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Abstract- Experimental data from pure sway tests on a series of five axi-symmetric bare-hulls for a slender underwater vehicle were 

used to study and model the sway force in lateral-plane sway manoeuvres. The sway force is represented with two components, one in 

phase with the sway acceleration and the other in phase with the sway velocity. The test data reveal that there is a variation in the 

apparent mass with both the sway frequency and amplitude. Although the present study provides some insight into this phenomenon, 

further experimental and analytical work will be required to acquire an improved understanding of the phenomena.  

 
I. INTRODUCTION 

 

As a part of the underwater vehicle hydrodynamics research at the Institute for Ocean Technology, National Research Council, 

Canada (NRC-IOT), pure sway experiments on a series of five hull forms for an axi-symmetric underwater vehicle were 

performed in the 90 m towing tank at NRC-IOT. These experiments used the towing carriage to move the vehicle along the tank 

x-axis, the PMM (Planar Motion Mechanism) to produce the oscillating lateral (sway) motions, and, an internal three-component 

balance to measure two hydrodynamic forces (axial, lateral) and the hydrodynamic yaw moment. 

The original bare-hull model had a length-to-diameter ratio (LDR) of about 8.5:1. Extension pieces were added to the parallel 

mid-body to test hulls of the same diameter, 203 mm, but with LDR 9.5, 10.5, 11.5 and 12.5. The carriage forward velocity for all 

the runs was 2 m/s; in the pure sway runs the sway velocity of the PMM had smooth sinusoidal variations with amplitudes of 

about 0.55 m/s for most of the runs. The planar motion mechanism in NRC-IOT was restricted to a maximum of 1.25 m sway 

amplitude, 0.65 [m/s] sway velocity and 60 [deg/s] yaw rate of turn. The maximum and minimum sway motion amplitudes for the 

pure sway runs were 1.25 and 0.32 m; the maximum and minimum periods of oscillation were respectively about 14.3 and 3.5 s 

for all the bare-hull configurations. 

Although some parts of the pure sway test results that were performed on five axi-symmetric bare-hull models in November 

2005 were published in an earlier report in September 2006 [Williams et al. 2006], a more comprehensive analysis of the filtered 

data was necessary. Analysis of the resulting experimental data from the pure sway captive manoeuvring tests reveals a variation 

of the apparent mass with the oscillation amplitude and frequency.  

 

II. PURE SWAY TESTS 

 

One way to study the time-varying hydrodynamic loads which are experienced by a fully-submerged underwater vehicle is to 

perform captive-model forced oscillations with a device such as a Planar Motion Mechanism (PMM). In practice it is convenient 

(for programming of the drive motions, smoothness of the loads imposed on the PMM, and, for data-analysis purposes) to use 

sinusoidal motions. In a spatial coordinate system, such as a towing tank, a sinusoidal trajectory can be defined by the width of 

one cycle of the trajectory (cycle-width) and the amount of length of towing tank required to execute one cycle, the cycle-length. 
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In the context of the motions of the PMM and the towing carriage, the cycle width is equivalent to twice the amplitude of the 

lateral (sway) motion A, and the cycle-length is equivalent to the product T· U where T is the period of the motion and U is the 

constant carriage speed. 

In a pure sway manoeuvre, the CG of the vehicle is moved through a sinusoidal path while the longitudinal axis of the vehicle 

is held parallel to the towing carriage’s forward direction, that is: the vehicle’s yaw angle remains at zero during all the pure sway 

runs. As a result, the sway force and yaw moment measured on the vehicle during pure sway runs are larger than the loads in pure 

yaw (zigzag) runs. In pure sway runs the body-fixed and global coordinates are parallel to each other; positive x, y and z-axes are 

respectively defined forward, to starboard and downwards. Assuming that time starts when the model passes the towing tank 

centerline in the positive y direction, sway displacement and velocity of the PMM are as follows: 

y = A sin(ωt)        (1) 

v = v0 cos(ωt)       (2) 

where A and v0 are the amplitude of the PMM sway displacement and velocity respectively, and v0 is given by A·ω. 

