
Publisher’s version  /   Version de l'éditeur: 

Conference on Computational Intelligence in Bioinformatics and Computational 
Biology, pp. 1-9, 2015-08-15

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. 

https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la 

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez 

pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at 

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the 

first page of the publication for their contact information. 

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / 

La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version 

acceptée du manuscrit ou la version de l’éditeur.

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien 

DOI ci-dessous.

https://doi.org/10.1109/CIBCB.2015.7300304

Access and use of this website and the material on it  are subject to the Terms and Conditions set forth at

Digitization of trait representation in microarray data analysis of wheat 

infected by fusarium graminearum
Pan, Youlian; Ouellet, Thérèse; Phan, Sieu; Tchagang, Alain; Fauteux, 
François; Tulpan, Dan

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:
https://nrc-publications.canada.ca/eng/view/object/?id=d693562c-2969-4043-8478-aa78a3c142ba

https://publications-cnrc.canada.ca/fra/voir/objet/?id=d693562c-2969-4043-8478-aa78a3c142ba



Digitization of Trait Representation in Microarray Data 
Analysis of Wheat Infected by Fusarium graminearum 

 
Youlian Pan1*, Thérèse Ouellet2*, Sieu Phan1, Alain Tchagang1, François Fauteux1, Dan Tulpan3  

 
1Information and Communications Technologies, NRC, 1200 Montreal Road, Ottawa, ON, K1A0R6 Canada  

2Eastern Cereal and Oilseed Research Centre, AAFC, 960 Carling Ave, Ottawa, ON, K1A0C6 Canada  
3Information and Communications Technologies, NRC, 100 des Aboiteaux Street, Moncton, NB, E1A7R1 Canada 

 
Fusarium head blight (FHB) limits wheat yield and compromises grain quality. We investigated differentially expressed genes after 

FHB challenge. FHB-susceptible and -resistant common wheat (Triticum aestivum) cultivars were challenged with the toxigenic fungus 

Fusarium graminearum and gene expression was analyzed using 61K Affymetrix wheat microarrays. We digitized trait specificity in the 

susceptible and resistant lines with and without the infection in order to facilitate subsequent data mining. We discovered various 

patterns of differential gene expression between susceptible and resistant lines in response to the infection. We performed association 

network analysis among genes in clusters significantly correlated with one or more quantitative trait loci known to contribute to 

Fusarium resistance. We found 11 interconnected hub genes responsive to FHB infection and significantly correlated with wheat 

resistance to FHB, among which two are predicted to encode a polygalacturonase-inhibiting protein (PGIP1). 

Keywords— microarray, digitization, Fusarium head blight, wheat, disease resistance 

I. INTRODUCTION 

Wheat is the crop with the largest production area, and the 
second in importance by production volume, supplying 19% of 
the total human calories [2]. The yield of wheat is severely 
limited by diseases caused by microbial pathogens. The total 
global potential and actual estimates on wheat crop losses to 
pathogens are 16% and 10%, respectively [19]. Besides, wheat 
quality is compromised by pathogen-derived toxins that are 
hazardous to animal and humans. One of the prevalent wheat 
diseases, Fusarium head blight (FHB), is caused by 
ascomycetous fungi of the genus Fusarium.  The most common 
Fusarium species in North America is F. graminearum [3].  

Fusarium graminearum is a filamentous fungus widely 
distributed on plants and soil. It produces toxic trichothecenes, 
which are potent inhibitors of peptidyl transferase and inhibit 
protein synthesis in many eukaryotes, including plants, humans 
and farm animals. Accordingly, most countries have legislation 
to protect consumers by setting a limit to the most prevalent 
Fusarium mycotoxins in wheat products. The most prevalent 
trichothecenes in Canadian wheat is deoxynivalenol (DON), 
also called vomitoxin. Mycotoxin-contaminated grain is sold at 
lower prices or is completely rejected. Fusarium head blight is 
responsible for estimated annual losses of $75M in Manitoba 
alone [31] and has caused losses of over $3B since 1990 in the 
USA [28]. 

Phytopathogenic fungi produce extracellular hydrolytic 
enzymes that degrade plant cell walls components to facilitate 
host invasion and pathogen dissemination [14]. Variations in 
the production of these hydrolytic enzymes may contribute to 
differences in virulence within and between Fusarium species. 
The action of pectinases result in modifications of the cell wall 
structure, an increased accessibility of cell wall components for 
degradation by other enzymes, cell lysis and plant tissue 
maceration. Polygalacturonase, a pectinase produced by F. 
graminearum and many other fungal pathogens, degrades 

polygalacturonan, a major component of the plant pectin 
network, by the hydrolysis of glycosidic bonds between 
galacturonic acid residues. Mechanisms of wheat resistance to 
fungal invasion include the inhibition of polygalacturonase to 
protect its cell wall integrity. 

