i+l

NRC Publications Archive
Archives des publications du CNRC

Probabilistic models for focused web crawling
Liu, Hongyu; Milios, Evangelos

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. /
La version de cette publication peut étre I'une des suivantes : la version prépublication de l'auteur, la version
acceptée du manuscrit ou la version de I'éditeur.

Publisher’s version / Version de I'éditeur:
Computational Intelligence, 2010-12-01

NRC Publications Record / Notice d'Archives des publications de CNRC:
https://nrc-publications.canada.ca/eng/view/object/?id=de588722-d68b-46b3-9151-3bc91c28bc8f

https://publications-cnrc.canada.ca/fra/voir/objet/?id=de588722-d68b-46b3-9151-3bc91c28bc8f

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

https://nrc-publications.canada.ca/eng/copyright
READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

L’acces a ce site Web et I'utilisation de son contenu sont assujettis aux conditions présentées dans le site
https://publications-cnrc.canada.ca/fra/droits
LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Questions? Contact the NRC Publications Archive team at
PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the
first page of the publication for their contact information.

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

premiere page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez
pas a les repérer, communiquez avec nous a PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

National Research Conseil national de C dl*l
Council Canada recherches Canada ana, a

Probabilistic Models for Focused Web Crawling

Hongyu Liu, Evangelos Milios
October 9, 2010

Abstract

A focused crawler is an efficient tool used to traverse the Web to gather doc-
uments on a specific topic. It can be used to build domain-specific Web search
portals and online personalized search tools. Focused crawlers can only use in-
formation obtained from previously crawled pages to estimate the relevance of
a newly seen URL. Therefore, good performance depends on powerful modeling
of context as well as the quality of the current observations. To address this
challenge, we propose capturing sequential patterns along paths leading to tar-
gets based on probabilistic models. We model the process of crawling by a walk
along an underlying chain of hidden states, defined by hop distance from target
pages, from which the actual topics of the documents are observed. When a
new document is seen, prediction amounts to estimating the distance of this
document from a target. Within this framework, we propose two probabilistic
models for focused crawling, Maximum Entropy Markov Model (MEMM) and
Linear-chain Conditional Random Field (CRF). With MEMM, we exploit mul-
tiple overlapping features, such as anchor text, to represent useful context and
form a chain of local classifier models. With CRF, a form of undirected graphi-
cal models, we focus on obtaining global optimal solutions along the sequences
by taking advantage not only of text content, but also of linkage relations. We

conclude with an experimental validation and comparison with focused crawl-
ing based on Best-First Search (BFS), Hidden Markov Model (HMM), and
Context-graph Search (CGS).

1 Introduction

With the exponential growth of information on the World Wide Web, there is great
demand for efficient and effective approaches to organize and retrieve the information
available. Nowadays, almost everyone uses search engines to find information on the
Web. At the back end of a search engine, a generic crawler downloads Web pages that
it deems worth including in the search engine, and makes them available to an indexer.
The rapid growth and dynamic nature of the Web and the limitations of network and
storage resources pose many challenges to generic crawlers. It is generally believed
that search engines only index a small fraction of the Web [52 45]. Due to this
limitation, topic-specific search tools have developed, supported by topic-specific, or

focused, crawlers, which collect only pages relevant to specific topics. An application
of extending digital libraries with a focused crawler can be found in [36].

The success of topic-specific search tools depends on their ability to locate topic-
specific pages on the Web while using limited storage and network resources. Some-
times, relevant pages link to other relevant ones. However, it is very common that
pages which are not on topic lead to topical pages. According to a study [6], most
relevant pages are separated by irrelevant pages, the number of which ranges from
at least 1, to a maximum of 12, commonly 5. The common approach to focused
crawling is to use information obtained from previously crawled pages to estimate
the relevance of a newly seen URL. The effectiveness of the focused crawler depends
on the accuracy of this estimation process.

In the majority of focused crawlers in the literature, although different techniques
and heuristics to guide focused crawling were used, the underlying paradigm is best-
first search strategy, that is, to train a learner with local features collected about
relevant nodes from the immediate vicinity of a hyperlink v — v (i.e., the parent
pages and sibling pages). This is based on the hypothesis that in the Web graph,
Web pages on a given topic are more likely to link to those on the same topic (Linkage
Locality), and if a Web page points to certain Web pages on a given topic, then it
is more likely to point to other pages on the same topic (Sibling Locality). In other
words, topics appear clustered in the Web graph [12, 29].

A number of focused crawlers reported in the literature has relied on the text
context of the links in visited pages to set the visit priority of the links. InfoSpiders [30]
is a collection of autonomous adaptive goal-driven crawler agents which search for
pages relevant to the topic, using evolving query keyword vectors and Neural Networks
with Q-learning to decide which links to follow. An agent estimates the visit priority
of the links in the current page by considering the text surrounding those links. A
complete framework to evaluate several crawling strategies is described in [32], 311, [47].
In these studies it was found that Best-First crawling gives competitive performance
to more sophisticated strategies. Aggarwal et al. proposed an “intelligent crawling”
framework [1]. The method involves looking for specific features in a page to rank the
candidate links. The visit priority value of the candidate link is calculated by a linear
combination of these weighted features. More recent work [34] [35] systematically
studied the use of different classification algorithms to guide topical crawlers based
on text content and link-related contexts such as anchor text. It was found that
a crawler using a combination of anchor text and the entire parent page performs
significantly better than a crawler that depends on just one of those cues. The
introduction of web page genre in focused crawling is proposed in [I3], where it is
demonstrated that for a specific genre of pages significant improvement in precision
and recall can be obtained. The success of the method clearly depends on the ability
to define the characteristics of the genre of interest. A hierarchical taxonomy of topics
in both English and Chinese is used for cross-language focused crawling for topics in
the taxonomy, using page content, anchor text, URL addresses and link types in [10].

Several research projects have attempted to introduce link structure into focused
crawlers. PageRank is a good ordering metric in generic crawling. However it per-
forms poorly when the task is to locate pages that are relevant to a particular topic

or query [32]. Topic-specific PageRank has been proposed as a way to incorporate the
user’s context in the ranking of the search results [I§]. However, the topics must be
predefined, based on resources such as the Open Directory Project (ODP)E'. A user
query is classified into one of the predefined topics, and ranking is done based on the
pre-computed PageRank for the topic. The space of potential focused crawling strate-
gies is explored in [20]. Good strategies evolve based on the text and link structure
of the referring pages. The strategies produce a rank function which is a weighted
sum of several scoring functions about a page u, such as Hub score, Authority score,
Link community scores (in-links and out-links), and SVM classification scores of the
ancestor pages. A Genetic algorithm is used to evolve the weights from training data.

Recent efforts to combine text and link analysis for focused crawling are described
in [3,B]. In [3], the term-document matrix for document representation is expanded
to include as additional “terms” (rows) already visited documents, to which the rep-
resented document is linked. The represented documents (columns) include the seed
corpus of relevant documents, the already fetched documents, and documents on the
crawl frontier. Latent Semantic Indexing is applied to the expanded term-document
matrix, to define a low-dimensional space in which the similarity between documents
in the crawl frontier and the driving query is measured. Issues with this approach
include the computational cost of updating the expanded term-document matrix, and
the scalability of the method, requiring ways to limit the growth of the matrix as the
crawl progresses. The method was evaluated only on bounded corpora (WebKB and
Cora). In [5], the approach of [I4] is extended by making the link classifier of [4],
which is trained to assign a score to a link that corresponds to the distance from a
target page that link leads to, adaptive during the crawl. The link classifier relies
on features consisting of the words in the neighbourhood of links (anchor and text
around the link), and the URL. The advantage of our approach is the explicit capture
of sequential patterns. The introduction of a link classifier into our approach has
potential as a promising future research direction.

