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Fusarium head blight (FHB) limits wheat yield and compromises grain quality. We investigated differentially expressed genes after 

FHB challenge. FHB-susceptible and -resistant common wheat (Triticum aestivum) cultivars were challenged with the toxigenic fungus 

Fusarium graminearum and gene expression was analyzed using 61K Affymetrix wheat microarrays. We digitized trait specificity in the 

susceptible and resistant lines with and without the infection in order to facilitate subsequent data mining. We discovered various 

patterns of differential gene expression between susceptible and resistant lines in response to the infection. We performed association 

network analysis among genes in clusters significantly correlated with one or more quantitative trait loci known to contribute to 

Fusarium resistance. We found 11 interconnected hub genes responsive to FHB infection and significantly correlated with wheat 

resistance to FHB, among which two are predicted to encode a polygalacturonase-inhibiting protein (PGIP1). 
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I. INTRODUCTION 

Wheat is the crop with the largest production area, and the 
second in importance by production volume, supplying 19% of 
the total human calories [2]. The yield of wheat is severely 
limited by diseases caused by microbial pathogens. The total 
global potential and actual estimates on wheat crop losses to 
pathogens are 16% and 10%, respectively [19]. Besides, wheat 
quality is compromised by pathogen-derived toxins that are 
hazardous to animal and humans. One of the prevalent wheat 
diseases, Fusarium head blight (FHB), is caused by 
ascomycetous fungi of the genus Fusarium.  The most common 
Fusarium species in North America is F. graminearum [3].  

Fusarium graminearum is a filamentous fungus widely 
distributed on plants and soil. It produces toxic trichothecenes, 
which are potent inhibitors of peptidyl transferase and inhibit 
protein synthesis in many eukaryotes, including plants, humans 
and farm animals. Accordingly, most countries have legislation 
to protect consumers by setting a limit to the most prevalent 
Fusarium mycotoxins in wheat products. The most prevalent 
trichothecenes in Canadian wheat is deoxynivalenol (DON), 
also called vomitoxin. Mycotoxin-contaminated grain is sold at 
lower prices or is completely rejected. Fusarium head blight is 
responsible for estimated annual losses of $75M in Manitoba 
alone [31] and has caused losses of over $3B since 1990 in the 
USA [28]. 

Phytopathogenic fungi produce extracellular hydrolytic 
enzymes that degrade plant cell walls components to facilitate 
host invasion and pathogen dissemination [14]. Variations in 
the production of these hydrolytic enzymes may contribute to 
differences in virulence within and between Fusarium species. 
The action of pectinases result in modifications of the cell wall 
structure, an increased accessibility of cell wall components for 
degradation by other enzymes, cell lysis and plant tissue 
maceration. Polygalacturonase, a pectinase produced by F. 
graminearum and many other fungal pathogens, degrades 

polygalacturonan, a major component of the plant pectin 
network, by the hydrolysis of glycosidic bonds between 
galacturonic acid residues. Mechanisms of wheat resistance to 
fungal invasion include the inhibition of polygalacturonase to 
protect its cell wall integrity. 

Wheat resistance to FHB is categorized in five types [18]: 
resistance to initial infection (type I), resistance to spread (type 
II), resistance to DON accumulation (type III), resistance to 
kernel infection (type IV), and tolerance (type V). Waldron et 
al. [33] proposed a similar classification with five types of 
resistance, in a different order. Types I and II are consistent 
between these two classifications. These resistance types are 
inter-related; for example, type II resistance is influenced by 
DON production, while type I resistance is independent of the 
mycotoxins and more difficult to ascertain. In this study, we 
adopted the  system in [18]. 