Wheat resistance to FHB is categorized in five types [18]: 
resistance to initial infection (type I), resistance to spread (type 
II), resistance to DON accumulation (type III), resistance to 
kernel infection (type IV), and tolerance (type V). Waldron et 
al. [33] proposed a similar classification with five types of 
resistance, in a different order. Types I and II are consistent 
between these two classifications. These resistance types are 
inter-related; for example, type II resistance is influenced by 
DON production, while type I resistance is independent of the 
mycotoxins and more difficult to ascertain. In this study, we 
adopted the  system in [18]. 

Several FHB resistant wheat cultivars have been identified 
and a large number of quantitative trait loci (QTLs) conferring 
resistance to FHB in wheat have been discovered. Twenty-two 
chromosomal regions have been identified as contributing 
consistently to FHB resistance in multiple studies (reviewed in 
[5]). One of the most effective and best characterized sources 
of resistance against FHB is the Chinese variety Sumai 3 and 
its derivatives. These harbor a major QTL for type II resistance 
(up to 20-25% reduction of disease severity), named Fhb1, that 
has been mapped to chromosome 3BS as well as a minor QTL 
(Qfhs.ifa-5A) associated with type I resistance on chromosome 
5AS. QTLs in the same chromosomal regions of 3BS and 5AS 
have been detected in a range of FHB-resistant cultivars, 
including NuyBay. A minor QTL associated with type II 
resistance was identified in the Chinese variety Wuhan 1 on 
chromosome 2DL [29].  

Microarray technology has been successfully used in gene 
expression profiling studies to identify genes and pathways 
involved in mediating susceptibility or resistance to Fusarium 
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[7],[10],[34]. Numerical representation of experimental designs 
is commonly used in the statistical analysis of microarray data, 
generally as a matrix in which rows correspond to arrays and 
columns to treatments. The popular LIMMA software [26], for 
example, uses as input a design matrix containing linear model 
coefficients. In this study, we used a similar representation in 
which combinations of experimental factors were transformed 
into numerical vectors and used for subsequent differential 
expression and correlation analyses. This simple representation 
facilitated subsequent data analysis, in particular, the 
construction of mathematical and logical operations on 
combinations of experimental factors for the selection of 
differentially expressed genes.  

Canadian wheat production is impacted by diseases and 
pests and changing climatic conditions, and there is a growing 
need for wheat varieties that are more productive and resilient. 
To tackle this problem, Agriculture Agri-Food Canada 
(AAFC), National Research Council Canada (NRC), 
University of Saskatchewan, and Province of Saskatchewan 
joined forces and formed the Canadian Wheat Alliance with an 
11 year mandate aiming at the production of next generations 
of wheat varieties resilient under biotic and abiotic stresses. As 
part of this collective effort, we analyzed two microarray gene 
expression datasets. In the subsequent sections we describe the 
datasets, our data mining approach, results, and finally we 
discuss our findings. 

II. THE DATASETS 

In this study, two datasets were analyzed. The first dataset 
contains 3 spring wheat varieties inoculated with Fusarium 
graminearum: Roblin (very susceptible to FHB, from Canadian 
source), Wuhan (type II resistant, from Chinese source), and 
NuyBay (Type III resistant, from Japanese source) [21]. Wheat 
heads at mid-anthesis were point inoculated in two florets for 
each spikelet and all fully developed spikelets were inoculated 
on each head. Inoculated spikelets were sampled 1, 2 and 4 
days after inoculation. Two biological replicates were 
performed. Water injection was performed in the same way in 
control plants. The second dataset consists of a series of wheat 
lines, genetically related to cultivars Wuhan and NuyBay, 
produced by molecular assisted breeding for the presence or 
absence of specific QTLs. This series include one susceptible 
line (2-2890) and five resistant lines (2-2614, 2-2618, 2-2598, 
2-2543 and 2-2557) [22]. Each of these five resistant lines 
contains 1, 2, or 3 QTLs among 2DL, 3BS and 5AS, which are 
known to play a significant role in resistance to Fusarium. 
Inoculation and sampling procedures were similar to that in the 
first experiment, although in this case samples were taken 4 
days after inoculation, and 2 or 3 biological replicates were 
produced, depending on the line.  