The focused crawlers that are closest related to the ones proposed in this article,
employ link structure aiming to capture link paths leading to target pages, that are
longer than one hop. In [40], crawlers are modelled as autonomous agents that
learn to choose optimal actions to achieve their goal, in a reinforcement learning
framework. The reward for a hyperlink traversal is the cumulative estimate of the
number of relevant pages starting from the current page that can be found as the
result of following this hyperlink, calculated recursively by the immediate reward
value from the hyperlink traversal, plus the discounted estimated reward from the
successor page. The Context Graph method [14] uses the text of a page to estimate
its link distance to target pages. For training, the method collects paths leading to
given relevant pages, following backlinks to a certain distance to build up a context
graph for the goal page, where a layer is defined by a given distance from a relevant
page. A Nailve Bayes classifier is trained for each layer based on the text of the pages
in it. As a new document w is found, it is classified into the layer corresponding to the
estimated link distance from u to the target page. Documents classified into layers

"http://www.dmoz.org/

http://www.dmoz.org/

closer to the target are crawled first.

Two issues remain unaddressed by the focused crawling literature. One is that
the assumption that all pages in a certain layer defined by a target document belong
to the same topic described by a set of terms does not always hold. As pointed out
in [7], the number of distracting outlinks emerging from even fairly relevant pages
has grown substantially since the early days of Web authoring. Second, there is no
discrimination among different links in a page. Since only a fraction of outlinks from
a page are worth following, offering additional guidance to the crawler based on local
features in the page to rule out some unimportant links can be helpful. One exception
is a simple focused crawler, which is built on the assumption that a relevant page can
lead to other relevant pages downstream even though immediate descendants are
not very relevant [50]. A degree of relatedness is defined, which determines how far
downstream to expand a given page: the higher the degree of relatedness, the farther
a page is expanded.

The work of [I4] inspired our idea to capture longer path information leading
to targets. We believe that, in practice, there is wide variation in the number of
links (hops) leading to related topics. However, the sequence information along the
path leading to the targets can be further exploited to capture both content and
linkage relations. This provides the motivation to model focused crawling as a se-
quential task. We model focused crawler as a surfer or agent, moving from one state
to another state based on the actual pages as observations. The state of a web page
is defined as the number of hops from it to a target page, and the web page is the ob-
servation. The use of Hidden Markov Models (HMM) for capturing path information
leading to targets from the user’s browsing behaviour on specific topics was explored
in our previous work [22], followed up by [46]. Documents were grouped semantically
by a clustering algorithm to build a concept graph forming the basis of recognition
of sequences of topics leading to targets. Observations are the cluster identifiers to
which the observed pages belong, and the corresponding hidden states are based on
the hop distance from the target. HMMs make a number of assumptions: the next
state depends only on the current state (Markov assumption); the state transition
and emission matrices do not change with time (stationarity assumption); the cur-
rent observation is independent of the previous observations given the current state.
The work presented here represents efforts to relax these strict HMM assumptions.

Determination of the relevance of a visited page to a topic of focus has been
addressed as a classification problem in [I4] [[5] [IT]. In our work we chose the simple
approach of a test on the cosine distance between a visited page and the set of initial
target pages. The reason is that it is difficult to build a robust classifier for a highly
unbalanced classification problem, with a very small training set of relevant pages.
Introducing a relevant page classifier to our approach where sufficient training data
is available is a future extension. Ontology-based relevance is used in [16].

2 Overview of the proposed approach

We model focused crawling as a sequential task and learn the linkage patterns by
using a combination of content analysis and link structure of paths leading to targets.
Examples of sequential patterns can be found in human-authored topical hierarchies
such as the ODP or Yahoo directory. In the real Web, we conjecture that such se-
quential patterns exist, but in a more implicit way. Due to the small world nature
of the Web [2], links may lead to unrelated topics within an extremely short ra-
dius. At the same time, there exist long paths and large topical subgraphs where
topical coherence persists. This is often the result of web masters following some
general design rules to organize the pages of a Web site semantically or hierarchically.
For example, university pages point to department pages, then to pages of faculty
members; they rarely point to home gardening pages. Although different univer-
sity Web sites may have different style and content presentations on the surface, the
Homepage — Department — People — Faculty — Research is a very common
underlying sequential pattern. In other words, off-topic, but semantically related,
pages may often lead reliably to relevant pages.

When looking for research publications on a specific topic, the crawler may have
to traverse pages that are irrelevant to the topic before it reaches highly relevant
ones. That is, there is significant amount of information in the sequential patterns of
links in addition to content of individual pages. Therefore, our hypothesis is that by
learning such sequential linkage patterns hidden in the Web graph during crawling, a
focused crawler may be able to follow links leading to targets more effectively.

T3 T2 T1

TO
| | | | [2] O—PO—PO—O Hidden states sequence
I I
[| [|] + 4) 3
B W I | 4] Observation sequence
pagel page2 page3 page4
Web graph Sequential task

Figure 1: Our Approach: Model Focused Crawling as a Sequential Task, over an
underlying chain of hidden states defined by hop distance from targets.

Our approach is unique in the following important ways. We model focused crawl-
ing as a sequential task, over an underlying chain of hidden states, defined by hop
distance from targets, from which the actual documents are observed. As shown in
Fig. [Il, suppose page 4 is a target page, and the sequence o = pagel — page2 —
page3 — paged is an observed page sequence leading to the target in the graph.
Then s = T3, T5, Ty, Ty is the corresponding sequence of hidden states, indicating the
number of hops each page in the sequence is away from the target. After training, our
system may have learned patterns like “University pages are more likely to lead to

Research papers than Sports pages”. When a new document is seen, the prediction
task is to estimate how many hops this document is away from a target based on the
observations so far, and the crawler always follows the most promising link. The use of
probabilistic finite-state models helps represent useful context including not only text
content, but also linkage relations. For example, in the path pl — p2 — p3 — w, the
prediction of the link p3 — w is based on the observable text content of w combined
with features from its ancestor sequence pl, p2, and p3. Note that this is different
from other systems in that we capture content and linkage structure relations along
paths as sequential patterns to make predictions.

2.1 Applying Probabilistic Graphical Models

To capture such sequential patterns, we propose to apply probabilistic models for
focused crawling. Probabilistic Graphical Models are a natural tool for reasoning
with conditional probability distributions. The nodes in the graph represent random
variables (either observed or hidden), and the links indicate conditional dependencies
between random variables. The graphical model not only gives a graphical repre-
sentation of the joint probability distributions, but also provides inference methods
for estimating the probability distribution based on observing a subset of the ran-
dom variables. The graph can either be directed, as in Bayesian Networks or Belief
Networks (BNs), or undirected, as in Markov Random Fields (MRFs) or Markov
networks.