Several FHB resistant wheat cultivars have been identified 
and a large number of quantitative trait loci (QTLs) conferring 
resistance to FHB in wheat have been discovered. Twenty-two 
chromosomal regions have been identified as contributing 
consistently to FHB resistance in multiple studies (reviewed in 
[5]). One of the most effective and best characterized sources 
of resistance against FHB is the Chinese variety Sumai 3 and 
its derivatives. These harbor a major QTL for type II resistance 
(up to 20-25% reduction of disease severity), named Fhb1, that 
has been mapped to chromosome 3BS as well as a minor QTL 
(Qfhs.ifa-5A) associated with type I resistance on chromosome 
5AS. QTLs in the same chromosomal regions of 3BS and 5AS 
have been detected in a range of FHB-resistant cultivars, 
including NuyBay. A minor QTL associated with type II 
resistance was identified in the Chinese variety Wuhan 1 on 
chromosome 2DL [29].  

Microarray technology has been successfully used in gene 
expression profiling studies to identify genes and pathways 
involved in mediating susceptibility or resistance to Fusarium 
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[7],[10],[34]. Numerical representation of experimental designs 
is commonly used in the statistical analysis of microarray data, 
generally as a matrix in which rows correspond to arrays and 
columns to treatments. The popular LIMMA software [26], for 
example, uses as input a design matrix containing linear model 
coefficients. In this study, we used a similar representation in 
which combinations of experimental factors were transformed 
into numerical vectors and used for subsequent differential 
expression and correlation analyses. This simple representation 
facilitated subsequent data analysis, in particular, the 
construction of mathematical and logical operations on 
combinations of experimental factors for the selection of 
differentially expressed genes.  

Canadian wheat production is impacted by diseases and 
pests and changing climatic conditions, and there is a growing 
need for wheat varieties that are more productive and resilient. 
To tackle this problem, Agriculture Agri-Food Canada 
(AAFC), National Research Council Canada (NRC), 
University of Saskatchewan, and Province of Saskatchewan 
joined forces and formed the Canadian Wheat Alliance with an 
11 year mandate aiming at the production of next generations 
of wheat varieties resilient under biotic and abiotic stresses. As 
part of this collective effort, we analyzed two microarray gene 
expression datasets. In the subsequent sections we describe the 
datasets, our data mining approach, results, and finally we 
discuss our findings. 

II. THE DATASETS 

In this study, two datasets were analyzed. The first dataset 
contains 3 spring wheat varieties inoculated with Fusarium 
graminearum: Roblin (very susceptible to FHB, from Canadian 
source), Wuhan (type II resistant, from Chinese source), and 
NuyBay (Type III resistant, from Japanese source) [21]. Wheat 
heads at mid-anthesis were point inoculated in two florets for 
each spikelet and all fully developed spikelets were inoculated 
on each head. Inoculated spikelets were sampled 1, 2 and 4 
days after inoculation. Two biological replicates were 
performed. Water injection was performed in the same way in 
control plants. The second dataset consists of a series of wheat 
lines, genetically related to cultivars Wuhan and NuyBay, 
produced by molecular assisted breeding for the presence or 
absence of specific QTLs. This series include one susceptible 
line (2-2890) and five resistant lines (2-2614, 2-2618, 2-2598, 
2-2543 and 2-2557) [22]. Each of these five resistant lines 
contains 1, 2, or 3 QTLs among 2DL, 3BS and 5AS, which are 
known to play a significant role in resistance to Fusarium. 
Inoculation and sampling procedures were similar to that in the 
first experiment, although in this case samples were taken 4 
days after inoculation, and 2 or 3 biological replicates were 
produced, depending on the line.  

The Affymetrix 61K GeneChip Wheat Genome Array 
(http://www.affymetrix.com/catalog/131517/AFFY/Wheat+Ge
nome+Array) was used in this study. This oligonucleotide 
microarray contains 61,290 probe sets representing 55,052 
transcripts for all 21 pairs of chromosomes in the hexaploid 
bread wheat genome (Triticum aestivum). Contig sequences 
represented on the chip were obtained from Affymetrix and 
aligned with wheat genes obtained from Ensemble Plants 
(version 22, http://plants.ensembl.org/Triticum_aestivum/Info/ 

Index). Contigs were also aligned to 33,326 Arabidopsis 
thaliana coding sequences (CDS) obtained from TAIR 
(version 10, http://www.arabidopsis.org/). The best BLAST 
hits were retrieved using OrthoPred (in-house software), using 
a threshold of 1e-04 on e-values [32]. A total of 44,734 best 
hits against 27,853 unique wheat genes and 32,836 best hits 
against 10,409 unique Arabidopsis genes were retained after 
this procedure. The association between Affy probe ID and 
UniGene from NCBI were updated, which resulted in 45,699 
associations mapping to 26,674 unique UniGenes.  Ensemble 
Plants (version 22) gene ontology association with wheat genes 
was analyzed for gene enrichment using the GOAL software 
[30]. 