The Affymetrix 61K GeneChip Wheat Genome Array 
(http://www.affymetrix.com/catalog/131517/AFFY/Wheat+Ge
nome+Array) was used in this study. This oligonucleotide 
microarray contains 61,290 probe sets representing 55,052 
transcripts for all 21 pairs of chromosomes in the hexaploid 
bread wheat genome (Triticum aestivum). Contig sequences 
represented on the chip were obtained from Affymetrix and 
aligned with wheat genes obtained from Ensemble Plants 
(version 22, http://plants.ensembl.org/Triticum_aestivum/Info/ 

Index). Contigs were also aligned to 33,326 Arabidopsis 
thaliana coding sequences (CDS) obtained from TAIR 
(version 10, http://www.arabidopsis.org/). The best BLAST 
hits were retrieved using OrthoPred (in-house software), using 
a threshold of 1e-04 on e-values [32]. A total of 44,734 best 
hits against 27,853 unique wheat genes and 32,836 best hits 
against 10,409 unique Arabidopsis genes were retained after 
this procedure. The association between Affy probe ID and 
UniGene from NCBI were updated, which resulted in 45,699 
associations mapping to 26,674 unique UniGenes.  Ensemble 
Plants (version 22) gene ontology association with wheat genes 
was analyzed for gene enrichment using the GOAL software 
[30]. 

For the microarray experiments, biological samples were 
processed in two experimental batches (first and second 
datasets mentioned above). Arrays were hybridized and 
washed according to the manufacturer’s specifications by the 
Functional Genomics Platform, McGill University and 
Genome Quebec Innovation Centre (Montreal, Canada). The 
raw and normalised data were deposited in NCBI’s Gene 
Expression Omnibus and are part of accession number 
GSE54556. The probe-level data for the profiling experiments 
were assembled using the Robust Multichip Analysis (RMA) 
[12] implemented in the software Acuity 4.0 (Molecular 
Devices, CA), with quantile normalization and summarization 
by median polish [19]. RMA normalization produced log2 
based output, which was used in subsequent analysis. 

III. THE APPROACH 

The biological problem was to identify differentially 
expressed genes between resistant and susceptible lines under 
Fusarium challenge versus control, and to discover marker 
genes for Fusarium resistance traits (types or QTLs) using 
microarray data. To reduce noise in the data, we selected a 
subset of genes within the linear range of the sigmoid pattern 
between mRNA concentration and fluorescence intensity [24], 
using Sigratio ≥ 2 (i.e. max[log2 ratio values] ≥ 2 for differential 
expression) and Sigsignal ≥ 8 (max[expression values] ≥ 8). 
Genes satisfying both conditions (Dif = Sigratio Sigsignal) were 
considered differentially expressed between wheat lines or 
between different conditions. After this procedure 2,532 and 
2,880 probe sets were retained in the first and second datasets, 
respectively.  

We digitized trait specificity of each wheat line to facilitate 
subsequent analysis. If a trait existed in a line, we labeled this 
line “1” for the given trait; otherwise it was labelled “0”.  For 
example, in the second dataset, line 2-2614 is Fusarium 
resistant and possesses all three QTLs; the digitization vector 
{Fg, Q2DL, Q3BS, Q5AS} is {1, 1, 1, 1} with infection by 
Fusarium, and {0, 1, 1, 1} without infection. The time factor 
(in days) was represented as is. In the first dataset, “FgT” 
denotes days after Fusarium inoculation, and “HT” days after 
water mock inoculation. The digitization vector for Wuhan 4 
days after Fusarium treatment {Fg, R2, F3, R, Time, FgT, HT} 
would thus be {1, 1, 0, 1, 4, 4, 0}. 

Trait specificity for the fold change (log2 ratio) data was 
digitized in a similar way. The ratio introduces additional 
complexity in trait specificity: trait specificity of both 



 
 

Fig. 1. Six clusters from the first dataset significantly correlated 
(p<0.001) with infection by Fusarium graminearum. Error bar = 
standard error. 

numerator and denominator had to be considered in the 
representation. For example, to compare a resistant line with 
the susceptible line after Fusarium infection, three factors must 
be considered (susceptibility, one or more QTLs related with 
resistance, and Fusarium infection). To simplify the 
representation in such case, selected traits were excluded from 
the fold change data using the following mathematical analogy:  

ax/ay = x/y  (1) 

For example, when considering differential expression between 
resistant line 2-2614 and the susceptible line 2-2890 after 
Fusarium infection, both numerator and denominator were Fg 
positive, and their digitization vector {Fg, Q2DL, Q3BS, 
Q5AS} were {1, 1, 1, 1} and {1, 0, 0, 0}, respectively. Passing 
the two vectors through an XOR gate, the resulting vector was 
{0, 1, 1, 1} as both had the same treatment and the purpose of 
differential expression analysis was to reveal the “difference” 
rather than the “similitudes”. This XOR gate exclusion model 
was denoted by “Fg_exc”. The effect of “Fg” was excluded in 
the resulted ratio-trait association. For the purpose of 
comparison and validation, we passed these two vectors 
through an OR gate and the resulting vector was {1, 1, 1, 1}.  
This OR gate inclusion model kept “Fg” in the resulted ratio-
trait association. For a trait in a ratio, a result of “1” from the 
XOR gate was analogous to equation 2.  