2.1.1 Directed Graphical Models

A directed graphical model is defined on an acyclic graph G = {V, E} where V =
{v1,v9,...,v,} is a set of nodes and F is a set of links between nodes with directions.
Each node v; in the graph represents a random variable and has a set of parent
nodes parent(v;). The structure of the directed graph represents the conditional
dependence between random variables. Namely, the joint probability over variables
V = {v1, 09, ..., v, } can be calculated as the product of the conditional probability of
each variable conditioned on its parents, that is,

p(v1, V9, ..., V) = H p(vi|parent(v;)) (1)

MEMMs [39, 27] are a variation on the traditional Hidden Markov Models (HMMs).
They are discriminative models that attempt to estimate the probability of the hid-
den states directly given the data, as shown in Fig. [(a). Unlike generative HMMs,
MEMMs maximize the conditional probability of the state sequence given the ob-
servation sequence, by expressing the conditional probability as a weighted sum of a
set of features, and training a model to estimate the weights of these features that
are consistent with the training data. These features can interact. Examples of such
features for Web pages would be word identity, keywords in anchor surrounding text,
keywords contained in the title/meta data of current page.

Figure 2: Dependency Graphical structures for sequences, with state sequence
s = {s1, 82, ..., 8.} and input sequence o = {01, 09, ...,0,}, and ¢ ranging over in-
put positions. (a) MEMM, arrow shows dependency (cause) (b) The dashed box over
o’s denotes the sets of observation sequence variables. Although we have shown links
only to observations at the same step, the state nodes can depend on observations at
any time step.

Intuitively, the principle of maximum entropy is simple: model all that is known
and assume nothing about that which is unknown. In other words, given a collection
of facts, choose a model consistent with all the facts, but otherwise as uniform as
possible. Accordingly, the model seeks to maximize the entropy of the posterior
conditional distribution subject to the constraint that the expected values of certain
feature functions as predicted by the model should comply with their corresponding
empirical frequencies observed in a training set. Namely, we would like to choose an
optimal model so as to minimize the difference between the predicted values and the
observed values.

Training an MEMM involves maximizing the conditional probability, p(s|o), of
state sequences s = s1, So, ..., S, given observation sequences o = o1, 09, ..., 0,, rather
than the joint probability p(s, 0). MEMMs consider the observation to be conditioned
upon the state rather than generated by it, which allows us to use many, arbitrary,
overlapping features of the observation. At every position of the observation sequence,
MEMMs specify a set of distributions of possible states based on the observed feature
values in the form of an exponential model. Each distribution function uses per-
state normalization to define the conditional probability of possible next states given
the current state and the next observation element. The conditional probability in

MEMMs is defined as

n 1 m

Hz_ Xp(z Aifi(8j-1,85,05)) (2)
j=1"7 i=1

where z; is a normalizing factor over the j* position in the sequence, the f; are
arbitrary features and \; is the weight of the feature f;. To apply this approach to
the focused crawling problem, the hidden states are based on hop distance from the
target and observations are a set of pre-defined feature values of observed pages, such
as anchor text, URLs, and keywords extracted from the pages. Detailed descriptions

of the features used in focused crawling are given in Section [l

2.1.2 Undirected Graphical Models

An undirected graphical model is defined on a graph G = {V,E} where V =
{v1,v9,...,v,} is a set of nodes and E is a set of undirected edges between nodes.
A single node v; is independent of all the other nodes in the graph, given its neigh-
bors.

Linear-chain Conditional Random Fields (CRFs) are one type of widely used undi-
rected graphical models for sequential data. They have been proven very effective in
many applications including POS tagging, information extraction, document summa-
rization and shallow parsing [21], 38, 37, [44), 43]. Given the graphical representation
in Fig. 2A(b), the conditional distribution p(s|o) in CRFs is defined as a product of
exponential functions of the features:

eXp (ZZ)‘ fz Sj—1,55,0)) (3)

7j=1 i=1

p(slo) =

where Z(0) is a normalization factor based on the observation sequence 0 = 01, 09, ..., 0,:

Zo)=) exp <ZZ>\ifi(sj_1,s',o)> (4)

S’E|S‘" j:l =1

Therefore, CRFs define a single distribution p(s|o) over the entire state sequence
S = S1, Sg, ..., S, given the observation sequence o = 01, 09, ..., 0,, rather than defining
per-state distributions over the next states, given the current state at each position,
as in MEMMSs. In Section [i] we describe the application of CRF's to focused crawling
by defining hidden states as {13, 75,71, Ty} and observations as a set of pre-defined
feature values of observed pages, such as anchor text, URLs, and keywords extracted
from the pages.

3 System Architecture Overview

The proposed focused crawling system is based on a 3-tier architecture: Data Collec-
tion, Pattern Learning and Focused Crawling, as shown in Fig.[3 In our formulation

8

the target pages are Web pages the user specified or extracted from DMOZA. Given
the target pages, Data Collection involves the collection of Web pages to build a Web
graph and generation of page sequences for training. Pattern Learning involves the
extraction of features from these sequences and learning of model parameters. Fo-
cused Crawling has the pattern parameters as input, and crawls the Web looking for
relevant pages. When a new page is seen, the model predicts the distance leading to
the targets, which determines a visit priority for crawling.

Target pages

Feature
selection Prediction

Web graph
Data page scauences | pattern |~ | Focused
Collection Learning Crawling

Relevant pages
Figure 3: System Architecture: Data Collection, Pattern Learning, and Focused
Crawling.

3.1 Data Collection

As in any supervised learning problem, we need to collect labeled page sequences to
be used as training data. For each page sequence, the label or state sequence has
to be recorded as well. In our system, the hidden state of each page is defined as
T;, where ¢ represents the smallest number of hops required to reach a target from
this page. Target nodes are always in state Ty. For instance, a page sequence is
p1 — pa — ps3 and its corresponding state sequence is Ty — To — T7. All these
labeled page sequences form the training data.

We collect page sequences from the local Web graph constructed using the Yahoo
APT in-link servicdd. The target pages are selected from ODP and the graph is created
backwards by finding backlinks pointing to them from the Web, up to 4 layers.

Web data collection consists of two components: Local Web graph creation and
Page sequence extraction. It takes specified target pages as input, and builds the
local Web graph from bottom to top using the Yahoo in-link service. Page sequences
are sampled randomly directly from the constructed local Web graph. The range

Zhttp://www.dmoz.org/
3http://developer.yahoo.com/search/siteexplorer/Vi/inlinkData.html

http://www.dmoz.org/
http://developer.yahoo.com/search/siteexplorer/V1/inlinkData.html

of sequence length values is based on the depth of the Yahoo! directory, which
is approximately 6. We allow for additional hops to accommodate potential side
and backward steps, so the sampled sequences have length between 2 to 10. As
an example, on the right side in Fig. d the input is node 0 representing the pre-
specified target Web page on a particular topic, and the outputs are all page sequences
extracted from collected local Web graph, such as page sequence 7 — 3 — 1 — 0.
Node 0 is the initial pre-specified target page, and node 5 and 7 are target pages that
are marked after the whole graph is created.

keywords &
deZcription target pages
(DM0O2)
A
Create web
YahOO API — graph

Extract page
sequences

7535150
7545150

v 854250
page sequences

Figure 4: Web Data Collection: it takes specified target pages as input, creates Web
graph using Yahoo API, outputs extracted sequences of pages as training data. It
consists of two components: Create Web graph and Extract page sequences.

Selection of Target Pages on Topics. The initial target pages are selected pages
on a specified topic used in both the training and crawling procedures. They can be
either manually created by the users for their own target pages or user specified from
existing pages. In the system we propose, for each topic we chose target pages from
the ODP. All the initial target pages we used in our experiments can be found in [23].