Differentiating (2) results in the PMM’s and thus the model’s sway acceleration as: 

ay = ay0 cos(ωt + π/2)      (3) 

where ay0 is the amplitude of the sway acceleration of the PMM, and ay0 is given by A·ω2. Also, from the tests it is concluded that 

the sway force can be represented in the form: 

Fy = Fy0 cos(ωt + φF)      (4) 

where Fy0 is the amplitude of the sway force measured by the internal balance and φF is the phase lag between the sinusoidal sway 

force and sinusoidal sway velocity motions, that is, φF is the amount by which the PMM sway velocity leads the measured sway 

force. See Table I at the end for the pure sway manoeuvring data. The raw time-series were filtered using the filtfilt function in 

MATLAB™ since this filter does not introduce any phase shift into the signal [Williams et al. 2006].  

 

III. THE MODEL AND TEST CONDITIONS 

 

Fig. 1 shows schematically the bare-hull model mounted on the PMM: two vertical streamlined struts attach the internal 

balance to the PMM. Each strut passes through a hole in the skin of the upper surface of the mid-body section, thus there is no 

contact between either strut and the model itself. The distance between the free surface and the top of the upper surface of the 

bare hull was maintained at 1.09 m for all runs. The water depth was 2.18 m for all runs. So the ratio of the distance between the 

free surface and the top of the upper surface of the bare hull to the maximum hull diameter of 203 mm was almost 5.4. Similarly 

the ratio of the water depth to the maximum hull diameter was about 10.7.  

Within the interior of the model, the "ground" or "dead" portion of the balance is attached only to the two vertical struts. The 

"live" or "metric" portion of the balance is attached to two circular bulkheads within the mid-body section. With this attachment 

method the internal three-component balance measures only the hydrodynamic loads (axial force, lateral force, yaw moment) 

which are exerted by the flow on the external surface of the model. Since neither strut is attached to the "live" portion of the 

balance, there is no load path from either strut to the model itself. 

 

 

Fig. 1. A simplified diagram of the fully-submerged, fully-flooded Phoenix model mounted below the PMM; side view 
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Fig. 2 shows the model installed on the PMM using the 

supporting struts. The chord length of each faired strut was 176 mm 

and the maximum thickness of struts was 46 mm. The longitudinal 

spacing between the struts was 723 mm. Since there are two holes 

in the skin at the upper portion of the mid-body, the water which 

enters the model to fill the empty spaces within the model is 

referred to as the floodwater. During all lateral motions it is 

assumed that the floodwater moves as if it were a rigid body and  

that there is no empty space within the model for air to be trapped 

and thus no internal free surface where sloshing could occur. 

In conclusion, due to the attachment method used in these 

experiments, the internal three-component balance measures only 

the hydrodynamic loads which are exerted on the exterior surface of 

the model, and not any effect of (a) hydrodynamic loads on the 

mounting struts, (b) floodwater “sloshing” within the mid-body, or, 

(c) any free surface. 

Table II shows the details of the five bare-hulls. Each of the five 

models was weighed by suspending the dry, empty model in air, 

and those masses are the values in column #6 of Table II [Hewitt 

and Waterman, 2005]. Next all the joints of each model were taped 

closed so that the model was water-tight, then each model was filled with water until it overflowed; the mass of each flooded 

model when suspended in air is given in column #7 in Table II. By subtraction, the mass of floodwater can be found, and this 

value for each model is given in the last column of Table II.  

Fig. 2. The model installed on the PMM using the two 

vertical struts 

TABLE II. DETAILS OF THE FIVE PHOENIX MODELS 

Length to 

diameter ratio 

Maximum 

diameter [mm] 
LOA[mm] 

CG dry in air 

[mm] from 

nose 

CG flooded in 

air [mm] from 

nose 

 Mass when 

dry in air [kg]

Mass when 

flooded in air [kg] 

Mass of 

floodwater [kg] 

8.5 203 1723 734 847 24.3 49.2 24.9 

9.5 203 1927 815 939 25.6 55.3 29.7 

10.5 203 2125 912 1057 27.3 63.2 35.9 

11.5 203 2334 1011 1159 28.2 70.1 41.9 

12.5 203 2535 1118 1256 29.8 77.1 47.3 

 

IV. DATA ANALYSIS 

 

A. Manoeuvring frequency and amplitude 
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The manoeuvring amplitude versus frequency for all pure sway 

runs for the bare-hull with LDR 8.5 is plotted in Fig. 3. For other 

bare-hulls the amplitude and frequency are also the same as in Fig. 3. 