-x/y = -(x/y)  (2) 

We used the weighted correlation network analysis 

(WGCNA) R package [15] to generate a Topology Overlap 
Matrix (TOM). Based on value distribution, we used a soft 
threshold of 12 and generated TOM values from positive 
correlation (TOMpos) and from negative correlation (TOMneg) 
separately. The two matrices were merged as: 

TOM = (TOMpos + TOMneg)/2  (3) 

The TOM value remains between 0 and 1. The higher TOM 
value between a pair of genes meant better topology overlap 
(higher similarity). Thus, we used 1-TOM as a distance 
measure in hierarchical clustering.  

Clustering was based on the distance in pairwise topology 
overlap of gene expression profile (1-TOM) or on the distance-
in-shape [23] in gene expression profiles across lines and 
treatments between individual genes. When a cluster was 
identified, an eigenvector was generated based on expression 
values of all genes in the cluster. This eigenvector was then 
used as a representation of the cluster and a Pearson correlation 
analysis was performed between the eigenvector and the 
digitization vector for trait representation of respective wheat 
lines or samples. In addition, a Pearson correlation analysis 
was performed between the expression profile of each 
individual gene and the digitization. The WGCNA package 
was also used to generate gene association networks, which 
were visualized using Cytoscape [6]. 

IV. RESULTS 

From the first dataset, 22 clusters were identified through 
hierarchical clustering. Fig. 1 shows six clusters significantly 
correlated with infection by Fusarium graminearum over time 
(p<0.001). Clusters A, B, and C contain genes that were 
generally up-regulated by the infection. Over time, their 
expression level increased with infection, but generally 
decreased without infection. After infection, the slope of 
increase was steeper in the susceptible line Roblin than in the 
two resistant lines, Wuhan and NuyBay. Gene enrichment 
analysis revealed that these clusters were enriched in genes 
involved in plant defense related functions (Table 1). Genes in 
clusters D, E, and F have an opposite pattern and gene 
expression decreased over time with or without infection in all 

 

Table 1. Gene Ontology analysis of significant clusters from the first 
dataset. 

 

Cluster Size Enriched Gene Ontology

A

B 

C 

358

303

353

cinnamic acid biosynthetic process; L-phenylalanine catabolic process; ammonia-lyase 

activity; phenylpropanoid metabolic process; response to abscisic acid; response to 

ethylene; defense responses to fungus and to bacterium; negative regulation of defense 

response; plant-type hypersensitive response.

D

E

F 

74

37

28

pentose-phosphate shunt; photosynthesis light reaction; starch biosynthetic process; 

cellular glucan metabolic process; chloroplast thylakoid membrane; photosystem II 

assembly; photosynthetic electron transport in photosystem I. 

G 105

amidase activity; indoleacetamide hydrolase activity; heme binding; protein 

heterodimerization activity; acyl-CoA oxidase activity; acyl-CoA dehydrogenase activity; 

hydrolase activity, hydrolyzing O-glycosyl compounds; removal of superoxide radicals,  

auxin biosynthetic process.

H 134

response to salt stress; aspartic-type endopeptidase activity; glyoxalase III activity; lactate 

biosynthetic process; sterol binding; proteolysis; response to water deprivation, response 

to hydrogen peroxide; peroxidase activity; gibberellin biosynthetic process; protein 

heterodimerization activity.

I 15
glucuronoxylan metabolic process; xylan biosynthetic process; protein heterodimerization 

activity.

J 135

dolichyl-diphosphooligosaccharide-protein glycotransferase activity; hydrolyzing O-glycosyl 

compounds; small GTPase mediated signal transduction; xylan catabolic process; 

response to endoplasmic reticulum stress; defense response signaling pathway, 

resistance gene-independent; plant-type hypersensitive response; response to hydrogen 

peroxide; coumarin biosynthetic process; salicylic acid biosynthetic process.