Topic specification plays a very important role in evaluating focused crawlers.
Ideally, pages pages should be judged as relevant by real users, which is not practi-
cal for thousands of pages visited in focused crawling. Furthermore, topics can be
obtained from different sources and can be defined at different levels of specificity:
for example, the general topic “sports” or the more specific topic “Ice Hockey World
Championships 2005”. Therefore, as in [47], we select topics from an existing hierar-

10

chical concept index such as the ODP, and pick topics which are neither too general
nor too specific. An example of such a topic is House Plants, to be found under the
ODP topic hierarchy Home - Gardening - Plants - House Plants.

During the process of creating the local web graph based on the initial target pages,
all the Web pages collected are tested on whether they are sufficiently similar to the
initial target pages to be considered as additional target pages. Cosine similarity is
used for this purpose with the training data collection threshold of 0.8. Therefore,
the initial target pages and the target pages that are added later form the final target
page set for training.

Creation of Web Graph. In order to capture the page sequences leading to targets
for training, first we construct a local Web graph to represent the content and linkage
structure associated with the targets (Fig. [).

layerd

layer3
layer2

layerl

layer0

(a) (b) (c) (d) (e)

Figure 5: Creation of Web graph layer by layer using Yahoo API inlink service.
White nodes represent target pages, and grey nodes represent pages obtained through
backlink service tracing with Yahoo API. Node 0 is the initial target page, and nodes
5 and 7 are target pages that are marked as such by virtue of their similarity to the
initial target pages.

To construct a local Web graph, each Web page is represented by a node, and all
hyperlinks between pages are added as edges between the nodes. When a new Web
page is found and added to the existing graph, a new node will be created and all the
hyperlinks between it and existing nodes will be added into the Web graph as edges.
For example, when page 5 in Fig. [H(c) is added to the graph with existing nodes 0,
1, 2, 3, and 4, then node 5 is created and edges from 5 — 2 and 0 — 5 will be added.

The local Web graph is created layer-by-layer starting from one or more user-
specified target pages, say node 0, which is obtained from ODP described in the
section above (Fig. [B). Note that we only use ODP to select initial target pages on
the topic, rather than use the ODP hierarchy for training. ODP is a manually created
hierarchical concept directory, which does not reflect the Web linkage structure in the
real world. On the other hand, focused crawling is designed to retrieve Web pages

11

from the actual Web, therefore we have to collect training data from the real Web to
reflect the actual Web linkage structure and its dynamic nature. To do so, we make
use of the inlink service from Yahoo Web APIs serviceﬂ, which lists Web pages that
have links to the specified Web page. Starting from the layer 0 with user-specified
target page(s), the graph is created from bottom to top, up to layer 4.

There are no repeated nodes in the graph. When a new URL is seen, if it is not
in the graph, both a new node and all corresponding edges (hyperlinks) are added
into the graph; if it is already included in the graph, only the edges between it and
existing nodes are added. For instance, when node 5 is added to the graph as shown
in Fig. Bl(c), and the URL of node 0 is found as the inlink of node 5 by Yahoo inlink
service, then only the edge from 0 — 5 will be added to the graph, due to the fact
that node 0 is already in the graph. Since some Web pages may have hundreds of
backlinks pointing to it, while others may only have a few, we limit the total number
of nodes in each layer to a maximum of 600 and average the number of backlinks for
each node. For example, if the current layer ¢ contains 200 nodes, then the number of
the backlinks for each node is limited to 600/200 = 3, although some nodes may have
hundreds of inlinks found by Yahoo API. As a result, the graph is created in a more
balanced manner in terms of the number of nodes in each layer and the number of
the backlinks for each node in order to extract page sequences effectively for training.
We follow [I4] in selecting the number of layers.

After the graph is created, all nodes are also classified to mark new targets based
on the cosine similarity between them and the initial target pages, such as nodes 5
and 7 in Fig. Bl(e). If the similarity between a node and one of the initial target
pages is equal to or greater than 0.8, it is marked as the target as well. In Fig. [
nodes corresponding to targets are marked as white nodes in the local Web graph, for
instance nodes 0, 5 and 7, and grey nodes represent the others. The local Web graph
thus captures sufficient content and link structure of the pages leading to targets,
which is the information we try to capture. The motivation is that the focused
crawler will eventually crawl the real Web, so the local Web graph should reflect the
actual Web linkage structure. The number of nodes in each layer chosen is twice the
number used in [14].

Extraction of Page Sequences and State Sequences. Given the created local
Web graph, the next step is to extract page sequences from the graph.

The nature of the graph shows that one node may have multiple child URLs. For
example, node 8 has nodes 4, 1, 5 as its children in the right side of Fig. Bl If we
extract sequences following all the arcs in the graph, we may get many duplicated
paths in the sequences, such as 9 — 8 — 4 in the sequences 9 — 8 — 4 — 1 and
9 — 8 — 4 — 2. Therefore, to avoid this problem, we extract sequences in a totally
random manner: every sequence to be extracted starts with a randomly-picked node,
randomly selects one of its children for the next node, and repeats until a randomly-
generated sequence length between 2 and 10 is reached.

The following rules are considered for the page sequence extraction:

4http://developer.yahoo.com /search /siteexplorer /V1/inlinkData.html

12

e Only extract pages from higher layers to lower layers or from the same layer.
For instance, in Fig.[Ble), 9 - 7 — 3 — 4 — 1 — 0 is valid, while 9 — 8 —
4 —7T7—3—1— 0isnot valid in this case, because 4 — 7 is the reverse order
in the sequence. The advantage of this option is to try to collect all positive
sequences as training data; in other words, these sequences are good examples
for learning.

e Avoid loops in the sequence. For example, 9 — 7 — 4 — 1 — 0 is valid, and
9—7—4—7—4—1is not valid.

The length of the sequences is randomly generated between 2 and 10. As a result,
page sequences with length 2 are also included. For instance, 9 — 8,4 — 7, 1 — 0.
The training with short parent-child pairs aims to focus on local features.

The hidden state for a page in our system is its lowest layer number. For example,
given graph Fig. [Bl(e), sequence 9 — 7 — 4 — 1 — 0 is a valid sequence and its
corresponding state sequence is 177 — Ty — Ty — 17 — Ty. The rule is that a
target node is always set to layer number 0, no matter which physical layer it is
in the graph, and other nodes will be re-assigned a new layer number if the layer
numbers of its adjacent nodes are changed. For example, the original state sequence
isTy — T3 — Ty — Ty — T7 — T, for the page sequence 9 -7 — 3 — 4 — 2 — 0,
according to the graph of Fig. [Fl(d), since the original physical layer number of node
7 is layer 3. However, when nodes 7 and 5 are marked as target pages in Fig. Bl(e),
their layer number will be changed to 0; accordingly, the layer number of other nodes
in the graph will also be changed. For example, the new layer number of node 8 will
be changed from 3 to 1, since the new layer number of its direct child node 5 is now
0. That is, according to our definition of hidden state T; of a page, which represents
the smallest number of hops to reach a target from this page, the hidden states of
all nodes from node 1 to node 9 are {7y, Ty, Ty, T, 11, Ty, Tz, Ty, 11, T1 } in Fig. Ble).
Therefore, the new state sequence for the page sequence 9 -7 —3 -4 — 2 — 0 is
T1—>T0—>T2—>T1—>T1—>T0.

