1,Q2 are

Qu=FE\1+ () ; Qo=FF (15)

The equations of motion are
d (0L oL
() o an
This is written from (8) and (15) as
. 2
0 {m [1 + (77’)2} +2af } + gy {mn'n” + af'}
+mgn’ = FF\/1 4 ()

(17)
mgs = F,f (18)



We write the external force F¥ as the sum of forces
due to waves (F¥*'®), wind (F¥"4) and propulsion
(FP) so that

FtE — Fwave't+FWind't+FP-t (19)
FyE = TFwave j + Fwind j + FP j (20)

The wave force F¥2V¢ is written as (Sumer and
Fredsoe[4])

Fwave — FFK + FA + FD (21)

where FFK is the Froude-Krylov force, F4 is the
added mass force and FP is the wave drag force.
Let a be the acceleration of B, and let v,,,a,, be
the water particle velocity and acceleration respec-
tively at B. The x and z components of v,,,a,, are
denoted by (u,w) and (a,,a,) respectively. The
Froude-Krylov force is FF'X = pVpa,, which gives

FFE .t = pVp(as+na,)27%  (22)
FFe.j =0 (23)

where p is the water density, Vi is the submerged
volume of B and

Z=1+(y)* (24)

We refer to the reference frame with unit vectors
t,n,j attached to B by the superscript W. The
added mass force in this frame is

{WFA} - _ [WMA] {W(J,R} (25)

where [WM A] is the added mass matrix of B and
{"a®} is the acceleration of B (column vector)
relative to the water, both in the W frame. The
components of F4 in the t and j directions are
found from (25) as

_ﬁ]él _52é2+/83 (26)
—Y1q1 — Yol + V3 (27)

FA.t =
FA4.j =

.2
By=2"1% (aw +n'a, — n’n”q1> W1
and

v =2% Wiy
_w
Yo =" Ma2 (29)

.2
V3 =2"% (az +n'a; — n’n”tn) Vmas

Here ,
Wmy = (mu cos? 0 4+ mos sin® 9) (30)
Wmy = (m11 — mag) sinf cosd (31)
Winge = (M1 sin® @ + mag cos? ) (32)

and mq1,mog are the added masses of B in direc-
tions by, by respectively. The wave drag force is
written in the B frame as

FP =B FPv, +B FPb, (33)

and the components are evaluated for 1 = 1,2 as

PFP = —3pOP AP (v~ v) - bil (v — vu) - by
(34)
where AP, (i =1,2) is the projected wetted area
of B normal to b; and CP is the associated drag
coeflicient. This is written in terms of the gener-
alised coordinates using

Vv—vy) by = (¢Z+c—u—nw)Z % cosh
1 n

+q4 sin 0 (35)

Vv—vy)-by = (¢ Z4+c—u—nw Z" % sinf
1 n

—gs cos (36)

The components of FP in the t and j directions
are then given by

FP.t =
FP.j =

BFPcos0+B FPsing  (37)
BFPsing —B FP cosd  (38)

The components of the wind drag in the B frame
are similarly written for i = 1,2 as

. 1 . .
BFviwmd — —§PairC;deA?mduR'bi !uR‘bi| (39)

where Ur = V — Vyind is the velocity of the body
relative to the wind, A¥*? is the projected area of
B normal to b; exposed to the wind and C}'*¢ is
the associated wind drag coefficient. This is writ-
ten in terms of the generalised coordinates using

ug'b; = (cle—l—c—v;’ind) Z7% cosf
+ (q2 — vzi“d> sin 0 (40)
ugpby = ((le—i-c——v;Vind) Z" % sinf

- (q2 - v';ind) cos 0 (41)
The components of F¥*¢ in the t and j directions

are given by

Fvind ¢ — Bpwind g0 4 B pwind gy 6(42)
Frind.j = Bppindging B pyind ¢o56(43)



Similar expressions hold for the propulsive thrust
components FF -t and F¥ - j. We can now write
equations (19) and(20) as

FP = —B1qy— Bady + ¥, (44)
FyE = —71q1 — Yolz + Py (45)
where
Y, = Pg+FFE ¢4 FD . ¢4 Fvind ¢
+FP ¢ (46)
vy = YA FEjHEP
+FF . j (47)

From (17),(18),(44) and (45) the equations of mo-
tion are written as

(a)(e)-(2) w

where
a1 =mZ + 2o0f + ﬁlZ% ajg = IBQZ% (49)
a21 = 71 Q22 =M + 7Yy

and

.2
dy = 239, — g (m'n" +af') —mgi| (50
d2 = wy

Equation (48) is converted to an equivalent set of
first order equations and solved numerically using
the Runge-Kutta routine “ode45” of MATLAB,
subject to specified initial conditions.

3 Results

We consider the motion of a typical fully loaded
Totally Enclosed Motor Propelled Survival Craft
(TEMPSC) of mass m = 12,500 kg in a wave
of length A = 190 m, height H = 7.6 m, pe-
riod T = 11 sec moving in the positive = direc-
tion with speed ¢ = 17.2 m/s in water of depth
500 m. The wind speed is 19 m/s in the z di-
rection. These conditions are representative of a
Beaufort 8 sea state. The boat geometry is ap-
proximated by a cylinder of length 10 m and ra-
dius 1.64 m. The added mass coefficient for mo-
tion along either axis is taken as 0.8. Drag co-
efficients are estimated as 1.2 for water and 1.0
for air. The body areas exposed to air and water
are assumed to be in a 2:1 ratio. The boat head-
ing is & = 150° under a propulsive force which is
linearly ramped from 0 to 5000 N over a 15 sec
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Figure 2: Wave Profile

interval. The boat heading is therefore at an angle
of 30° against the wave direction. The wave pro-
file and fluid velocity and acceleration fields are
obtained from the standard formulae for a Stokes
second order wave (Wilson[5]). The wave profile
is illustrated in Fig. 2. The initial conditions are
QI(O) = %"a éll (0) =—C Qq (0) =0, QZ (0) =0.
The starting condition thus corresponds to point
B in Fig. 2 with zero forward speed. The boat
trajectory is illustrated in figures 3 and 4.

3.1 Lifeboat Setback

We consider that the wave is propagating toward
the launching platform or vessel and the possibil-
ity of collision with the platform presents a sig-
nificant safety hazard. To quantify this hazard,
we define the term setback to be the distance that
the lifeboat is carried in the wave direction (and
therefore toward the platform) before it’s direction
is reversed and it is propelled to safety. The set-
back distance depends on the initial positiion on
the wave profile. For instance, Fig. 3 illustrates
a setback distance of about 3 m. Figures 5 and
6 illustrate the boat trajectories starting from the
points A to F' shown in Fig. 2. When the boat
starts from A or F, there is no setback. However,
starting positions such as C,D or E will result
in significant initial travel in the wave direction
and increase the possibility of catastrophic colli-
sion with the launching platform.
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4 Conclusions

‘We have presented the equations of motion for the
motion of a small floating body in a surface wave
using Lagrange’s equations. It is assumed that the
body is small relative to the wavelength and that
its motion normal to the wave profile is negligi-
ble. The wave forces on the body are modeled
using a standard Morison’s equation formulation
for a moving body in an accelerated flow.The for-
mulation may be used for predicting the motion of
small floating objects such as lifeboats and bergy
bits. One useful application is the assessment of
lifeboat safety when deployed in severe sea states.
Results have been presented for a Stokes’ second
order wave but it is clearly possible to examine
the motion in other known wave profiles. Experi-
mental validation of the model is proposed at the
Institute for Ocean Technology, National Research
Council, St. John’s, NL.
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