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We propose an extension of the FENE-CR model for dilute polymer solutions [M.D. Chilcott, ).M. Rallisor,
Creeping flow of dilute polymer solutions past cylinders and spheres, ]. Non-Newtonian Fluid Mech. 29
(1988) 382-432] and the Rouse-CCR tube model for linear entangled polymers [AE, Likhtman, R.S. Gra-
ham, Simple constitutive equation for linear polymer melts derived from molecular theory: Rolie-Poly
equation, J. Non-Newtonian Fiuid Mech. 114 (2003) 1-12], to describe the nonequilibrium stretching
dynamics of polymer chains in strong extensional flows, The resulting models, designed to capture the
progressive changes in the average internal structure (kinked state) of the polymer chain, include an
‘gffective’ maximum contour length that depends on local flow dynamics. The rheclogical behavior of
the modified models is compared with various results already published in the literature for entan-
gled polystyrene solutions, and for the Kramers chain model (dilute polymer selutions). [t is shown that
the FENE-CR model with an ‘effective’ maximum contour length is able to describe correctly the hys-
teretic behavior in stress versus birefringence in start-up of uniaxial extensional flow and subsequent
relaxation also observed and computed by Doyle et al. [PS. Doyle, E.S.G. Shagfeh, G.H. McKinley, S.H.
Spiegelberg, Relaxation of dilute polymer solutions following extensional flow, |. Non-Newtonian Fluid
Mech. 76 (1998} 79-110] and Li and Larson [L. Li, R.G. Larson, Excluded volume effects on the birefringence
and stress of dilute polymer solutions in extensional flow, Rheol. Acta 39{2000} 419-427] using Brownian
dynamics simulations of bead-spring model, The Rolie-Poly medel with an ‘effective’ maximum contour
length exhibits a less prenounced hysteretic behavior in stress versus birefringence in start-up of uniaxial
extensional flow and subsequent relaxation.

Crown Copyright ® 2009 Published by Elsevier B.V. All rights reserved,
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1. Introduction [6] have suggested that, at high-velocity gradients, the molecu-

lar individualism of polymer chains on the microscale hecomes

Experimental observations indicate that dilute and entangled
polymer solutions display very different rheological behavior
in extensional flows. Recently, Rothstein and McKinley [1,2]
discussed, in depth, the role of the extensional rheology on
vortex growth dynamics and the enhanced pressure drop dur-
ing flow of a polystyrene Boger fluid through axisymmetric
contraction-expansion geometry. They observed that the enhance-
ment in the pressure drop was not associated with the onset
of flow instability. They conjectured that this extra pressure
drop is the result of an additional dissipative contribution to
the polymeric stress arising from stress—conformation hystere-
sis in strong non-homogenecus extensional flow near contraction
plane. Such a stress-conformation hysteresis was observed and
computed by Doyle et al. [3] and Li and Larson [4] in transient
uniaxial extensional flow, using Brownian dynamics simulations
of bead-spring model. McKinley and Sridhar [5] and Larson

* Corresponding author.
E-mail address: kalonji.kabanemi@cnrc-nre.ge.ca (KK, Kabanemi).

important and is reflected in the very heterogeneous popula-
tion of conformations produced during these flows, as a result
of the rapid and nonequilibrium nature of the stretching pro-
cess.

On the cther hand, Rothstein and McKinley | 7] studied the stress
and birefringence growth of a concentrated entangled polystyrene
solution (labeted P512) in uniaxial extensional flows. Contrary to
the dilute polystyrene solution, they observed a less pronounced
stress—conformation hysteresis during imposed stretching and sub-
sequent stress relaxation at a strain rate of about, & =5.3s7\.
They argued that, in order to observe a pronounced or measurable
stress—conformation hysteresis, one would need to generate kinked
configurations within each segment, and this would require a very
strong flow (&y > 295-1). Such deformation rates are not presently
attainable in their filament-stretching rheometers.

It is therefore useful to focus effort on the definition of suit-
able and numerically tractable rheological constitutive models that
could reproduce, at least, qualitatively the nonlinear viscoelas-
tic behavior of dilute and entangled polymer solutions in rapidly
changing flows.

0377-0257/§ - see front matter. Crown Copyright € 2009 Published by Elsevier B.V. All rights reserved.
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Various models for dilute polymer solutions have indeed been
proposed that account for additional dissipative stress in strong
extensional flows. Larson [6]} developed kinks dynamics equations
that describe the unraveling of the polymer chain in a strong exten-
sional flow and found that large viscous stresses were produced.
Hinch |8} showed that during the uncoiling, the stress is found to be
mainly dissipative rather than elastic, i.e,, the stress is proportional
to the instantanecus strain rate rather than being independent of
it. The contribution of a polymer chain to the stress tensor in the
kinks dynamics model is dissipative, corresponding to the viscous
dissipation as each segment of inextensible string fails to deform
with the flow. He proposed a new expression for the stress, which
is proportional te the strain rate. Rallison [9] further showed on the
basis of molecular simulations the existence of a significant dissipa-
tive polymeric stress in planar extensional flow of a dilute polymer
solution and proposed a natural extension of the finitely extensible
nonlinear elastic (FENE-CR) equation that incorporates an addi-
tional stress term that has been chosen to be explicitly dissipative
and proportional to the magnitude of the conformation tensor. Lie-
lens et al. [10] addressed the closure approximation problem for the
FENE dumbbell model. Inspired by stochastic simulation results for
the FENE theory, they proposed a new model referred to as FENE-L.
The new model was found to provide the best agreement with the
FENE results, In particular, it is capable of reproducing the hysteretic
behavior of the FENE model, in stress versus birefringence curves
during start-up of flow and subsequent relaxation. More recently,
Ghosh et al. [11] developed a new model for dilute polymer solu-
tions in flows with strong extensional components. The new model,
based on introducing an adaptive length scale (ALS} as an internal
variable, was developed to reproduce the fine-scale physics of the
Kramers chain model. The resulting ALS and ALS-C models give very
good predictions of stress growth in start-up of uniaxial extensional
flow and stress-birefringence hysteresis in a uniaxial extensional
flow followed by relaxation.