The complete training data includes page sequences and their corresponding layer
sequences. For MEMM and CRF crawls, page sequences are referred to as observation
sequences or observable input sequences, and layer sequences are referred to as hidden
state sequences or state (label) sequences.

3.2 Pattern Learning

The second stage of the system architecture is Pattern Learning. As shown in Fig. [3]
the objective of this component is to take the training data (page sequences) as input,
extract features and estimate the parameters for different underlying learning models
(MEMMs, CRFs).

MEMMSs and CRFs allow the independence assumptions on the observations in-
herent in generative models to be relaxed. As introduced in Section 2.1, both MEMMSs
and CRFs are conditional probabilistic sequence models used to estimate conditional
probability, p(s|o), of state sequences s = si, s9, ..., S, given observation sequences

13

St- St+1

S
text
title
ancho

keywords

keywords text title
URL token O
Ot-1 Ot Ot+1
page_t-1 page_t page_t+1

Figure 6: Dependency structure of MEMMs on modeling a sequence of Web pages.
Directed graphical model, arrow shows dependency (cause). It defines separate con-
ditional probabilities p(s|s;_1,0;) at each position ¢ based on features such as title,
keywords, and URL token. ¢ ranges over input positions.

0 = 01, 09, ...,0,. Both of them use a linear combination of weighted feature functions
> Aifi(s,0) to encode the information encapsulated in the training data, which al-
lows dependent, interacting, and arbitrary features of the observation sequence. Web
pages are richly represented using extracted multiple features such as title, keywords,
and URL token. This flexibility provides us the power to better model many real-
world problems and gives better performance on a number of real-world sequence
tasks. The parameters of MEMMs and CRF's are the feature weights A = {\;}. How-
ever, they are different models: MEMMSs are directed graphical models, while CRF's
are undirected graphical models. The graphical dependency structures of MEMMs
and CRFs for modeling the focused crawling problem in Fig. [and Fig. [7 show us
the differences. MEMMs calculate the conditional probability p(s|o) by multiplying
a chain of local conditional probabilities p(s;|s;_1,0;) based on the multiple features,
such as anchor text, at each position ¢, whereas, CRFs define a single conditional
probability p(s|o) over the entire state sequence s, given the observation sequence o.

Although the underlying models are different, the elements of the dependency
structure and the features used in MEMMSs and CRF's are the same, as illustrated in
Fig. [0l and Fig. [7

therefore, we describe them together in the following sections.

Structure of MEMM/CRF for Focused Crawling. Let k be the number of
hidden states. The key quantities associated with MEMM /CRF models are the hid-
den states, observations (features), and the parameters (feature weights vector \).

e Hidden states: S = {Ty_1,T_2,...,T1,To}

— The focused crawler is assigned to be in state T; if the current page is ¢

14

Sty1

title text&
a

nchor titl keywords
keywords text itie

URL token
Ot-1 Ot Ot+1

O={page,,page,,....page,

Figure 7: Graphical structure of CRFs on modeling a sequence of Web pages. This is
an undirected graphical model. It defines a single conditional probability p(s|o) over
the entire state sequence s given the observation sequence o based on features such
as title, keywords, and URL token. ¢ ranges over input positions.

hops away from a target. The state T} | represent “k — 1”7 or more hops
to a target page.

e Observations: Collections of feature values of page sequences O = {page;, pages,
pages, ...}

— Observable page sequences represented by a sequence of values for a set
of predefined feature functions f = {fi, f2, ..., fm}. m is the number of
feature functions.

e Set of parameters A = {1, Ao, ... , A}

— The parameter is a weight vector associated with each feature function

f - {f1>f27 "'a.fm}'

Parameter estimation in MEMMs/CRFs uses Limited Memory Quasi-Newton
Method (L-BFGS) [33] [43] to iteratively estimate the model parameters A.

Features and Feature Functions. MEMMs and linear-chain CRFs make a first-
order Markov independence assumption among states, that is, the current state de-
pends only on the previous state and not on any earlier states. We use s to represent
the entire state sequence, o for the entire observation sequence, and s; and o; to
indicate the state and observation at the position ¢, respectively. Since MEMMSs de-
fine separate conditional probabilities p(s;|s;_1, 0;) based on features at each position

15

Table 1: Summary of Features

Feature Name | Description

Edge states transition features

Text cosine similarity between text of current page and target
pages

Description cosine similarity between the description of current page
and target pages)

Words Words themselves (meta data, title, alt, head, important
words)

URL Token Contain at least one of target keywords

Pointing Anchor | Anchor surrounding text in parent page which points to
the page

Child Anchor Anchor surrounding text in the page

t, whereas CRFs define a single conditional probability p(s|o) over the entire state
sequence s given the observation sequence o. We can rewrite f(s,0) at position ¢
specifically into f(s;_1,s;,0;) in MEMMs, and f(s;_1, s, 0,t) in CRFs. For simplic-
ity, we use f(s,0,t) in this section. Note that f(s,o0,t) in this work only depends on
s¢—1 and s; and the content of pages observed at time t.

Each feature function f(s,0) is defined as a factored representation. Formally, we
assume the feature functions to be factorized as:

f(s,0,t) = L(s;_1, 8¢, t) * O(0,t) (5)

where L(s;_1, st, t) are transition feature functions, and O(o, t) are observation feature
functions. This allows us to combine information around the current position ¢t. With
defined feature functions, we construct a set of real-valued features to capture whether
the observed Web pages have specific characteristics. In MEMMs and CRFs, each
feature can be represented as either a binary or a real value. For binary values, a 1
indicates the presence of the feature, whereas a 0 means the absence of the feature.
Real-valued features often represent cosine similarity values between text segments.

Example. Suppose current page is the page at time ¢, and parent page is the page at
time t—1. Let 0o = pagel, page2, page3 be a sequence of Web pages, and s = Ty, T, Ty
be the corresponding state sequence. To represent the information of page3 being in
state Ty at current time ¢ = 3 if the anchor text of the URL of page3 in its parent
page page2 contains specified keywords “linux”, the feature functions f(s,o0,t) can be
written as:

1 if L(s¢—1,8: = Tp,t =3) =1 and O(o,t =3) =1
0 otherwise.

Fsot=3-{

16

For each i for which a transition T; — Tj is possible,

1 ift=3and s;_; =7T; and s, = T} exist;
L(s;_ =Ty, t=3) = . '
($1-1, 51 0t =3) { 0 otherwise.
1 if anchor text of o, = page3 contains “linux”
0 otherwise.

O(o,t:B):{

In other words, L(s;_1, s¢,t) captures the possible transition features of the states
at time ¢t — 1 and current states (in this case, Ty — Tp), and O(o,t) expresses the
some observation features at current time ¢. [J

We collect three kinds of data for generating the features: keywords, descriptions
and target pages. Keywords are formed by concatenating the words appearing in
the different levels along the topical hierarchy directory from the top. Descriptions
are generated using the descriptive text and the anchor text in the page of the topic
in the ODP. These hyperlinks and their descriptions are created by expert editors,
which summarize the contents of the pages linked and are independent of the page
contents. Target pages are the external Web pages the hyperlinks point to. We also
further extract important words embedded in the target pages themselves, including
words from title and headers (<title>...</title>, <hl>...</hl> etc.) and
keywords and descriptions from meta data (<meta>...</meta>).

Table [l summarizes all features we defined. We now describe each of them in
detail.