K 43
inorganic diphosphatase activity; lipid transport; magnesium ion binding; defense response 

to fungus and bacterium.

L 87

protein heterodimerization activity; peroxidase activity; hydroxyethylthiazole kinase 

activity; terpene synthase activity; heme binding; fatty acid biosynthetic process; 

magnesium ion binding; metal ion binding.  



 

 
 

Fig. 2. Six clusters from the first dataset significantly (p < 10-10) 
and differentially expressed genes between Roblin, Wuhan, and 
Nuybay.  

three lines. When infected, the decrease was more profound 
throughout all three lines, particularly in the susceptible line 
Roblin. This pattern suggests that this group of genes may be 
involved in primary metabolic functions, which was confirmed 
by GO enrichment analysis (Table 1). 

Fig. 2 shows three mirror image pairs of clusters with genes 
differentially expressed between the wheat lines. Genes in 
clusters G and H were differentially expressed between the 
susceptible line and the two resistant lines. Genes in cluster G 
had higher expression in the susceptible line as compared to 
the resistant lines and were associated with oxidase, hydrolase, 
and dehydrogenase activities among others (Table 1). Genes in 
Cluster H had an opposite pattern and were associated with 
various stress response functions. Genes in clusters I and J 
were differentially expressed between Wuhan and the other 
two lines, the susceptible Roblin and resistant NuyBay. Genes 
in Cluster I appeared loosely associated with primary 
metabolism, while those in Cluster J were associated with plant 
defense against pathogens. Genes in clusters K and L showed 
differential expression patterns between NuyBay and the other 
two lines. Unlike the previously described pairs of clusters, 
there is no clear distinction in metabolic functions of genes in 
clusters K and L (Table 1). 

In the second dataset, 18 hierarchical clusters were 
identified. One cluster included 44% (1263 genes, Cluster M, 
Fig. 3) and another cluster 51% (1467 genes, Cluster N, Fig. 3) 
of the 2880 genes. The former contains 92% genes down-
regulated (p<0.05), while latter contains 99% genes up-

regulated (p<0.05) after Fusarium infection. The Pearson 
correlation analysis between expression of individual genes 
and the digitized trait information revealed similar results 
(Table 2). Another smaller cluster (19 genes, Cluster O, Fig. 3) 
contains 53% up-regulated genes (p<0.05) after Fusarium 
infection. Clustering results indicated that genes in 9 clusters 
were differentially expressed as an effect of the three QTLs, 
with numbers of genes ranging from 3 to 20 per cluster. 
Interestingly, all 1,466 genes positively correlated (p<0.05) 
with Fusarium infection were captured in two clusters (N and 
O). These two clusters contain 20 additional genes, of which, 
19 were moderately correlated (p<0.2) with Fusarium 
infection. Similarly, all 1,156 genes negatively correlated with 
Fusarium infection were captured in one cluster; among the 
additional 107 genes in that cluster, 88 were moderately 
correlated (p<0.2) with Fusarium infection (Fig. 3).  

Gene ontology enrichment analysis [30] revealed that genes 
down-regulated after Fusarium infection are predicted to 
mainly contribute toward growth and other primary metabolic 

 

 
 

Fig. 3. Three clusters from the second dataset significantly 
correlated with Fusarium infection. 

Table 2. Number of differentially expressed genes under 
Fusarium infection from the second dataset 

 

Analysis Direction Fg Q2DL Q3BS Q5AS

Positive 1466 44 30 32

Negative 1156 2 6 7

Up 1467

19

10

10

3

20

16

3

14

6

20

Down 1263 9 7

Positive 

and Up

1466 34 24 14

Negative 

and Down
1156 0 6 5

Pearson 

correlation

Clustering

Joint

 



functions, such as photosynthesis and chromatin assembly, 
while those up-regulated are predicted to mainly contribute to 
stress response and detoxification functions, including defense 
response to fungus and bacteria, toxin catabolic process, 
abscisic acid glucosyltransferase activity, responses to salicylic 
acid, jasmonic acid, abscisic acid, ethylene, gibberellin, 
cyclopentenone, and chitin. This observation is consistent with 
the result from the first dataset ( Fig. 1). 

In order to verify the similarity among genes in the same 
clusters, we took two additional approaches. First, we used 
self-organized maps (SOM) in combination with difference-in-
shape as a distance measure [23] to independently cluster the 
second dataset using various parameter settings. Clustering 
stability [8] was used for the final cluster selection. Secondly, 
we analyzed the fold change data based on the extent of 
differential expression between the lines and between the 
treatments. When a line was infected and had a control (lines 
2-2890 and 2-2614), we took the log ratio as a measure of 
differential expression between the infected plants and the 
controls. Each of the resistant lines was compared with the 
susceptible line (2-2890) and this revealed the effect of one or 
more QTLs as compared with the susceptible line under 
Fusarium infection. In this analysis, we used both the 
exclusion and the inclusion models in trait representation . 