For the microarray experiments, biological samples were 
processed in two experimental batches (first and second 
datasets mentioned above). Arrays were hybridized and 
washed according to the manufacturer’s specifications by the 
Functional Genomics Platform, McGill University and 
Genome Quebec Innovation Centre (Montreal, Canada). The 
raw and normalised data were deposited in NCBI’s Gene 
Expression Omnibus and are part of accession number 
GSE54556. The probe-level data for the profiling experiments 
were assembled using the Robust Multichip Analysis (RMA) 
[12] implemented in the software Acuity 4.0 (Molecular 
Devices, CA), with quantile normalization and summarization 
by median polish [19]. RMA normalization produced log2 
based output, which was used in subsequent analysis. 

III. THE APPROACH 

The biological problem was to identify differentially 
expressed genes between resistant and susceptible lines under 
Fusarium challenge versus control, and to discover marker 
genes for Fusarium resistance traits (types or QTLs) using 
microarray data. To reduce noise in the data, we selected a 
subset of genes within the linear range of the sigmoid pattern 
between mRNA concentration and fluorescence intensity [24], 
using Sigratio ≥ 2 (i.e. max[log2 ratio values] ≥ 2 for differential 
expression) and Sigsignal ≥ 8 (max[expression values] ≥ 8). 
Genes satisfying both conditions (Dif = Sigratio Sigsignal) were 
considered differentially expressed between wheat lines or 
between different conditions. After this procedure 2,532 and 
2,880 probe sets were retained in the first and second datasets, 
respectively.  

We digitized trait specificity of each wheat line to facilitate 
subsequent analysis. If a trait existed in a line, we labeled this 
line “1” for the given trait; otherwise it was labelled “0”.  For 
example, in the second dataset, line 2-2614 is Fusarium 
resistant and possesses all three QTLs; the digitization vector 
{Fg, Q2DL, Q3BS, Q5AS} is {1, 1, 1, 1} with infection by 
Fusarium, and {0, 1, 1, 1} without infection. The time factor 
(in days) was represented as is. In the first dataset, “FgT” 
denotes days after Fusarium inoculation, and “HT” days after 
water mock inoculation. The digitization vector for Wuhan 4 
days after Fusarium treatment {Fg, R2, F3, R, Time, FgT, HT} 
would thus be {1, 1, 0, 1, 4, 4, 0}. 

Trait specificity for the fold change (log2 ratio) data was 
digitized in a similar way. The ratio introduces additional 
complexity in trait specificity: trait specificity of both 



 
 

Fig. 1. Six clusters from the first dataset significantly correlated 
(p<0.001) with infection by Fusarium graminearum. Error bar = 
standard error. 

numerator and denominator had to be considered in the 
representation. For example, to compare a resistant line with 
the susceptible line after Fusarium infection, three factors must 
be considered (susceptibility, one or more QTLs related with 
resistance, and Fusarium infection). To simplify the 
representation in such case, selected traits were excluded from 
the fold change data using the following mathematical analogy:  

ax/ay = x/y  (1) 

For example, when considering differential expression between 
resistant line 2-2614 and the susceptible line 2-2890 after 
Fusarium infection, both numerator and denominator were Fg 
positive, and their digitization vector {Fg, Q2DL, Q3BS, 
Q5AS} were {1, 1, 1, 1} and {1, 0, 0, 0}, respectively. Passing 
the two vectors through an XOR gate, the resulting vector was 
{0, 1, 1, 1} as both had the same treatment and the purpose of 
differential expression analysis was to reveal the “difference” 
rather than the “similitudes”. This XOR gate exclusion model 
was denoted by “Fg_exc”. The effect of “Fg” was excluded in 
the resulted ratio-trait association. For the purpose of 
comparison and validation, we passed these two vectors 
through an OR gate and the resulting vector was {1, 1, 1, 1}.  
This OR gate inclusion model kept “Fg” in the resulted ratio-
trait association. For a trait in a ratio, a result of “1” from the 
XOR gate was analogous to equation 2.  