In this work, we extend the FENE-CR model for dilute polymer
solutions developed by Chilcott and Rallison {12} and the Rouse-
convective constraint release (CCR) tube model for linear entangied
polymers (Rolie-Poly equation), developed by Likhtman and Gra-
ham[13], by introducing the concept of ‘effective’ maximum contour
tength of polymer chains within the molecular theory, with the
objective of capturing progressive changes in the average internal
structure (kinked structure) of pelymer chains, in strong uniax-
ial extensional flows. An alternative to this approach would be to
include a spectrum of relaxation times in the model torepresent the
internal degrees of freedom. The theory, however, for general flows
would be too complicated to be numericatly tractable in a complex
flow calculation, involving three-dimensional geometries.

The paper is organized as follows: We first present the orig-
inal Rolie-Poly model by incorporating finite extensibility, Next,
we analyze the behavior of the model in extensional flow and per-
form quantitative comparison with experimental data by Ye et al.
{14]. In Section 4, we introduce the concept of effective maximum
contour length in the Rolie~Poly model to describe the nonequi-
librium stretching dynamics. The behavior of the extended model
is then analyzed and compared with experimental data in Section
5. Finally, we introduce in Section 6, an extension of the FENE-CR
model that includes the effective maximum contour length and
compare its behavior, in extensional flow, with that of the Kramers
chain model by Ghosh et al. [15).

2. Rouse-CCR tube model for linear entangled polymers
with finite extensibility

In a recent paper dealing with the response of entangled pely-
mer chains under rapid deformation, Graham et al. [16] proposed
a molecular theory that does not need decoupling approxima-

tion, which leads to averages for orientation tensor and chain
stretching. The resulting model includes the processes of reptation,
CCR, reptation-driven constraint release, chain stretch and con-
tour length fluctuations (CLF}, Likhtman and Graham [13} derived
from the full theory a simplified constitutive equation, which they
called the Rolie-Poly constitutive equation, standing for Rouse lin-
ear entangled polymers. In that theory, the conformation of the
polymer chain, o, in a flow field, #, evolves in time by an equation
of the form

og=L.¢c+0.L"T+fla), (1)

where the tensor function, f, is given by

1 2 /3 tray?#
f(ﬂ):—a(ﬂ'—')—r_!{ (1— ﬁ) (J+,B(T) (U—l)).
(2)

Here L=vuT is the transpose of velocity gradient tensor, t4 is the
fixed-tube disengagement time or reptation time, g is the longest
Rouse time or stretch time, £ is the CCR coefficient analogous to the
coefficientintroduced by Marrucci{17] in his original CCR paper, §is
a negative power which can be obtained by fitting to the full theory,
and o =1 is the equilibrium value of the conformation tensor in the
absence of low.

We want to emphasize here that neither theory [13,16] has
finite extensibility included, which would limit the degree of strain
hardening in the stretching regime. Indeed, non-Gaussian behavior
cannot be ignored in fast flows, when chains stretch significantly, To
account for finite extensibility of polymer chains into the original
Rolie-Poly equation, we require that, in the absence of other relax-
ation mechanisms such as reptation and CCR, the trace of Eq- (1)
leads to the relaxation for the stretch similarly as for the MLD model
[18]. We then derive a non-Gaussian version of the Rolie-Poly con-
stitutive equation, which accounts for finite extensibility of polymer
chains, by writing the tensor function, f, in the following form

flo) = —Tl—d(a -n- %k;(l) (1 - i)

tror

x (u+,6(“T")5(o-l)), (3)

where k(1) is the noniinear spring coefficient accounting for the
finite extensibility of polymer chains, equals unity for linear springs
and becomes much greater than unity as the spring becomes nearly
fully stretched, and A = {/ly = \/tre/3 is the chain stretch ratio.
The length, {, is the current tube length occupied by an entangle-
ment segment and fy is the length of the same tube segment at
equilibrium. A =1 is the equilibrium value in the absence of flow.

In the limit of large stretch and in the absence of any other
relaxation mechanism, retraction, i.e., the trace of Eq. (1) with the
expression for the tensor function, f, given by Eq, (3), leads to the
desired following relaxation for the stretch

da
i
This form was used in the MLD model with finite extensibility
[19,20]. Note that in the limit of linear spring (Gaussian chain), ks(A)
remains unity, Eqs. (1) and {3} reduce to the original Rolie-Poly
constitutive equation, The nonlinear spring coefficient, ks(X), is
approximated by the normalized Padé inverse Langevin function
[20].i.e.

(B-AT/AL X1-1/A2.)
(1-2A2/A2, 03 - 1/A2a)

where Apax is the fixed maximum stretch ratio.