Now, we take a closer look at cluster P produced by 
hierarchical clustering (Fig 4 & 5) to demonstrate the effect of 

SOM. This cluster had 20 probesets representing 16 genes and 
was highly correlated with QTLs 2DL (p<0.02) and 5AS 
(p<0.05), and moderately with 3BS (p<0.1). This cluster could 
be further divided into two or three sub-clusters based on SOM 
parameter settings of 5x6 and 6x6, respectively. However, with 
slightly reduced granularity, the other five parameter settings 
collectively yielded an intact cluster (Fig. 4). Based on the 
stability principle [8], we considered this set of genes as one 
cluster. Gene expression in this cluster was up-regulated (FC ≥ 
2) in the resistant lines as compared to the susceptible line, but 
down-regulated by Fusarium infection in both the susceptible 

 
 

Fig. 4. SOM clustering result for cluster P generated from 
hierarchical clustering process. 

 

 
 

Fig. 5. Gene expression profile of the two clusters significantly 
correlated with one or more QTLs. Cluster P is the same as Fig. 4. 

 
 

Fig. 6. Association network of genes in 9 clusters that are significantly 
correlated with one or more QTLs. The size of the node corresponds 
to the degree of the node. The 11 outstanding hub genes are cited in 
the text. 

 

 
 

Fig. 7. Vann diagrams demonstrate the consistency between 
expression data and fold change differential expression data between 
infected and uninfected wheat. The exclusion model of digitizing trait 
representation was used for analyzing the fold change data.  A: 
Pearson correlation, B: Hierarchical clustering. 



line and the resistant line. All three QTLs appeared to 
contribute to resistance against the infection. Gene expression 
appeared to be less down-regulated in wheat lines having a 
higher number of QTLs (Fig. 5).  

The gene expression profile of cluster P has a similar 
implication as that of clusters D, E, F from the first dataset in 
primary metabolism (Fig. 1 and Table 1). Examples of 
predicted function for genes in this cluster include the early 
light-induced protein (ELIP, Traes_4DL_458D01B961) 
involved in photosynthesis and photoprotection (Table 3), and 
the DNA-directed RNA polymerase II subunit D (NRPB4, 
Traes_6AS_281AF94BC) involved in RNA splicing, mRNA 
export from nucleus in response to heat stress, nuclear-
transcribed mRNA catabolic process, etc. This cluster is also 
enriched with genes involved in lipase/hydrolase activities. 
Genes of this class include a putative adenine nucleotide alpha 
hydrolases-like protein (Traes_5DS_BE567D7F1), involved in 
hydrolase activity in response to stress (specifically to 
molecules of fungal origin), and putative alpha/beta-hydrolases 
superfamily protein (Traes_1AL_ADC801BEB), and GDSL-
like lipase/acylhydrolase (Traes_7DL_F50060F73), which is 
involved in lipid metabolic processes.  

Gene association network analysis indicated that genes in 
cluster P were best connected among the 9 clusters that were 
significantly correlated with one or more of the three resistant 

QTLs; These 9 clusters collectively have 95 probesets 
representing 61 wheat genes. Genes in cluster P were 
associated with 24 genes on average in the network. Among 
the top 10 best connected hub probesets in the network, 6 
belonged to this cluster. They include two putative leucine-rich 
repeat (LRR) family proteins (Traes_2BS_3F8D903181 and 
Traes_2AS_28CFE9EB7, FORL1, Fig. 6, Table 3). Their 
common rice ortholog is a polygalacturonase inhibitor 1 
precursor (PGIP1, LOC_Os07g38130), which has inhibitory 
activity against fungal polygalacturonase and is an important 
factor in regulation of floral organs [13]. Other hub genes 
include the putative ELIP (Traes_4DL_458D01B961), the two 
hydrolases (Traes_5DS_BE567D7F1 and Traes_1AL_ 
ADC801BEB) the lipase (Traes_7DL_F50060F73), described 
above; ELIP is among the top 10 best connected hub probesets.  