-x/y = -(x/y)  (2) 

We used the weighted correlation network analysis 

(WGCNA) R package [15] to generate a Topology Overlap 
Matrix (TOM). Based on value distribution, we used a soft 
threshold of 12 and generated TOM values from positive 
correlation (TOMpos) and from negative correlation (TOMneg) 
separately. The two matrices were merged as: 

TOM = (TOMpos + TOMneg)/2  (3) 

The TOM value remains between 0 and 1. The higher TOM 
value between a pair of genes meant better topology overlap 
(higher similarity). Thus, we used 1-TOM as a distance 
measure in hierarchical clustering.  

Clustering was based on the distance in pairwise topology 
overlap of gene expression profile (1-TOM) or on the distance-
in-shape [23] in gene expression profiles across lines and 
treatments between individual genes. When a cluster was 
identified, an eigenvector was generated based on expression 
values of all genes in the cluster. This eigenvector was then 
used as a representation of the cluster and a Pearson correlation 
analysis was performed between the eigenvector and the 
digitization vector for trait representation of respective wheat 
lines or samples. In addition, a Pearson correlation analysis 
was performed between the expression profile of each 
individual gene and the digitization. The WGCNA package 
was also used to generate gene association networks, which 
were visualized using Cytoscape [6]. 

IV. RESULTS 

From the first dataset, 22 clusters were identified through 
hierarchical clustering. Fig. 1 shows six clusters significantly 
correlated with infection by Fusarium graminearum over time 
(p<0.001). Clusters A, B, and C contain genes that were 
generally up-regulated by the infection. Over time, their 
expression level increased with infection, but generally 
decreased without infection. After infection, the slope of 
increase was steeper in the susceptible line Roblin than in the 
two resistant lines, Wuhan and NuyBay. Gene enrichment 
analysis revealed that these clusters were enriched in genes 
involved in plant defense related functions (Table 1). Genes in 
clusters D, E, and F have an opposite pattern and gene 
expression decreased over time with or without infection in all 

 

Table 1. Gene Ontology analysis of significant clusters from the first 
dataset. 

 

Cluster Size Enriched Gene Ontology

A

B 

C 

358

303

353

cinnamic acid biosynthetic process; L-phenylalanine catabolic process; ammonia-lyase 

activity; phenylpropanoid metabolic process; response to abscisic acid; response to 

ethylene; defense responses to fungus and to bacterium; negative regulation of defense 

response; plant-type hypersensitive response.

D

E

F 

74

37

28

pentose-phosphate shunt; photosynthesis light reaction; starch biosynthetic process; 

cellular glucan metabolic process; chloroplast thylakoid membrane; photosystem II 

assembly; photosynthetic electron transport in photosystem I. 

G 105

amidase activity; indoleacetamide hydrolase activity; heme binding; protein 

heterodimerization activity; acyl-CoA oxidase activity; acyl-CoA dehydrogenase activity; 

hydrolase activity, hydrolyzing O-glycosyl compounds; removal of superoxide radicals,  

auxin biosynthetic process.

H 134

response to salt stress; aspartic-type endopeptidase activity; glyoxalase III activity; lactate 

biosynthetic process; sterol binding; proteolysis; response to water deprivation, response 

to hydrogen peroxide; peroxidase activity; gibberellin biosynthetic process; protein 

heterodimerization activity.

I 15
glucuronoxylan metabolic process; xylan biosynthetic process; protein heterodimerization 

activity.