1. Edge Features: Edge feature functions L(s;_1, s;,t) can have two forms: L; and
Ly. We use Edge feature Ly(s;_1, s¢,t) to capture the possible transitions from
states s;_1 to sy, and Lo(s;_1, s¢,t) to capture the possible states at time t.
Formally, for all 4,j = 0,1, ..., k—1 so that specified T;,T; € S = {Tj—1, Tj—2, -..,
Ty, Ty}, we can have feature functions of the following form:

L(i’j)(s Lsnt) = 1 if s,_y =1T; and s; = T} is an allowed transition;
1 t=h ot 0 otherwise.

1 if s; = T} exists;
0 otherwise.

Lg)(st—la St, t) - {

Some states and state transitions may not happen at some time positions, for
example, it is impossible to have state transition 75 — Tp. If state transition
T3 — Ty is possible at time ¢, then the feature value of Ly(T3, Ty, t) is 1.

2. Text Feature: It captures the maximal cosine similarity value between the con-
tent of a given candidate page and the set of targets. We define it as O; (o, t):

O1(0,t) = maxger cos(text of current page p at time ¢, text of target page d);

17

where T is the set of target pages, and cos(.,.) is the standard cosine similarity
function between two term vectors, i.e.,

> kepnd Wok * Wak

\/ZkEP vk Zked wdk

where wg is the term frequency of term k in document d.

cos(p, d)

3. Description Feature: This is the cosine similarity value between the page de-
scription of a given candidate page and the target description. Normally every
page has meta data in addition to the text content of the page, including de-
scription and keywords, which summarizes the whole page. We define feature
function O(o,t) to capture the description feature:

Os(0,t) = cos(description of current page at time ¢, the target description);

4. Word Feature: Word feature O, (o, t) captures the important words (meta data,
title, head) appearing in the page text.

1 if word w appears in the current page at time t;
0 otherwise.

Ou(0,t) = {

We may also use the counts of word w as the value of this feature, instead of
the binary value.

5. URL Token Feature: The tokens in the URL of an observed page may contain
valuable information about predicting whether a page is a target page or poten-
tially leads to a target. For example, a URL containing “linux” is more likely
to be a Web page about linux-related information, and a URL which contains
the word “operating system” or “OS” indicates that with high probability, it
may lead to a Linux page. There are two possible kinds of URLs related to the
current observed page: one is the URL of the current page itself, and another
one is the URL the current page is pointing to. We define two token feature
functions Os(o,t) and Oy(o,t) to identify if the keywords appear in the URLs.

1 if any of URLSs in the current page at time ¢
Os(o,t) = contains at least one target keyword;
0 otherwise.

1 if the URL of the current page at time ¢
(contained in the parent page) contains at least
one target keyword;

0 otherwise.

04(0, t) =

6. Anchor Text Feature: The anchor text around a link pointing to an observed
page o is often closely related to the topic of the page. A human’s ability to
discriminate between links mostly relies on the anchor text. We capture the

18

important word w in the anchor text by defining two anchor features: Os (0, 1)
is used to identify the anchor text in the parent page surrounding the link which
points to the given page, and Og (0, 1) is to identify anchor text in the given
page.

1 if word w appears in the anchor text of the link in the
Os.(0,t) = the parent page linking to current page at time ¢;
0 otherwise.

1 if word w appears in the anchor text in the current
Og (0,) = page at time ¢ pointing to the page at time ¢ + 1;
0 otherwise.

To represent each feature at each time step, we use a feature vector F; to include
all the arguments for each feature function, which are needed for computing feature
values at each time ¢. For example, as shown in Os,(0,t), if word w appearing in
the anchor text in the previous page is used as a feature, then the feature vector F;
is assumed to include the identity of word w.

Suppose we have m feature functions (Eq. [). The parameter estimation proce-
dure for MEMMs and CRFs involves learning the parameters A = {A1, Ao, ..., A}
Each)\; is the weight associated with feature f;, indicating the informativeness of
feature f;. For each feature f;, it is an optimization problem to find the best \; so
that the expected “count” of feature f; using current value equals to the empirical
“count” of feature f; in the training data. Details are described in Sections [and [l

3.3 Focused Crawling

After the learning phase, the system is ready to start focused crawling. An overview
of the crawling algorithm is shown in Fig. [§l The crawler utilizes a queue, which is
initialized with the starting URL of the crawl, and keeps all candidate URLs ordered
by their visit priority value. We use a timeout of 10 seconds for Web downloads and
filter out all pages except those with text/html content. The crawling respects the
Robot Exclusion Protocol and distributes the load over remote Web servers. The
crawler downloads the page pointed to by the URL at the head of the queue and
extracts all the outlinks and performs feature selections. The predicted state for each
child URL is calculated based on the current observable features and corresponding
weight parameters, and the visit priority values are assigned accordingly. In the flow
chart, the boxes Analyze Page and Prediction are implemented differently for different
underlying models (MEMMs, CRFs).

Since the queue is always sorted according to the visit priority value associated
with each URL, we expect that URLs at the head of the queue will locate targets
more rapidly.

We also set a relevance threshold v for determining whether a Web page is relevant
to the user’s interests or target topics during crawling. If its maximal cosine similarity
to the target set is greater than 7, the URL is considered relevant.

19

Start Urls

|

URL enqueue URL Relevant
A filters Pages
dequeue
Get IP Addr
Get robots.txt

Prediction
- MEMM/CRF inference I“,"EMM/tCRF
- Visit priority assignmen arameters

Fetch
allowed?

Download
page

Figure 8: Flow Chart of Focused Crawling with MEMM/CRF Models

Yes

Analyze Page

- Text Preprocessing
- Link extraction

- Feature extraction

Page
seen
before?

3.3.1 Efficient Inference

The task during the crawling phase is to associate a priority value with each URL
that is being added to the queue. The goal of inference is to infer the probability of
sy given 014 based on the parameters of the underlying models. Given a downloaded
Web page w; at current time ¢, the URLs associated with its outgoing links w;q
are inserted into the visit queue, sorted by the assigned priority value based on the
probabilities of the predicted state of the children of w;, p(s:|o1.¢).

The estimated distribution of the state of wy, p(s|o1.+), also called belief state, is
a probability distribution over all possible state values s; = Tq, T4, 15, .., Tk_1, given
observations o0y ;. The distribution at time t is computed recursively based on the
distribution at time ¢ — 1, corresponding to the parent page w;_; of w;. Parent page
wy_1 of wy; is the Web page containing the URL of w;, which led to the insertion of
wy in the queue. The sequence 1..t refers to the visited pages along the shortest path
from the seed page to the current page. The sequence does not necessarily reflect the
temporal order in which pages have been visited.

The probability distribution p(s;|o; ;) of the state at the next step ¢, given ob-
servations o1 4, can be calculated recursively from the result up to time ¢ — 1 by
conditioning on the previous state s;_i:

p(silor.e) = Zp<3t‘3t—1> 01) p(si-1]01.4-1) (6)

St—1

where p(s;|s;_1,0¢) is the conditional probability of the transition from state s, 1 to

20

state s; on observation o;. The probability can be calculated efficiently by dynamic
programming. We define forward vector «; with each visited page. Each forward
value a(sy,t), is the probability that the system is in state s, at time ¢ given all
observations made up to time ¢. Hence the values «(s;,t) are the calculated values
of p(s¢|o1.+). MEMMs and CRF's define forward value a(sy, t) differently. The details
are explained in Sections [4] and Bl

In MEMMSs, p(s¢|si—1,0;) can be directly obtained by the definition

1 m
p(silsi—1,00) = —— eXP(Z Nifi(si—1, St,01))
2(0r) i=1
Z(Ot) = Zexpz)\ifi(st—las/aot)
s'€S i=1

Therefore, Eq. [0 is calculated in MEMMs by

p(silo1.¢) = Z Z(lot) eXp(Z Ai fi(St=1,5¢,0¢)) D(St—1]01..4-1) (7)

St—1

In CRFs, p(s¢|si—1,0¢) is calculated through the forward value a(s,t),

a(sy,t) = ZGXP(Z Nifi(8t-1,86,0¢)) a(si-1,t —1) (8)

St—1 1=
then p(s]o1.) is obtained by

a(sy,t)

p(silo1.) = m 9)

where, s; ranges all possible states s; = Ty, T, Ts, .., T 1.