The remaining 4 of the top 10 best connected hub 
probesets, representing three genes, were in cluster R (Fig. 5), 
which was highly correlated with QTL 3BS (p < 0.02) and 
moderately correlated with QTLs 2DL (p < 0.1) and 5AS (p < 
0.15). These genes include a putative SC35-like splicing factor 
30A (SCL30A, Traes_2AS_FEB84B3FC) and two potential 
aquaporin proteins (Traes_6AL_23B31796F, Traes_2DL_ 
039832D76). These two aquaporin-coding genes have a 
common ortholog in Arabidopsis (AT3G53420) that is 
involved in the response to various stress factors (Table 3). 
Other important hub genes in the cluster include putative 

 
 
Table 3. Interesting network hug genes in clusters P and R from the second datasets and their annotations. 

 

Rice* Arabidopsis

Ta.26997.1.S1_at Traes_4DL_458D01B96 Os01g0246400 AT3G22840 ELIP located in chloroplast thylakoid membrane, photosystems I and II and involves in 

anthocyanin-containing compound biosynthetic process, cellular response to UV-A, 

UV-B, blue light, red light, far red light, high light intensity, heat, cold, karrikin (plant 

growth regulators) and sucrose; photosynthesis, photoprotection, regulation of 

chlorophyll biosynthetic process and seed germination, flavonoid biosynthetic 

process among others

Ta.19491.1.S1_at Traes_5DS_BE567D7F1Os12g0552500 AT2G47710 adenine 

nucleotide 

alpha 

hydrolases-

like protein

appears in golgi apparatus, plasma membrane and vacuole, and involves in 

hydrolase activity in response to stress, specifically to molecule of fungal origin

Ta.7740.1.A1_at 

Ta.7740.1.A1_x_at 

Traes_1AL_ADC801BEBOs05g0574100 AT2G42690 alpha/beta-

Hydrolases 

superfamily 

protein

appears in chroloplast and cytoplasm and involved in UV protection, carotenoid 

biosynthetic process, cellular response to phosphate starvation, cysteine 

biosynthetic process, galactolipid biosynthetic process, glucosinolate biosynthetic 

process, lipid catabolic process, response to fructose, response to salt stress, 

water transport; have molecular function of phosphatidylcholine 1-acylhydrolase 

activity, triglyceride lipase activity.

Ta.9671.3.S1_a_at Traes_7DL_F50060F73 N/A AT3G50400 GDSL-like 

lipase

located in endomembrane system, involves in the lipid metabolic process, 

hydrolase activity, acting on ester bonds, carboxylesterase activity

Ta.14588.1.S1_x_at Traes_2BS_3F8D90318

Ta.14588.2.S1_x_at Traes_2AS_28CFE9EB7

Ta.9544.2.S1_a_at Traes_2AS_FEB84B3FC Os07g0633200 AT3G13570 SCL30A located in  spliceosomal complex and involves in RNA splicing, transcription 

regulation, post-translational protein modification, production of miRNAs involved in 

gene silencing by miRNA, production of siRNA involved in RNA interference

Ta.28728.1.S1_at 

Ta.28728.1.S1_x_at

Ta.28728.2.S1_x_at Traes_2DL_039832D76 Os04g0521100

Ta.5818.1.S1_a_at

Ta.5818.1.S1_at

Ta.5818.3.S1_x_at

TaAffx.2456.2.S1_s_at Traes_1DL_946661F7A Os05g0364600 AT1G09140 SRp30 alternative splicing regulator, nucleic acid binding

AT1G33670

located in chloroplast and response to abscisic acid, cadmium ion, cold and salt 

stresses, and temperature stimulus

Affy ID Wheat Gene gene AnnotationOrtholog

OS07G0568700 PGIP1 an inhibitor of fungal polygalacturonase and an important factor for plant resistance 

to phytopathogenic fungi

Traes_6AL_23B31796F Os02g0629200 AT3G53420 aquaporin 

protein

AT4G24130Os09g0491756Traes_5DL_EDD32BD0B U2AF
35 Splicing factor U2AF 35 kDa subunit (U2 auxiliary factor 35 kDa subunit) (U2 snRNP 

auxiliary factor small subunit) located in nucleus,  RNA binding, nucleic acid 

binding, metal ion binding.

 
* Oryza sativa Japonica 
The selected genes in this table are key hub genes in the association network (Fig. 6) and extensively described in the text. 



splicing factor U2AF 35 kDa subunit (Traes_5DL_ 
EDD32BD0B) and alternative splicing regulator SRp30 
(Traes_1DL_946661F7A), suggesting that this cluster may be 
important in RNA splicing and alternative splicing. 