- _rlk,(x)(.x -1). )
R

k(1) = (5)
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[tis important to realize that in strong flows, when A approaches
Amax. the nonlinear spring coefficient, k(1) becomes very large
and the ‘effective’ stretch relaxation time, €. =1Trfks(1). becomes
shorter than the Rouse relaxation time, tg, and the evolution equa-
tion for the confermation tensor &, Eq. (1), with the expression for
the tensor function, f, given by Eq. (3), becomes difficult to solve
numerically,

The constitutive equation, Eq. (1), with the expression for the
tensor function, £, given by Eq. (3} is completed by specifying the
relationship between the polymeric stress contribution 7 and the
conformation tensor o.

For this purpose, let us recall that, the physical picture of the
tube model is that the motion of any chosen polymer chain is
strongly restricted by the presence of surrounding polymer chains,
which creates a sort of a tube around the chosen chain, The contour
length of the tube is given by the primitive chain length, consist-
ing of Z primitive path steps (subchains or chain segments) which
connect two consecutive entanglement points. At equilibrium, the
average primitive path step or tube segment length, I, is expected
to be of the same order as the equilibrium tube diameter ap, and
the equilibrium contour length of the whole tube is written as
Lo =Zplg = Zyay, where Zp is the number of subchains (entangle-
ments) per pelymer chain at equilibrium. Accerding to Gaussian
chain statistics, qofo = Nenb? or 62 = Neob?, where b is the length of
a ‘monomer’ or a Kuhn segment, Nyg is the number of monomers
between entanglements at equilibrium and N = ZyN.g is the number
of monomers per polymer chain, The stretch of the tube segment,
A=Ifly, is assumed to be uniform along the chain contour length,
where [ is the nonequilibrium tube segment length, Assuming that
the number of monomers in each subchain does not change during
flow, the entropic force in each subchain is given by

3kgT 3k T
Frane(R) = kR = =5 kiR, (6)
¢ 0

where R is the end-to-end vector of the subchain, T is the absolute
temperature and kg is the Boltzmann constant, Assuming that the
tube diameter stays constant and equal to its equilibrium value ag,
the polymeric stress contribution due to traction along the tube
axis, Tp, is written as

RR 2 (RR
7p = Zg {FreneR) = cZo3kpTks Q = cN3kBTb—2ksS—2—). 2]
@ @ G

Here the factor ¢Zy accounts for the number of subchains (entangle-
ments) at equilibrium per unit volume, c is the number of polymer
chains per volume and the factor ¢N accounts for the number of
menomers per unit volume. In terms of the conformation tensor, o,
Eq. (7) can be written as

Tp = Gky(A)o - I} = z—:ks(f\)(d -, (8)

where G = cZy3kgT = cN3kgT(b?/ad) is the plateau modulus and
1jp is the zero-shear-rate polymer viscosity. This equation ensures
that at equilibrium, the polymer stress is zero. Finally, we define
the refractive index tensor (birefringence), n, as

n
c=-n, 9

where Cis the stress optical coefficient, which depends only on the
local structure of the polymer chain,

3. Uniaxial extensional flow: linear entangled polymers

We here perform a quantitative comparison with the original
Rolie-Poly model that does not include finite extensibility, in shear
and uniaxial extensional flows, and calculate steady and transient
extensional stress and extensional viscosity. We further include in
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Fig. 1, Steady-state extensional stress prediction compared to that of the origi-
nal Rolie-Poly model, the MLD model [14] and the experimental data for a nearly
monodisperse linear polystyrene sample {L289) [14].

these comparisons, results of the MLD model and the experimental
data by Ye et al. [14]. The polymer used is a nearly monodisperse
linear polystyrene sample (L289) [14]. The following fluid param-
eters are used in the model: np=1643.12Pas, ty=9.4s, tg =0.765,
B=01 and § =—0,5. The fixed maximum stretch ratio was adjusted
arbitrarily to Apnax = 10. The steady-state curves of the extensional
stress are shown in Fig. 1. We further add in this figure predictions
using a different value of the extensibility parameter of Amax =4.5.
At low strain rate for which &ty < 1, predictions are in good agree-
ment with experimental data. In the stretching regime for which
£tg > 1, however, predictions become sensitive to the value of the
maximum stretch ratio and, the original Rolie-Poly fails, since it
omits chain finite extensibility effects, The extensional stress is pre-
dicted to be linear in the rate of deformation at high &7z, for both
the MLD model and the modified Rolie-Poly model, We would like
to point out that, even with the modified Rolie-Poly model, quan-
titative agreement with experimental data is hardly achieved due
to the simplification of single segment model, in which all chain
segments are assumed to behave in the same way [21). In Fig. 2,
we compare the steady-state extensional viscosity for both models
(Rolie-Poly model with and without finite extensibility), As noted
by Ye et al. {14], the initial drop from the Newtonian value is due to
tube crientation in the elongation direction. The extensional vis-

108
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£ 108 !
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§ |
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g = Rolie-Poly (original} 1
£ 104 [}
g /
i
10° . .
10?2 10" 10° 10!

Strain rate (s)

Fig. 2. Steady-state extensional viscosity prediction for the original Rolie-Poly
model and the current Rolie-Paly model with finite extensibility, Ama = 10.
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Fig. 3. Prediction of the transient extensional viscesity for the Rolie-Poly model with
a fixed Ainite extensibility, Amax, and with an effective maximum contour length, A.q.
compared to the experimental data for a nearly monodisperse linear polystyrene
sample (L289) [14] at strain rate of £ = 2577,

cosity is identical for both models at low strain rates. As strain
rates increase (£tg > 1), chain stretch makes the viscosity increase.
Contrary to the original Rolie-Poly model, the extensional viscos-
ity reaches a final constant value due to the finite extensibility of
polymer chain included in the current model.