Since the tests were planned to have about the same sway velocity 

amplitude for most of the runs, v0= A·ω is constant at about 0.55 

[m/s], hence there is a reciprocal relation, i.e. f(x)= 1/x, between the 

amplitude A and frequency ω as can be seen in Fig. 3. However, as 

will be presented later, the sway frequency and amplitude are the two 

independent factors affecting the sway force amplitude and phase. 

There are two sets of runs with equal frequency but different 

amplitude. There is one single run of frequency about 0.44 rad/s and 

amplitude 0.7 m which has a lower sway velocity amplitude that is 

about 0.3 m/s (Table I).  
Fig. 3. Sway amplitude versus frequency for all runs 

for the bare-hull with LDR 8.5 
 

 

 



 

B. The sway force amplitude 

It is simplest first to interpret the results for a single bare-hull configuration, and then the effect of model size can be studied. 

Sway force amplitude versus sway frequency for LDR 8.5 is plotted in Fig. 4. It is clear that for the runs of equal frequency, the 

lower maximum sway velocity – that is the smaller manoeuvre amplitude – produces a smaller force. Next, the sway force 

amplitude is plotted against sway acceleration amplitude in Fig. 5. The run with the lowest maximum acceleration results in the 

smallest sway force amplitude. It is seen that the amplitude of the sway force increases with increasing amplitude of the sway 

acceleration. 
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 Fig. 4. Sway force amplitude versus sway frequency for the 

bare-hull with LDR 8.5 

Fig. 5. Sway force amplitude versus sway acceleration 

amplitude for the bare-hull with LDR 8.5  

C. Phase lag between the sway force and sway velocity signals 

The values of the phase lag between the sway force and sway 

velocity signals (minus 90 degrees) as presented in Table I for the 

five bare-hulls, are shown in Fig. 6. As the sway frequency, and thus 

the amplitude of the acceleration increase, the phase lag decreases. 

Also, the phase lag for longer bare-hulls is smaller. As a result, one 

may anticipate that if this trend continues for higher frequencies that 

this phase lag will tend to zero. 

D. The inertial and damping terms 

As was explained in section III, it is assumed that the recorded 

hydrodynamic loads during these pure sway runs were not affected 

by any free-surface effect because of the large distance from the bare-

hull to the free surface. Also, it is assumed that the hydrodynamic 

loads due to the supporting struts did not affect the recorded signals. 

Thus, the recorded sway force signal is assumed to be solely due to 

the lateral accelerations of the bare-hull models. As is shown in Table 

I and Fig. 6, the sway force signal has a phase lag of φF, larger than 

π/2, relative to the velocity signal. In Fig. 7 the sway velocity is 

shown by a vector pointing to the right, the sway acceleration vector 

points upward, and the sway force vector is shown in the second 

quadrant. Since with increasing time these vectors rotate in the 

clockwise direction, the velocity vector leads the sway force vector by 

the angle φF. Projecting this sway force vector along the real and 

imaginary axes respectively produces (i) the damping component of 

the force vector, named Fy,d, which acts in phase with the velocity 

vector but in the opposite direction, and, (ii) the inertial component of 

the force vector, named Fy,i,  which is in phase with the acceleration 

vector. 

ay 
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φF 
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Im 

Fig. 7. Velocity, acceleration and force vectors in 

the complex plane 
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Fig. 6. Phase lag between the sway force and sway velocity 

signals (minus 90 degrees) during pure sway runs 



As shown in Fig. 7 the amplitude of the damping and inertial components of the sway force vector are derived as: 

Fy0, d = −Fy0 sin(φF − π/2)     (5) 

Fy0, i = Fy0 cos(φF − π/2)      (6) 

According to the experimental data in Table I and Fig 6, as the frequency increases (i) the magnitude of the sway force increases 

and (ii) the phase lag φF decreases, both of which result in a larger inertial component of the sway force. 