Children of page w; will have different visit priorities because additional features
such as Anchor Text Feature and URL Token Feature of w;; extracted from page w;
are included in the feature vector F; at time t, described in Section

3.3.2 Calculation of the Priority

The visit priority is determined based on the estimated state distribution p(s;|o;. ;)
for each URL, defining a vector key (p(1y), p(11), p(12), ...,p(Tk—1)), where k is the
number of hidden states. The sorting keys are arranged according to the estimated
probabilities of the k possible states in the order of (Ty, 11, T5,..., Tx—1). URLs are
sorted in a lexicographic manner based on the sequence of probabilities, beginning
with p(7p).

If there are two or more items of approximately equal value in the first key, the
key data items are ordered in decreasing order according to the second data item to
break the tie. In our system, we use a threshold ¢ = 0.001 to define the equality of
two key data items. More clearly, given two state distributions X [p(7p), p(11), p(15),

21

()] and Yp(Ty), p(T1), p(T3), - p(T)], i | X[p(To)] = Y [p(To)]| < e, the sorting
process would use the second key data items pair X[p(71)] and Y[p(71)]. A non-
zero threshold is needed, because the probabilities are real numbers, and therefore
lexicographic ordering of the vectors would not be possible.

The priority queue contains the URLs of pages w; to be visited sorted by the
priority of the parent page w;_; of page wy, defined as the page through which the
URL of w; was placed on the queue. Each queue consists of the following three basic
elements: the URL of page w;; the visit priority of wy; probabilities a(T},t — 1) that
page w;_y is in hidden state 7}, for all j, capturing p(s;—1|o1.¢—1). Other elements
needed for inference may vary depending on different underlying models.

With MEMMs/CRFs, we keep the anchor text feature and URL Token feature
values of the parent page w;_; of page w;. Detailed crawling algorithms with each
model are described in the following sections.

3.4 FEvaluation Methods

It is important that the focused crawler returns as many relevant pages as possi-
ble while minimizing the irrelevant ones. The standard information retrieval (IR)
measures used to evaluate the performance of a crawler are Precision and Recall.

The precision is the percentage of the Web pages crawled that are relevant to the
topic. It is ideal to have real users identify the relevant pages. However, involving
real users for judging thousands of pages is not practical. The use of cosine similarity
to judge relevance of pages has been adopted in several topical crawling studies [19]
132 [48]. Since in general there are multiple target pages in our system either marked
by the user or extracted from DMOZ, the relevance assessment of a page p is based
on maximal cosine similarity to the set of target pages T" with a confidence threshold
. That is, if maxger cos(p, d) > 7 then p is considered as relevant.

The recall of the standard evaluation measure is the ratio of the relevant pages
found by the crawler to all relevant pages on the entire Web. It is not possible to
get the exact total number of relevant pages on the Web, so recall cannot be directly
measured. Instead, we use the Maximum Average Similarity as the second evaluation
metric.

The ability of the crawler to remain focused on the topical Web pages during crawl-
ing can be measured by the average relevance of the downloaded documents [32} [31].
Average Similarity is the accumulated similarity over the number of the crawled pages.
This relevance measure also has been used in [32, 31], 47, 14]. In our system, since
there are multiple user-marked or pre-specified target pages, if the query document
is close to any one of the targets, it is considered as matching the user’s interests or
the topic. The query document is compared to all the target documents, and the
highest similarity value is used to calculate Average Similarity, which we called the
Mazimum Average Similarity o.

cos(p, d
o = maxzpes p.d) (10)

deT |S]

22

where T is the set of target pages, S is the set of pages crawled, |S| is the number of
targets, and
2 kepnad Wpk * Wak

\/ZkEp pk Zked W

is the standard cosine similarity function, and wg; is the weight of reduced vector
term k in document d.

cos(p, d)

23

4 Focused Crawling with Maximum Entropy Markov
Models

In this section, we elaborate on the details of prediction of paths to relevant web
pages by using Maximum Entropy Markov Models (MEMMSs). This will allow us
to explore multiple overlapping features for training and crawling. All features and
feature functions have been described in Section [3.2]

4.1 Maximum Entropy Markov Model

Maximum Entropy Markov Model or MEMM is an augmentation of the basic Maxi-
mum Entropy Model so that it can be applied to calculate the conditional probability
for each element in a sequence [39, 27]. It is a probabilistic sequence model that
defines conditional probabilities of state sequences given observation sequences.

Formally, let s and o be random variables ranging over observation sequences and
their corresponding state (label) sequences respectively. We use s = s1, s, ..., S, and
0 = 01, 09, ..., 0, for the generic state sequence and observation sequence respectively,
where s and o has the same length n. As shown in Fig. Pla), state s; depends on
observations o; and previous state s;_i.

Therefore, MEMMs are discriminative models that define the conditional proba-
bility of a state sequence s given an observation sequence o, p(s|o).

Let n be the length of the input sequence, m be the number of features. Then
p(s|o) is written as

p(slo) = p(s1, S2, ..., Sn|01, 02, .., Op) (11)
MEMMs make a first-order Markov independence assumption among states, that

is, the current state depends only on the previous state and not on any earlier states,
so p(s|o) can be rewritten as:

n

p(slo) = [In(silsi-r, o) (12)

t=1

where t ranges over input positions 1..n. Applying the maximum entropy principle,
p(s¢]si—1,0;) can be rewritten as follows:

1 m
plsilsii o) = ——exp(>_ Nifi(si-1, 50 01)) (13)
i=1

z(or)

z(or) = ZGXPZ)\ifi(St—l,S/,Ot) (14)

s'eS i=1

where, s; is the state at time ¢, o, is the observation at time t, S represents a set
of possible states corresponding to finite state machines(FSMs). Combining Eq.

24

with Eq. @3] we get

p(slo) = H p(se|si-1,01)
t=1

eXP(Z?:1 27;1 Az‘fi(st—h St, Ot))
H?:l z(or)

z(o;) is calculated using Eq. M4l As seen in Eq. 8, MEMM defines the conditional
probability of state sequence s given observation sequence o as the product of separate
conditional probabilities p(s;|s;_1,0;) at each position ¢, ranging over all positions.
z(0y) is called the per-state normalizing factor. In other words, MEMM uses local
normalization factor z(o;) to form a chain of local models, which implies each position
t contains a “next-state classifier” that makes the distribution sum to 1 across all next
state s; at current position t.

(15)

4.2 Parameter Estimation

The task is to estimate the parameters A = {1, A, ..., A\, }, which are the weights
for each feature function fi, fo,..., f, based on the training data. We start with
the formulation of the objective function, its smoothing via a penalty term, and the
training algorithm based on the Limited-Memory Quasi-Newton method L-BFGS [33].
We adopted L-BFGS as it has been shown to perform better than Iterative Scaling and
Conjugate Gradient methods in sequential tasks of a similar nature as ours [25], [43].