In Fig. 3, we compare the prediction of the transient extensional
viscosity, in start-up of uniaxial extensional flow to the experimen-
tal data for the same polystyrene by Ye et al. While the steady-state
prediction is in agreement with the experimental data, the pre-
dicted stress growth at small strain, using the Rolie-Poly with Apax.
is slower than the one measured experimentally. The effects of
using an effective maximum contour length on the transient rheo-
logical behavior will be analyzed in the following section.

4. Nonequilibrium stretching dynamics for entangled
polymers: ‘effective’ maximum contour length

In rapidly changing flows, the dynamics of the average quantity,
o, as described by Eq. (1), with the expression for the tensor func-
tion, f, given by Eq. (3), using the inverse Langevin force law, does
not lead to accurate descriptions of changes in polymer chain con-
figuration on significantly shorter length scales. Indeed, the inverse
Langevin force law, obtained from equilibrium statistical mechan-
ics, should be used with caution in nonequilibrium situations, in
which the unfolding process of polymer chains takes place under
nonequilibrium conditions.

Ianniruberto and Marrucci [21), in deriving their model for
entangled polymers with chain stretch, pointed out that, when flow
is fast enough to remove obstacles at rate faster than 1ftg, orienta-
tion and stretching relax together in a Rouse-like fashion. In other
words, when at very high velocity gradients the intrinsic friction
becomes dominant, each segment regains its own individuality.
The test chain will change its conformation at a rate which only
depends on the basic friction made by the chain with its surround-
ings, However, much less is known about the stress—conformation
hysteresis in strong flows of entangled polymer solutions than their
dilute solutions counterpart. The stress and birefringence growth
of a concentrated entangled polystyrene solution (labeled PS12)
in uniaxial extensional flows has been recently documented by
Rothstein and McKinley [7]. Contrary to the dilute polystyrene
solution, they observed a less pronounced stress-conformation
hysteresis during imposed stretching and subsequent stress relax-
ation at a strain rate of about, &, = 5.35-1. They pointed out that,

although the flow generated in the filament-stretching device was
strong on the scale of the overall chain, it was weak on the level
of the individual segment because z.&g < 0.5, where 7. is the
Rouse time for relaxation between entanglement points, Ithas been
argued, however, that in order to observe a pronounced or measur-
able stress-conformation hysteresis, one would need to generate
kinked configurations within each segment, and this would require
a very strong flow (&g > 29s~1). Therefore, in the following, we
mainly consider extensional flows in which the strain rates are
large enough to result in strong nonequilibrium conformation of
the polymer chain between entanglement points.

At strain rates, &, that are low compared to the reciprocal Rouse
time, tg, of the pelymer chain, the chain conformation, at steady
state, is nearly unperturbed from its equilibrium conformation,
Distortion of the chain conformation occurs in strong extensional
flows for which &£z > 1.1In such a situation, the polymer chain can
assume different nonequilibrium conformations to the final state
that would not have occurred if the strain rate of the flow, £ had
been smaller than the reciprocal Rouse time g. Under these condi-
tions, the polymer chain undergoes conformational changes. This
is very different from the corresponding equilibrium stretching sit-
uation,

To investigate such a complicated system, a simplified approach
is used. Inthis aim, we introduce the concept of *effective’ maximum
contour length to mimic the internal structure of a chain segment
(subchain), i.e., kinked conformations and elongated coil within a
single chain segment.

Before proceeding, let us recall that, the maximum length to
which a tube segment can be stretched is given by Inmax =0.82nebg
(or equivalently, Amax =Imax/lo), where ne is the number of back-
bone bends in an entanglement spacing, by the backbone bond
length and } the equilibrium tube segment length. We would like
to emphasize here that, the pre-factor 0.82 and not 1 enters because
the backbone has a zigzag configuration in the most extended state
that still preserves the tetrahedral backbone bond angle restric-
tions [ 14). This pre-factor has a direct incidence on the value of Iyax.
In other words, it could change the flexibility of the chain. There-
fore, parameters in the force law, Eq, (5), are directly related to the
physical polymer chain. Since the kinked state seems to impede
the molecular stretching, it is reasonable to assume that the coex-
istence of kinked conformations and elongated coil within a single
chain segment reduces its flexibility and results in a shorter maxi-
mum length, which we call here ‘apparent’ or ‘effective’ maximum
length, l.¢, to which a tube segment can be stretched.

Let us consider the situation where the polymer chain is
stretched at a strain rate exceeding its reciprocal Rouse time g,
and let us suppose that, the polymer chain does not have the
opportunity to fully relax the imposed deformation at each stage of
stretching via reptation, retraction or CCR. Under these conditions,
we conclude that, each chain segment will not have sufficient time
to fully sample its configuration space and put forward the idea
that kinked conformations and elongated coil will coexist within
a single chain segment and will reduce its fexibility along with
its maximum extensibility. In other words, only a fraction of the
maximum contour length, Inax, of the chain segment, identified by,
Leqr. will be at equilibrium at each stage of stretching, otherwise
the chain segment would be able to fully sample its configura-
tion space at each stage of deformation, As a consequence, the
chain segment is forced to stretch with a shorter effective max-
imum contour length, l g (or equivalently, Aqg=l.flo), compared
to the original fixed maximum contour fength, Ina. On average,
this description, based on the effective maximum contour length,
represents a coarse-grained approximation of internal conforma-
tion states (kinked conformations and elongated coil) of a chain
segment during rapid stretching. If we identify this chain segment
with a non-Gaussian chain, having a maximum contour length ratio,
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Aemr. then the nonlinear spring coefficient, obtained from equilib-
rium statistical mechanics, approximated by the normalized Padé
inverse Langevin function, Eq. (5), can be used equivalently. Then
the spring coefficient becomes