E. The apparent mass versus manoeuvring frequency and amplitude 

If the inertial component of the sway force vector in (6) is divided by the amplitude of the sway acceleration, the resulting 

parameter is the apparent mass of the system (the flooded vehicle mass plus the added mass of the surrounding water external to 

the vehicle), that is: 

Fy0, i / ay0 = mapparent [kg]     (7) 

where ay,0 is given by A·ω2. The magnitude of the apparent mass from (7) is shown in the second last column in Table I for all 

pure sway runs for all the bare-hulls. The apparent mass for the bare-hull with LDR 8.5 is plotted in Fig. 8 versus the sway 

acceleration amplitude. The same data are plotted versus the sway frequency ω and amplitude A in Figs. 9 and 10. The sway 

velocity amplitude for each data point is also shown in Figs. 8 to 10.  
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Fig. 9. Apparent mass of the bare-hull with LDR 8.5 versus 

sway frequency during pure sway runs  
Fig. 8. Apparent mass of the bare-hull with LDR 8.5 versus sway  

acceleration amplitude during pure sway runs 
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 Fig. 10. Apparent mass of the bare-hull with LDR 8.5 versus sway 

amplitude during pure sway runs  

 

 

 

 



Clearly seen for the LDR 8.5 data, the apparent mass resulting from these lateral acceleration manoeuvres is variable. From 

Figs. 8 to 10 the following conclusions can be made: 

1. Fig. 8 shows that as the amplitude A·ω2 of the sway acceleration increases, the apparent mass decreases. 

2. Fig. 9 shows that as the frequency ω of the sway motion increases, the apparent mass decreases. 

3. Fig. 10 shows that as the amplitude A of the sway motion increases, the apparent mass increases. 

4. According to Fig. 8, the lateral velocity and acceleration have independent effects on the magnitude of the apparent 

mass, because the data with different sway velocity amplitudes do not lie along a curve. Since the velocity and 

acceleration amplitudes are respectively: A·ω and A·ω2, it can be concluded that the oscillation amplitude and frequency 

are in fact the two independent factors that are affecting the magnitude of the apparent mass besides the body geometry, 

that is: 

mapparent= f (A, ω, geometry)     (8) 

5. In Fig. 9 for the same sway velocity 0.55 m/s, the three data-points which have frequencies higher than 1 rad/s result in 

almost the same apparent mass of about 85 kg. 

6. According to Fig. 10, for the same sway motion amplitude, a lower sway velocity amplitude A·ω results in larger 

apparent mass. Note that one should avoid concluding from the two smallest frequency data-points in Fig. 9 that for the 

same frequency a larger amplitude of the sway velocity results in a larger apparent mass, because then the next pair of 

data-points in Fig. 9, which also have the same frequency suggest the contrary. Thus, again it is emphasized that for 

equal motion amplitude, according to Fig. 10, a sway manoeuvre with a longer period results in a larger apparent mass. 

7. From Fig. 10 one should not conclude that the magnitude of the apparent mass will indefinitely increase as the amplitude 

of the sway motion increases. The apparent mass will reduce to the vehicle mass for large amplitudes. Because, for an 

arbitrary sway velocity amplitude, if the oscillation amplitude becomes too large, then the sway acceleration amplitude 

tends to zero. The reason is that the sway acceleration amplitude is as follows: 

ω= v0/ A, and a0= A· ω2 → a0= v0
2/ A   (9) 

Thus, for an arbitrary sway velocity if the sway motion amplitude becomes too large, then the sway acceleration 

becomes so small that the inertial effects notably vanish. 

8. The flooded vehicle mass for LDR 8.5 was measured to be about 49.2 kg [Hewitt and Waterman, 2005] by which 

amount the data in Figs. 8 to 10 should be shifted downward to show the added mass values; that is, the added mass for 

LDR 8.5 varies between about 28.3 to 71.2 kg depending on the sway frequency and amplitude. 