J 135

dolichyl-diphosphooligosaccharide-protein glycotransferase activity; hydrolyzing O-glycosyl 

compounds; small GTPase mediated signal transduction; xylan catabolic process; 

response to endoplasmic reticulum stress; defense response signaling pathway, 

resistance gene-independent; plant-type hypersensitive response; response to hydrogen 

peroxide; coumarin biosynthetic process; salicylic acid biosynthetic process.

K 43
inorganic diphosphatase activity; lipid transport; magnesium ion binding; defense response 

to fungus and bacterium.

L 87

protein heterodimerization activity; peroxidase activity; hydroxyethylthiazole kinase 

activity; terpene synthase activity; heme binding; fatty acid biosynthetic process; 

magnesium ion binding; metal ion binding.  



 

 
 

Fig. 2. Six clusters from the first dataset significantly (p < 10-10) 
and differentially expressed genes between Roblin, Wuhan, and 
Nuybay.  

three lines. When infected, the decrease was more profound 
throughout all three lines, particularly in the susceptible line 
Roblin. This pattern suggests that this group of genes may be 
involved in primary metabolic functions, which was confirmed 
by GO enrichment analysis (Table 1). 

Fig. 2 shows three mirror image pairs of clusters with genes 
differentially expressed between the wheat lines. Genes in 
clusters G and H were differentially expressed between the 
susceptible line and the two resistant lines. Genes in cluster G 
had higher expression in the susceptible line as compared to 
the resistant lines and were associated with oxidase, hydrolase, 
and dehydrogenase activities among others (Table 1). Genes in 
Cluster H had an opposite pattern and were associated with 
various stress response functions. Genes in clusters I and J 
were differentially expressed between Wuhan and the other 
two lines, the susceptible Roblin and resistant NuyBay. Genes 
in Cluster I appeared loosely associated with primary 
metabolism, while those in Cluster J were associated with plant 
defense against pathogens. Genes in clusters K and L showed 
differential expression patterns between NuyBay and the other 
two lines. Unlike the previously described pairs of clusters, 
there is no clear distinction in metabolic functions of genes in 
clusters K and L (Table 1). 

In the second dataset, 18 hierarchical clusters were 
identified. One cluster included 44% (1263 genes, Cluster M, 
Fig. 3) and another cluster 51% (1467 genes, Cluster N, Fig. 3) 
of the 2880 genes. The former contains 92% genes down-
regulated (p<0.05), while latter contains 99% genes up-

regulated (p<0.05) after Fusarium infection. The Pearson 
correlation analysis between expression of individual genes 
and the digitized trait information revealed similar results 
(Table 2). Another smaller cluster (19 genes, Cluster O, Fig. 3) 
contains 53% up-regulated genes (p<0.05) after Fusarium 
infection. Clustering results indicated that genes in 9 clusters 
were differentially expressed as an effect of the three QTLs, 
with numbers of genes ranging from 3 to 20 per cluster. 
Interestingly, all 1,466 genes positively correlated (p<0.05) 
with Fusarium infection were captured in two clusters (N and 
O). These two clusters contain 20 additional genes, of which, 
19 were moderately correlated (p<0.2) with Fusarium 
infection. Similarly, all 1,156 genes negatively correlated with 
Fusarium infection were captured in one cluster; among the 
additional 107 genes in that cluster, 88 were moderately 
correlated (p<0.2) with Fusarium infection (Fig. 3).  

Gene ontology enrichment analysis [30] revealed that genes 
down-regulated after Fusarium infection are predicted to 
mainly contribute toward growth and other primary metabolic 

 

 
 

Fig. 3. Three clusters from the second dataset significantly 
correlated with Fusarium infection. 

Table 2. Number of differentially expressed genes under 
Fusarium infection from the second dataset 

 

Analysis Direction Fg Q2DL Q3BS Q5AS

Positive 1466 44 30 32

Negative 1156 2 6 7

Up 1467

19

10

10

3

20

16

3

14

6

20

Down 1263 9 7

Positive 

and Up

1466 34 24 14

Negative 

and Down
1156 0 6 5

Pearson 

correlation

Clustering

Joint

 