(3 - X3/AZ(1 = 1/3%)
(1-A2/A2)3 - 1/A%)

ks(A}= (10)

Then, the next step is to calculate the effective maximum contour
length ratio, A, under a given condition. By taking the trace of Eq.
{1) in the absence of any relaxation mechanisms, flow generates a
rate of stretch given by

di 1
dr ~ 3%

The scalar quantity (1/3A)L:o, corresponds t¢ the maximum
instantaneous rate of stretch and is bounded above by £g4, at each
step of deformation, where &g is the strain rate of the flow defined
as

L:o. (11)

&g = max [eigenvalue(d)|. (12}
In Eq. (12). d is the rate-of-deformation tensor defined by
d=L{Vu+vul) (13)

Let us now take the trace of the full Eq. (1), including all relax~
ation mechanisms, i.e., with the expresston for the tensor function,
[, given by Eq. (3). [t gives

a1, 1
aF = ko - gfie). (14}

To better appreciate the crucial aspect of Eq. (14}, we rewrite it
in the fellowing form

[1 1 dl]

(1/61)f(tror)
A (15)

RVEIN AT

At equilibrium, as well as at low strain rates, for which &tz <
1étg < 1, the chain conformational equilibrium is always main-
tained, therefore (dA/dE){({1/3\)L:0}~ 0 in the left-hand side of Eq,
(15}, and the ratio on the right-hand side of Eq. (15} is close to unity.
In other words, each chain segment will have sufficient time to
fully sample its configuration space. In these flow conditions, since
kinked state does not exist within each chain segment, its flexibility
is not affected and the effective maximum contour length ratio, Ay,
remains close to the fixed maximum contour length ratio, Amax, at
each stage of deformation, Since the unfolding process takes place
under equilibrium conditions, the quantity 1 —(dA/dt)/((t/3A)L:0)
is always close to unity; otherwise, the chain segment would not be
able to fully sample its configuration space at each stage of defor-
mation. From the above considerations, this quantity can also be
interpreted as the fraction of the maximum length, Inax. at equilib-
rium, at each stage of deformation. Conversely, when in the limit
of very high strain rate (&g » 1), (dA/dO/((1/3N\)L:e) = 1, the ratio
on the right-hand side of Eq. (15) becomes close to zero, reflecting
that each chain segment is driven inte kinked state. In these flow
conditions, the quantity 1 - (dAfdt)}{((1/3\)L:e), which represents
the fraction of Imax at equilibrium, at each stage of deformation, is
close to zero. In other words, due to the presence of kinked state,
the chain segment is *frozen’, its flexibility is considerably reduced
and its apparent or effective maximum length, Iz, becomes very
small compared to Ina. In such conditions, the spring coefficient
becomes sufficiently large to realize the *quasi-inextensibility' of
the chain segment.

More specifically, in strong extensional flows, for which £1g > 1,
polymer chains are significantly stretched and the instantaneous
rate of stretch is bounded, at each stage of stretching, by, 0 <

[dXr/de| < &gA or equivalently

- |dA/dt] <

0= Fy 1. (16)

The above inequality represents in a sense, the fraction of Ipax
not at equilibrium, at each stage of deformation.

According to the conceptual scheme outline above, the ratio on
theright-hand side of Eq.(15) represents the fraction of the polymer
chain at equilibrium, at each stage of stretching. This leads to the
following equation for the effective maximum contour length ratio

1 |dA
Aerr = [1—,3—5 a” (Amax — 1)+ 1. a7)

Eq. (17) describes the coarse-grained internal conformation of the
polymer chain molecule in strong extensional flows, by allowing a
variation of the maximum contour length ratio of the chain seg-
ment at each stage of deformation, This equation contains a steetch
term, £gA, which leads to affine stretching of the polymer chain due
to hydrodynamic drag. A second term, |d)[dt|, governs the instanta-
neous stretch ratio dynamic, which is controlled by the Rouse time,
IR,

In order for the model to always represent a polymer chain or
a subchain of the same fixed maximum contour length ratio, Amax,
we introduce the number of ‘sub-segments’ defined as follows

My = Ao, (18)
JLeIT
We further assume a simplified situation where all chain segments
behave in the same way, i.e., the orientation and lengths of all
segments are identical, Therefore, the stress contribution of one
segment must be multiplied by the number of segments to give the
contribution of the macromolecules to the stress. On the basis of
the above analysis, Eqs. (8) and {9} then generalize, respectively, to

Tp = MsGks(A Yo — )= M; Z—ERS(JL)(G -n (19)
and

n

E = M;(e 1), (20)

