Bergy bit and growler melt deterioration
Savage, S. B.; Crocker, G. B.; Sayed, M.; Carrieres, T.

This publication could be one of several versions: author's original, accepted manuscript or the publisher's version. / La version de cette publication peut être l'une des suivantes : la version prépublication de l'auteur, la version acceptée du manuscrit ou la version de l'éditeur.

For the publisher's version, please access the DOI link below. / Pour consulter la version de l'éditeur, utilisez le lien DOI ci-dessous.

Publisher's version / Version de l'éditeur:
https://doi.org/10.1029/2000JC000270

NRC Publications Record / Notice d'Archives des publications de CNRC:
https://nrc-publications.canada.ca/eng/view/object/?id=eb88af99-8335-4292-a50f-78e60915d7fc
https://publications-cnrc.canada.ca/fra/voir/objet/?id=eb88af99-8335-4292-a50f-78e60915d7fc

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at https://nrc-publications.canada.ca/eng/copyright
READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

Questions? Contact the NRC Publications Archive team at PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.
Bergy bit and growler melt deterioration
S. B. Savage¹, G. B. Crocker², M. Sayed³ and T. Carrieres⁴

Abstract

The Canadian Ice Service, Environment Canada, is currently developing an operational iceberg forecasting model; the present work forms part of that effort. While existing models predict iceberg drift and deterioration, the new model will account for calving that produces smaller ice pieces and subsequently track the drift and melt of the calved pieces. Bergy bits and growlers, which we consider here to be ice pieces in the size range from 3 to 20 m, can cause large forces upon impact with offshore structures. The probability of encountering these bergy bits and growlers is of significant interest to marine transportation and offshore resource development. Calving due to wave-induced erosion at the waterline of a floating iceberg can produce many thousands of small ice pieces having a wide distribution of sizes. These small ice pieces then melt as individual entities and eventually disappear. Since the calving events occur periodically, there is a continual supply of small ice pieces in the neighborhood of the parent iceberg. The focus of the present paper is on the evolution of the size-frequency distribution function for the calved ice pieces. It makes use of the initial distribution function following the calving event discussed by Savage et al. (2000). Dimensional analysis, laboratory tests, and field observations are applied to obtain simple correlations and devise a melt law for the smaller ice pieces. This melt law is then used to determine the temporal evolution of the small ice piece size-frequency distribution function.

¹Department of Civil Engineering and Applied Mechanics, McGill University, Montreal, Quebec, Canada.
²Ballicater Consulting Ltd, Kingston, Ontario, Canada.
³Canadian Hydraulics Centre, National Research Council of Canada, Ottawa, Ontario, Canada.
⁴Canadian Ice Service, Environment Canada, Ontario, Canada.