 

F. The apparent mass versus the bare-hull size 

Next, Fig. 11 shows the apparent mass for the five bare-hull configurations versus the sway frequency. The clear pattern is that 

for all configurations the magnitude of the apparent mass appears to tend asymptotically to a single value as the frequency 

increases. On the other hand, if the experimental data are plotted versus the bare-hull LDR, as shown in Fig. 12, it is seen that 

there is effectively a linear increase in the magnitude of the apparent mass with increasing LDR, for all the combinations of sway 

frequency and amplitude shown. 
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Fig. 11. Apparent mass versus sway motion frequency for all the  Fig. 12. Apparent mass versus bare-hull LDR for several combinations 

of sway frequency and amplitude during pure sway runs 
 

bare-hulls during pure sway runs 

 



G. The damping factor 

Going back to Fig. 5 and equation (5), if the real component of 

the sway force vector, i.e. the damping component, is divided by 

the sway velocity amplitude the resulting value is a damping 

factor which is often denoted by b, that is: 

|Fy0, d| / v0 = b [kg/s], where: v0= A· ω   (10) 
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Fig. 13. Damping factor versus frequency of sway motion 

for all bare hulls during pure sway runs 

The magnitude of the damping factor from (10) is shown in the 

last column in Table I for all pure sway runs for all the bare-hulls. 

Note that the damping force acts in the opposite direction of the 

velocity vector, but the damping factor is defined to be positive. 

The damping factor derived by (10) has the dimension of [kg/s] 

and the dimensional values are between about 100 to 180 [kg/s]. 

Fig. 13 shows how the damping factor varies with the frequency 

of the sway motion. It is observed that the damping factor is 

largest for the longest model. 

 

 

V. THE SWAY FORCE MODEL 

 

Using the rotating vector representation in Fig. 7, the sway force in a pure sway manoeuvre at time instant t= 0 second can be 

modeled as follows: 

Fy(t=0) = Fy0, d + i Fy0, i = − bv0 + i (mapparent ay0)   (11) 

where i is the imaginary unit vector. Equation (11) is rewritten as follows: 

Fy(t=0) = − b Aω + i (mapparent Aω2)     (12) 

Then the amplitude of the sway force is found to be: 

Fy0 = Aω [b2 + (mapparentω)2] (1/2)                           (13) 

and the amount by which the sway force lags the sway velocity is given by: 

φF = atan[−mapparentω/ b] = atan[b/ (mapparentω)] + π/2   (14) 

In general, the magnitude of the apparent mass and the magnitude of the damping factor depend on the body geometry as well as 

the sway frequency and amplitude. The parameters for the sway force model can be obtained from the experimental data for each 

of the five models using (13) and (14). The time variation of the sway force is obtained by substituting the force amplitude and 

phase lag from (13) and (14) into equation (4), that is: Fy = Fy0 cos(ωt + φF). 

 

VI. AN IMPROVED DESIGN FOR FUTURE PURE SWAY EXPERIMENTS  

 

Observation of the pure sway test data revealed that the sway force vector, in addition to the body geometry, is a function of 

two independent variables (i) the amplitude of the sway velocity A·ω, and, (ii) the amplitude of the sway acceleration A·ω2, in a 

lateral harmonic manoeuvre. In other words, the sway motion amplitude A and frequency ω should vary independently during the 

experiments so as to acquire data-points at different levels of both sway velocity and sway acceleration. With the present test 

data, since the sway amplitude and frequency had a reciprocal relation for most of the runs, it is only possible to observe the sway 

force variation versus lateral acceleration for a particular sway velocity amplitude of about 0.55 m/s. With a statistical design of 

experiment, using the concept of response surface models, the tests can be designed starting with a basic two-level factorial 

scheme which is then augmented with axial and centre-point runs so as to capture the variation of the response, sway force, over 

the two test factors: (i) the amplitude of the sway velocity A·ω, and, (ii) the amplitude of the sway acceleration A·ω2.  