5. Uniaxial extensional flow: linear entangled polymers

Inorder to understand the behavior of the Rolie~Poly model with
an effective maximum contour length ratio, A.¢, we investigate the
start-up results of uniaxial extensional flow, The fluid parameters
are those of the entangled polystyrene solution used in Section 3
(L289)[14). The calculated effective maximum contour length ratio,
Aqfr. iN UNiaxial extensional flow is shown in Fig. 4 for various Weis-
senberg numbers, Wi = étg. For £ty < 1, the chain conformation is
nearly unperturbed from its equilibrium conformation and Ay does
not deviate much from the fixed maximum contour length ratio,
Amax- At the same stretching rates, however, we observe a smatl
decrease in Aqpr at the inception of flow, before it rapidly reaches
the steady-state value, Amax. This suggests that the polymer chain
is generally in nonequilibrium conformation at low strains, dur-
ing the stretching experiments, Conversely, for £tg > 1, significant
nonequilibrium effects can be observed, and the effective maxi-
mum contour length ratio, Ay, immediately starts to decrease from
its equilibrium value, A yay, with increasing strain, This directly sug-
gests that the chain segment (subchain) is driven into a kinked
internal configuration state at these early stages of the flow. The
extensibility of the polymer chain between entanglement points
becomes restricted. Under these conditions, only a small fraction of
the chain segment is under equilibrium up to a given strain, . At
large strains, however, as the unraveling process proceeds, the chain
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Fig. 4. Evolution of the effective maximum contour length ratio, A.q, with strain
in start-up of uniaxial extensional flow, at various Weissenberg numbers, Wi = érg,
and with the fixed maximum contour length ratio, Apax = 10,

segment becomes fully elongated and Ay tends to the fixed maxi-
mum contour length ratio, Amax, reflecting that the overall polymer
chain is under equilibrium. These phenomena result from differ-
ent nonequilibrium conformations assumed by the chain segment
during the unraveling process. Clearly, the current model is able
to reproduce the time evolution of the average internal conforma-
tion of a chain segment, i.e., the effective maximum contour length
ratio, A, during the entire flow process. The corresponding results
for the chain stretch ratio, A, as a function of the strain at various
Weissenberg numbers, Wi, are shown in Fig. 5. As for the effec-
tive maximum contour length ratio, at low strain rates, the change
from the equilibrium stretch ratio value, 1, is small. With increas-
ing the strain rate, the chain stretch ratio approaches, Amax, at large
strain.

We now perform a quantitative comparison with the exper-
imental data by Ye et al. [14], in uniaxial extensional flow, and
calculate steady and transient extensional stress and extensional
viscosity. The polymer used is a nearly monodisperse linear
polystyrene sample (L842) [ 14]. The following fluid parameters are
used in the model: g =39 x 103 Pas, t4=192,75,7g =55, 8= 0.1and
§=-0.5. The fixed maximum stretch ratio was adjusted arbitrarily
to Amax = 8. The steady-state curves of the extensional stress are

10
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- | m——— Wi 076

s ——— Wi=3H
-§ Wi 152
= -—
2
& ,r”

100 TS —

10 100 10!

Fig 5. Evolution of the chain stretch ratio, A, with strain in start-up of uniaxial
extensional flow, at various Weissenberg numbers, Wi = &g, and with the fixed
maximum contour length ratio, A pay = 10.
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Fig. 6. Steady-state extensional stress prediction compared to the experimental data
for a nearly monaodisperse linear palystyrene sample (L842) [14].

shown in Fig. 6. We further add in this figure predictions using
a different value of the extensibility parameter of Amax =6. As for
the polystyrene 1289, in the stretching regime for which &1 > 1,
predictions become sensitive to the value of the maximum stretch
ratio and, the extensional stress is predicted to be linear to the rate
of deformation at high £1g.

Further insight into the results is provided in Figs. 3 and 7, where
we compare the prediction of the transient extensional viscosity,
in start-up of uniaxial extensional flow for the Rolie-Poly model
with a fixed maximum contour length ratio, Amax, and with an
effective maximum contour length ratio, Ay, to the experimen-
tal data for 1289 and 1842 polystyrene samples by Ye et al. [14].
While the steady-state predictions are in agreement with the exper-
imental data, the predicted stress growth at small strain using the
Relie-Poly madel with a fixed maximum contour length ratio, Amax.
is slower than the one measured experimentally, The model with
an effective contour length ratio, A.g, correctly predicts the stress
growth at small strain. This is connected to special conformations
of the subchains (kinked conformations between entanglement
points) that build up during strong extensional flows.

We now consider the start-up of uniaxiat extensional flow fol-
lowed by relaxation for L842 polystyrene sample. The dependence
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Fig. 7. Prediction of the transient extensional viscosity for the Rolie-Poly model with
a fixed finite extensibility, Amax. and with an effective maximum contour length, Aerr,
compared to the experimental data for a nearly monodisperse linear polystyrene
sample (L842) [14] at strain rate of £ = 0.5571.
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Fig. 8. Start-up of uniaxial extensional flow up to a final Hencky strain of £=86,
followed by relaxation: dependence of extensional stress on birefringenice at Wi =
£Tg = 2.5. The hysteresis curve is traveled clockwise.

of extensional stress on birefringence and stretch ratio, A, at Wi =
érg = 2.5 (£ = 0.5571) are shown in Figs. 8 and 9, respectively.
The Rolie-Poly model with an effective maximum contour length
ratio, A, exhibits a less pronounced stress—conformation hystere-
sis behavior at this strain rate, A qualitatively similar behavior
has been reported in the experiments of Rothstein and McKinley
[7], where the authors examined the stress-birefringence curves
of their concentrated entangled polystyrene solution P$12, They
reported a less pronounced hysteresis behavior in stress versus
birefringence, compared with that of the dilute polystyrene solu-
tion PS025. They argued that, in order to cbserve a pronounced
or measurable stress-conformation hysteresis, one would need
to generate kinked configurations within each segment, and this
would require a very strong flow. The model also shows hys-
teretic behavior in birefringence versus stretch ratio, as illustrated
in Fig. 10, Although the current model predicts hysteretic behavior,
all other predictions shown in the previous section, with a fixed
maximum contour length ratie, Amax, are not changed in steady
state.