The training data D consists of N state-observation sequences, D = {S, O} =
{(s7,07)}}L, (we use superscripts j to represent training instances), where each o’ =
{01,0],...,00} is a sequence of observations of length n, and each s7 = {s] s/, ..., 57}
is the corresponding sequence of states. The task of training is to choose values of
parameters {\;} which maximize the log-likelihood, L = log p(S|O), of the training
data. We use (s7,0’) to represent the j state-observation sequence from the training
data set, s7,0! to indicate the state and observation at position ¢ of the j” state-
observation sequence respectively.

The goal of smoothing is to penalize large weights, since Maximum Entropy may
converge to very large weights which overfit the training data. There are a number
of smoothing methods for maximum entropy models [I7, 15, 8, 9. To avoid over-
fitting and sparsity, we use smoothing to penalize the likelihood with a Gaussian
weight prior [8, [9] assuming that weights are distributed according to a Gaussian
distribution with mean p and variance o2. We can prevent overfitting by modify-
ing the optimization objective function logp(S|O) to maximum posterior likelihood
log p(S, A|O):

Ly =1logp(S,A|0) = logp(S|O) +logp(}) (16)
Posterior Fuvidence Prior

25

Its derivative with respect to J; is:

n

9, S 3
8? - ZZ]} $1-1,51,0]) Z Zp (11, 00) fils11, ', 01) Z;_

j=1 t=1 j=1 t=1 s'eS
- FE —E — Zm: ﬁ (17)
- 7 7 — 0_2

E; is the first (double) sum and gives the empirical value for feature f; of the
training data, equal to the sum of feature f; values for position ¢ in all N sequences.
E; is the second (triple) sum and gives the expected value for feature f; using current
parameters with respect to the model distribution p. Eq. [is the first-derivative
with respect to \; of the objective function L). Therefore, the optimum parameter
A; is obtained by setting these derivatives to zero. We observe that, without the
smoothing term (the last sum), the derivative of L, is E; — E;, and the optimum
parameters A are the ones for which the expected value of each feature equals its
empirical value. In practice, the L-BFGS optimization method is applied, which
requires the first derivative of the objective function, given by Eq. I

4.3 Focused Crawling

We now discuss two kinds of inference we use in the Focused Crawling stage. When
the crawler sees a new page, the task of the inference is to estimate the probability
that the page is in a given state s based on the values of all observed pages already
visited before. We are using two major approaches to compute the probabilities in our
experiments: marginal probability and the Viterbi algorithm, which can be performed
efficiently using dynamic programming.

Marginal Mode. The marginal probability of states at each position ¢ in the se-
quence is defined as the probability of states given the observation sequence up to
position ¢. Specifically, the forward probability, «(s,t) is defined as the probability
of being in state s at position ¢ given the observation sequence up to position t. We
set a(s, 1) equal to the probability of starting with state s and then use the following

recursion:
als.t) =Y _a(st—1) p(s|s’, o)) (18)

S/

The calculation of p(s|s’, 0;) is straightforward in MEMMs. As we discussed above,
MEMM directly defines separate conditional probabilities p(s|s’,0;) at each position
t, that is,

ol = o exn(3oNA(s00)

2(0;) = Zexpi)\iﬁ(s',s” o

s’eS =1

26

Substituting into Eq. [I§] the forward probability values a(s,t) are calculated.

In our notation, hidden states are defined as 7}, j = 0..k—1, therefore we associate
values a(Tj,t) with each visited page. Forward value «(7},t) is the probability that
the system is in state 7; at time ¢, based on all observations made thus far. Given
the values o(T},t — 1), j = 0..k — 1, of the parent page, we can calculate the values
a(Tj,t) using the following recursion, derived from Eq. I8

N

1
O‘(ij t) = p(Tj|Tj’7 Ot)a(Tj’vt - 1) (19)

'=0

.

Hence the values «(7},t) in our focused crawling system are calculated as:

k—1 m
1
oT;1) = D ol =1) s expQ_AA(T;, Ty,) (20)
3'=0 i=1
k—1 m
2o) = D exp Y NfiTy, Ty, 0) (21)
§7=0 i=1

All the (T}, t) values for all j = 0..k—1 are stored in the priority queue, and used
to determine the visit priority as described in Section [3.3.2, and to perform inference
for the next time step.

The Viterbi Algorithm. In Viterbi decoding, the goal is to compute the most
likely hidden state sequence given the data:

s* = argmax p(s|o) (22)

By Bellman’s principle of optimality, the most likely path to reach state s; consists
of the most likely path to some state at time t—1 followed by a transition to s;. Hence
the Viterbi algorithm can be derived accordingly. (s, t) is defined as the best score
(the highest probability) over all possible configurations of the state sequence ending
at the position t in state s given the observation up to position ¢. That is

d(s,t) = maxd(s',t — 1) p(s|s’, 0r) (23)

This is the same as the forward values (Eq. [I8)), except we replace sum with max.
Applying Eq. to our problem, with hidden states defined as 7}, j = 0.k — 1, we
have:

k—1 1 o
5(ij t) = 5938(5(1}’715 - 1) Z(Ot) eXp(;)‘ZfZ(ij Tj’v Ot)) (24)
k—1 m
o) = Y exp Y Nfi(Ty,Tp, o) (25)
§7=0 i=1

27

Priority Queue Data Structure. To perform the dynamic programming for effi-
cient inference during crawling, since MEMM crawling uses some features from parent
page, we need to keep them in the queue. When a new page is seen, all features in-
cluding features extracted from current page and those from parent page are collected
together for prediction. Therefore, anchor text feature and URL token feature in the
previous page should be kept in addition to the three basic elements. In summary,
the following are four elements of the priority queue in MEMMs crawling:

the URL of page w;

anchor text feature and URL Token feature vector P, extracted from the parent
page w;_1 of page w;

the visit priority of w;

probabilities (7}, t—1) that page w;_; is in hidden state 77, for all j, capturing
p(si—1|o1.i-1).

The flow chart of focused crawling with MEMMSs is shown in Fig. § in Section B
The pseudocode of crawling algorithm with MEMMs is shown in Fig. [l Each feature
vector Fj is different for each URL, therefore, the children of page w; have different
visit priorities.

We now analyze the computational complexity of the crawling algorithm with
MEMM. For training, MEMM training requires O(I x N * S? x I) time, where [is the
number of iterations, IV is the size of training set, S is the total possible states, and
I is the number of observation features that capture the relationship among state
and observation sequences (see the outline of algorithm in [27]). The complexity of
MEMM crawling algorithm is O(L +Q log Q+ S?* F'), where L is the average number
of outlinks per page, @ is the size of URL queue, S is the total possible states, and F' is
the number of observation features. For each Web page, all outlinks are extracted and
saved in the URL queue. We use a hash table to implement the operations of inserting
and removing URLs from the queue and checking if a newly extracted URL is already
in the queue. The queue is sorted according to the visit priority value associated with
each URL with merge sort, yielding O(L+Q log @) complexity. The MEMM inference
with the Viterbi algorithm uses dynamic programming for a running time complexity
of O(S?* F). Therefore, MEMM crawling takes O(L+Q log Q+ S%* F') in the general
case.

28

(N N I I