Fig. 14 proposes an example test plan which covers a range of 0.3 to 0.6 [m/s] for the sway velocity amplitude and a range of 

0.1 to 0.8 [m/s2] for the sway acceleration amplitude. In the figure the factor sway velocity varies horizontally, and the factor 

sway acceleration is along the vertical axis. The design has both axial runs which are outside the square-box, and face-centered 

runs which lie on the sides of the square. Such an experimental plan can capture the variation of the sway force over the 

manoeuvring frequency and amplitude. In Table III the proposed test runs are shown; for each run the manoeuvring frequency is 

obtained by dividing the acceleration amplitude by the velocity amplitude, and then the amplitude A of the sway displacement 

equals the amplitude of the sway velocity A·ω divided by the sway frequency ω. 

The centre-point run has the velocity and acceleration amplitude pair of (0.45 m/s, 0.45 m/s2) which corresponds to a frequency 

and sway motion amplitude of (ω, A) = (1 rad/s, 0.45 m). This run could be replicated three times so as to provide a measure of 

the experimental repeatability. For example, with three replications for the centre-point run, the design scheme in Fig. 14 totals to 



15 runs; to this if a study of the effect of the bare-hull geometry is added, e.g. with three different bare-hulls the test set totals to 

45 runs. 

 

 

 

 

TABLE III. TEST-PLAN PROPOSED FOR FUTURE PURE SWAY TESTS IN 

ORDER TO COVER BOTH THE MANOEUVRING FREQUENCY AND AMPLITUDE 

EFFECTS ON THE SWAY FORCE RESPONSE 
a0 [m/s2] 

Axial runs 

Run No. v0 [m/s] a0 [m/s2] 
ω= a0/ v0 

[rad/s] 

A= v0/ ω 

[m] 

1 0.37 0.25 0.68 0.55 

2 0.53 0.25 0.47 1.12 

3 0.37 0.65 1.76 0.21 

4 0.53 0.65 1.23 0.43 

5 0.45 0.1 0.22 2.03 

6 0.45 0.8 1.78 0.25 

7 0.3 0.45 1.50 0.20 

8 0.6 0.45 0.75 0.80 

9 0.45 0.45 1.00 0.45 

10 0.45 0.25 0.56 0.81 

11 0.45 0.65 1.44 0.31 

12 0.37 0.45 1.22 0.30 

13 0.53 0.45 0.85 0.62 

 

VII. CONCLUSIONS 

 

This study presents test results that indicate how the apparent mass of the bare hull of an AUV varies during a lateral 

acceleration manoeuvre. In oscillating lateral motions such as the pure sway manoeuvres performed in these experiments, the 

value of the apparent mass depends on the manoeuvring frequency and amplitude as well as the body geometry. However, the 

presented results indicate that further experimental and analytical research is required to acquire an improved understanding of 

the apparent mass and damping phenomena in lateral acceleration manoeuvres.  

The sway force that is exerted on axi-symmetric bare-hull of an underwater vehicle during pure sway manoeuvres was modeled 

in the complex plane with its damping component in phase with sway velocity vector (but in the direction opposite to it), and its 

inertial component in phase with the sway acceleration vector. Then the amplitude and phase of the sway force were formulated 

versus the manoeuvring frequency and amplitude, the magnitude of the apparent mass and the magnitude of the damping factor of 

the system. As mentioned, it was shown that the magnitude of the apparent mass itself is a function of the body geometry, and the 

manoeuvring frequency and amplitude.  

From these results, it can be deduced that for a zigzag manoeuvre also the value of the apparent mass and apparent moment of 

inertia may depend on the manoeuvring amplitude and frequency as well as the body geometry. For the zigzag manoeuvring tests 

that were performed on these bare-hull models, in a future report the effect of the apparent mass and apparent moment of inertia 

will be discussed. Also, an improved test-plan for future experimental work was proposed in section VI so that to perform the 

pure sway tests in a way that both the manoeuvring frequency and amplitude effects on the response sway force are independent 

variables instead of their product A·ω being effectively held constant as is shown in the fourth column of Table I for the present 

experiments. 
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TABLE I. PURE SWAY TEST RESULTS FOR THE FIVE BARE-HULL SERIES 