Summarizing the rheological predictions, we may conclude that
the Rolie-Poly maodel with an effective maximum contour length
ratio, Aq, is significantly better than the original Rolie-Poly mode!
which does not include finite extensibility and therefore, can be
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Fig. 9. Start-up of uniaxial extensional flow up to a final Hencky strain of £=6,
foliowed by relaxation: dependence of extensional stress on stretch ratio, A, at
Wi = Erg = 2.5, The hysteresis curve js traveled clockwise.
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Fig, 10, Start-up of uniaxial extensional flow up to a final Hencky strain of £=6,
followed by relaxation: dependence of birefringence on stretch ratio, A, at Wi =
£Tp = 2.5. The hysteresis curve is traveled clockwise.

used to interpret future simulations of nonequilibrium complex
flows.

6. Dilute polymer solutions: FENE-CR equation with an
effective maximum contour length

For dilute polymer solutions, at strain rates, £, that are large
compared to the longest relaxation time of the polymer chain, 7,
the polymer chain can assume different nonequilibrium conforma-
tions to the final state that would not have occurred if the strain
rate of the flow, £, had been smaller than the relaxation time, t.
In such a situation, molecular simulations show that, the polymer
chain undergoes large conformational change and a pronounced
stress-birefringence hysteresis is observed during stretching and
relaxing processes {3,4]. As pointed out by Larson [6] in deriv-
ing kink dynamics equations that describe the unraveling of the
molecule in extensional flow, flexible polymer chains in dilute solu-
tion, in transient extensional flows, experience a very strong drag
force well before the chains are fully extended. He observed that
soon after onset of a strong extensional flow, the polymer molecule
is driven into a highly folded or kinked state,

To investigate such a problem, we write the constitutive equa-
tion for the FENE-CR fluid for dilute polymer solutions in the form
introduced by Chilcott and Rallison [12] by incorporating the effec-
tive maximum length of a polymer chain, Ay, introduced in the
previous section, in the following way:

fr=L-d+a’-LT—E5,L)(D'—l). (21)

where tis the relaxation time and k;{A) is the nonlinear spring coef-
ficient, which is also approximated by the normalized Padé inverse
Langevin function defined by Eq. (10), and A = L/Ly = 1 /tro/3 is
the chain stretch ratio, The length, L, is the current length of the
polymer chain and Ly is its length at equilibrium and A =1 is the
equilibrium value in the absence of flow. We would like to empha-
size here that the dynamics of the conformation tensor, ¢, is now
governed by Eq, (21) and the effective maximum contour length
ratio, Auqr, has the same form as Eq. (17),i.e.,

1 |dA
Do = [1“;9,‘;_;\ E” max = 1)+ 1. (22)

The corresponding total stress, Ty, in the solution is taken to be of
the form

tr=—pl+2nd+ 7, (23}
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Fig. 11. Start-up of uniaxial extensional flow up to £=5 followed by relaxation for
N=41 Kramers chains [ 15] and FENE-CR with an effective maximum contour length,
Xerr. Dependence of extensional stress on birefringence at Wi = £t = 11,4, The hys-
teresis curves are traveled clockwise.

where #; is the solvent viscosity, d the rate-of-deformation tensor
and 7, the polymeric stress tensor, given by

Tp = MsGks{A)(o - 1), (24)

where G=#p/7 is the plateau modulus and n,, is a viscosity coef-
ficient. in order for the meodel to always represent a polymer
chain of the same fixed maximum length ratio, Amax, Eq. (24)
has a factor, Ms =Amax{Aeq which defines the number of ‘sub-
segments’ and M;=1 is the equilibrium value in the absence of
flow.To assess the validity of the extended FENE-CR model, we
compare in Fig. 11, hysteresis curves of extensional stress versus
birefringence, in start-up of uniaxial extensional flow up to £=5
followed by relaxation, for N=41 Kramers chain model [15} and
the FENE-CR model with an effective maximum contour length,
Ao At Wi = £7 = 11.4. The relaxation time, T, is set to 3.24s and
the maximum stretch ratio was adjusted arbitrarily to Amax =7.9.
The predicted stress-birefringence hysteresis using the current
model shows excellent agreement with the Kramers chain model.
{n addition, we note from Fig. 11 that the two models traverse the
hysteresis loop at a rate that is very similar, suggesting a strong
nenequilibrium conformation of polymer chains. The growth of
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Fig 12. Start-up of uniaxial extensional flow up to £=>5 for N=41 Kramers chains
[15], FENE-CR with an effective maximum contour length, A, and the original FENE-
CR model with Amax = 7.9. Dependence of extensional stress on strain at Wi =1 =
11.4.
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Fig. 13. Start-up of uniaxial extensicnal flow up to £=5 for N=41 Kramers chains
[ 15), FENE-CR with aneffective maximum contour tength, Ay, and the original FENE-
CR model with A = 7.9, Dependence of birefringence on strain at Wi = £t = 11.4,

extensional stress and birefringence with strain in start-up of uniax-
ial extensional flow are compared to that of Kramers chain model in
Figs. 12 and 13, respectively. While the extensional stress and bire-
fringence predictions for the FENE-CR model are in good agreement
with those of the Kramers chain model, these properties are pre-
dicted to rise less rapidly at low strain for the FENE-CR model with
a fixed maximum contour length ratio, Aymax. The FENE-CR model
with an effective contour length ratio, Ay, correctly predicts the
stress growth at small strain.”

7. Conclusions

We have presented an extension of the FENE-CR model for dilute
polymer solutions and the Rouse-CCR tube model for linear entan-
gled polymers (Rolie-Poly constitutive equation), to describe the
nonequilibrium stretching dynamics of polymer chains in strong
extensional flows. The resulting models, designed to capture the
progressive changes in the average internal structure (kinked state)
of the polymer chain, include an‘effective’ maximum contour length
that depends on local flow dynamics. The rheclogical behavior
of the two models was favorably compared with various results
already published in the literature for the entangled polystyrene
solutions [14] and for the Kramers chain model {15]. It was shown
that the FENE-CR model with an ‘effective’ maximum contour length
is able to describe correctly the hysteretic behavior in stress versus
birefringence in start-up of uniaxial extensional flow and subse-
quent relaxation also observed and computed by Doyle et al. [3]
and Li and Larson [4] using Brownian dynamics simulations of
bead-spring model. For linear entangied polymers, the Rolie-Poly
model, with an ‘effective’ maximum contour length, exhibits a less
pronounced hysteretic behavior in stress versus birefringence in
start-up of uniaxial extensional flow and subsequent relaxation.

References

[1] J.P. Rothstein, G.H. McKinley, Extensional flow of a polystyrene Boger fluid
through a 4:1:4 axisymmetric contractionfexpansion, J. Non-Newtonian Fluid
Mech. 36 (1999) 61-88.

[2] ].P.Rothstein, G.H. McKinley, The axisymmetric contraction-expansion: the role
ofextensional rheology on vortex growth dynamics and the enhanced pressure
drop, |, Non-Newtonian Fiuid Mech, 98 (2001) 33-63.

[3] PS. Doyle, ES.G. Shagfeh. G.H. McKinley, S.H. Spiegelberg, Relaxation of dilute
polymer solutions following extensional flow, §, Non-Newtonian Fluid Mech. 76
(1998} 79-110.

[4] L. Li, R.G. Larson, Excluded volume effects on the birefringence and stress of
dilute polymer solutions in extensional flow, Rheol. Acta 39 (2000) 419-427,



K.K. Kabanemd, J.-F. Hétu /f. Non-Newtonian Fluid Mech, 160 (2009) 113-121 121

{5] G.H. McKinley, T. Sridhar, Filament-stretching rheometry of complex fluids,
Annu, Rev, Fluid Mech. 34(2002) 375-415.

[6] R.G. Larson, The unravelling of a polymer chain in a strong extensional flow,
Rheol. Acta 29 (1990) 371-384,

[7] J.P. Rothstein, GH. McKinley, A comparison of the stress and birefrin-
gence growth of dilute, semi-dilute and concentrated polymer sclutions
in uniaxial extensional flows, J. Non-Newtonian Fluid Mech. 108 (2002)
275-290.

[8] EJ. Hinch, Unceiling a polymer molecule in a strong extensional flow, J. Non-
Newtonian Fluid Mech, 54 (1994) 205-230,

[9] J.M. Rallison, Dissipative stresses in dilute polymer solutions, ). Non-Newtonian
Fluid Mech, 68 (1997) 61-83.

[10] G. Lielens, P. Halin, 1. Jaumain, R. Keunings, V. Legat, New closure approxima-
tions for kinetic theory of finitely extensible dumbbells, |, Non-Newtonian Fluid
Mech, 76 (1998) 249-279,

[11] L Ghosh, Y.L, Joo, G.H. McKinley, RA. Brown, R.C. Armstrong, A new model for
dilute polymer solutions in flows with strong extensional components, . Rheol.
46 (2002) 1057-1089.

[12] M.D.Chilcott, |.M. Rallison, Creeping flow of dilute polymer solutions past cylin-
ders and spheres, ], Non-Newtonian Fluid Mech, 29 (1988) 382-432,

[13] A.E. Likhtman, R.S. Graham, Simple constitutive equation for linear polymer
melts derived from molecular theory: Rolie-Poly equation, ). Non-Newtonian
Fluid Mech, 114 (2003) 1-12.

[14] X. Ye, R.G. Larson, C. Pattamaprom, T. Sridhar, Extensional properties of
monodisperse and bidisperse polystyrene solutions, . Rheol. 47 (2003)
443-468.

[15] 1.Ghosh, G.H. McKinley, R.A. Brown, R.C. Armstrong, Deficiencies of FENE dumb-
bell models in describing the rapid stretching of dilute polymer selutions, J.
Rheal. 45 (2001) 721-758.

[16] R.S.Graham, A.E, Likhtman, T.C.B, McLeish,S,T. Milner, Microscopic theory of lin-
ear, entangled polymer chains under rapid deformation including chain stretch
and convective constraint release, ). Rheol, 47 (2003} 1171-1200.

[17] G. Marrucci, Dynamics of entanglements; a nonlinear model consistent with
the Cox-Merz rule, ). Non-Newtonian Fluid Mech. 62 (1996) 279-289,

[18] D.wW. Mead, R.G. Larson, M. Doi, A molecular theory for fast flows of entangled
polymers, Macromelecules 31 (1998) 7895-7914.

[19] C. Pattamaprom, R.G. Larson, Constraint release effects in monodisperse and
bidisperse polystyrenes in fast transient shearing flows, Macromolecules 34
(2001} 5229-5237.

[20] C. Pattamaprom, ].J. Driscroll, R.G. Larson, Nonlinear viscoelastic predictions of
uniaxial-extensional viscosities of entangled polymers, Macromol. Symp. 158
(2000) 1-13.

[21] G.lanniruberto, G. Marrucci, A multi-mode CCR model for entangled polymers
with chain stretch, ]. Non-Newtonian Fluid Mech. 102 (2002) 383-385,