LDR A [m] 
ω 

[rad/s] 
v0 [m/s] 

a0 

[m/s2] 
Fy0 [N] 

φF− 90 

[deg] 

mapparent 

[kg] 
b [kg/s] 

8.5 0.32 1.8 0.57 1.03 112.8 44.9 77.5 138 

8.5 0.36 1.53 0.55 0.85 101 46.3 82.5 132 

8.5 0.42 1.31 0.55 0.72 93.3 49.7 83.8 130 

8.5 0.5 1.1 0.55 0.61 87.5 53.9 84.9 128 

8.5 0.65 0.89 0.58 0.51 91.8 59.4 91.8 137 

8.5 0.7 0.44 0.31 0.14 35.4 63.3 117.6 103 

8.5 0.85 0.66 0.56 0.37 86.1 63.4 103.8 137 

8.5 0.9 0.66 0.60 0.39 93.1 64.6 101.4 141 

8.5 1.25 0.44 0.55 0.24 77.6 68 120.4 131 

9.5 0.32 1.8 0.57 1.03 124.3 44.8 85.5 152 

9.5 0.36 1.53 0.55 0.85 111.8 46.4 91.2 147 

9.5 0.42 1.31 0.55 0.72 100.9 49.4 91.3 139 

9.5 0.5 1.1 0.55 0.61 93.4 53.2 92.1 136 

9.5 0.65 0.89 0.58 0.51 98.2 58 102.2 145 

9.5 0.7 0.44 0.31 0.14 39.9 62.2 137.6 115 

9.5 0.85 0.66 0.56 0.37 92.5 62.9 113.5 146 

9.5 0.9 0.66 0.60 0.39 99.9 63.6 113 150 

9.5 1.25 0.44 0.55 0.24 91.2 67.4 145 153 

10.5 0.32 1.8 0.57 1.03 138.9 42.2 99.8 162 

10.5 0.36 1.53 0.55 0.85 125.1 42.8 108.7 154 

10.5 0.42 1.31 0.55 0.72 112 46.8 106.6 148 

10.5 0.5 1.1 0.55 0.61 103.5 51.8 105.3 148 

10.5 0.65 0.89 0.58 0.51 107.5 57.5 113.4 158 

10.5 0.7 0.44 0.31 0.14 42.6 62.7 144.5 123 

10.5 0.85 0.66 0.56 0.37 102.4 61.4 131.6 160 

10.5 0.9 0.66 0.60 0.39 108.6 60.3 136.7 158 

10.5 1.25 0.44 0.55 0.24 95.1 65 166.2 157 

11.5 0.32 1.8 0.57 1.03 148.9 40.7 109.4 169 

11.5 0.36 1.53 0.55 0.85 132.7 42.7 115.4 163 

11.5 0.42 1.31 0.55 0.72 119.7 45.9 115.7 156 

11.5 0.5 1.1 0.55 0.61 111.3 52 112.8 159 

11.5 0.65 0.89 0.58 0.51 113.7 56.7 122.7 165 

11.5 0.7 0.44 0.31 0.14 44.4 61.7 155.9 127 

11.5 0.85 0.66 0.56 0.37 104.1 60.2 139 161 

11.5 0.9 0.66 0.60 0.39 112.7 58.7 148.6 162 

11.5 1.25 0.44 0.55 0.24 99.1 67.4 157.4 167 

12.5 0.32 1.8 0.57 1.03 160.7 39.6 120.1 178 

12.5 0.36 1.53 0.55 0.85 144.8 40.8 129.6 172 

12.5 0.42 1.31 0.55 0.72 130 42.8 132.7 161 

12.5 0.5 1.1 0.55 0.61 116.6 50.5 122.1 163 

12.5 0.65 0.89 0.58 0.51 118 55.3 131.9 169 

12.5 0.7 0.44 0.31 0.14 44.2 59.3 167 124 

12.5 0.85 0.66 0.56 0.37 121.3 58.2 172 183 

12.5 0.9 0.66 0.60 0.39 118.4 59.2 154 171 

12.5 1.25 0.44 0.55 0.24 103.8 64.1 188.1 170 

 