From the second approach, we found that the exclusion 
model of trait representation (Equation 1 & 2) outperformed 
the inclusion model. For example, the effect of Fusarium 
infection was not well revealed by the inclusion model (Fg). 
Only a small cluster of 12 probesets was significantly 
correlated with the infection. Of the 12 probesets, only 7 were 
also grouped by earlier clustering based on expression value 

and 5 of the 7 were correlated with Fusarium infection. The 
exclusion model (Fg_exe) allowed the detection of 3 clusters 
with a total of 1,338 probesets negatively correlated with 
Fusarium infection, and 3 clusters with a total of 1,474 
probesets positively correlated with the infection. This result is 
consistent with earlier clustering results (Fig. 7). Nevertheless, 
neither the exclusion nor the inclusion models worked well for 
QTL 2DL. The main cause to this problem is related with the 
fact that QTL 2DL is present in all three resistant lines. 
Q2DL_exe is exactly the negation of Fg_exe (Fig. 8). In this 
case, the effect of Fusarium infection in the ratio data over-
shadowed the effect 2DL and neither model of digitization of 
trait representation could be directly applied to ratio data 
involved with this QTL.   

Fig. 9 shows the expression profiles of genes that were 
significantly correlated with the existence of a QTL, both in the 
expression data and fold change data using the exclusion 
model. These profiles were similar among the three QTLs. 
Among the positively correlated genes, Fusarium infection 
appeared to moderately suppress expression of these groups of 
genes, both in the susceptible and resistant lines. It is 
interesting to note that QTL 2DL alone (Line 2-2618) had no 
effect on genes significantly correlated with 3BS. 

V. DISCUSSION 

Our study shows that the digitization of trait specificity was 
instrumental for downstream analysis of gene expression in 
wheat challenged with Fusarium infection. This enabled 
discovery of informative patterns linked with infection by 
Fusarium graminearum, and identification of distinct patterns 
in resistant lines. The exclusion model, inferred from its analog 
in mathematics, outperformed the inclusion model. The 
numerical representation of wheat traits allowed the application 
of mathematical and logical operations to identify differentially 
expressed genes linked with resistance to Fusarium infection. 
With this approach, we discovered distinct clusters of genes 
contributing to the informative patterns, which were predicted 
to be related, either directly or indirectly, with Fusarium 
infection and resistant types or QTLs. Pattern recognition and 
cluster discovery are important steps toward discovering genes 
associated with certain phenotypic traits. Most phenotypic 
traits are polygenic (contributed by more than one gene). Yet, 
genes present in a cluster highly correlated with a given 
phenotypic trait do not necessarily contribute to this trait. For 
example, each of the clusters M and N from the second dataset 
has over 1000 genes, and only a small subset of genes from 
each cluster are probably directly related with Fusarium 
infection. Other differentially expressed genes can be related to 
plant physiological state because of a decline in overall growth 
and photosynthesis, or in response to wounds caused by the 
infection, or changes in the overall plant immune system. 
Therefore, subsequent gene ontology analysis, network 
analysis and other systems biology approaches may be 
necessary to discover functional association between genes and 
phenotypic traits, and association among the genes.  

In this study, we performed a gene association network 
analysis of genes in the 9 clusters that were significantly 
correlated with one or more of the three resistant QTLs. 
Specifically, we focused on 11 inter-connected hub genes from 

 
H2614 Fg2614 Fg2618 Fg2598 Fg2543 Fg2557

Fg 1 1 0 1 1 1 1 1

Fg_exc 1 1 0 0 0 0 0 0

Q2DL 0 1 1 1 1 1 1 1

Q3BS 0 1 1 1 0 1 1 0

Q5AS 0 1 1 1 0 0 0 1

Q2DL_exc 0 0 1 1 1 1 1 1

Q3BS_exc 0 0 1 1 0 1 1 0

Q5AS_exc 0 0 1 1 0 0 0 1

Comparison 

of
Fg2H2890

to2890
Fg2H2614

 
 
Fig. 8. Digitalization of trait representation of fold change data. Row 

headers: Inclusion model: Fg = Fusarium infected, Q2DL = QTL 
2DL, Q3BS = QTL 3BS, Q5AS = QTL 5AS. Exclusion model: 
Fg_exe = Fusarium infected, Q2DL_exe = QTL 2DL, Q3BS_exe = 
QTL 3BS, Q5AS_exe = QTL 5AS. Column headers: Fg2H2890 = 
Fg infection over water treated in the 2-2890 susceptible line; the 
same syntax applies to the resistant line 2-2614. H2614to2890 = 
under water mock inoculation the resistant line 2-2612 is compared 
with the susceptible 2-2890 line; the same syntax applies to other 
resistant lines over the susceptible 2-1890 line with Fusarium 
infection. 

 
 

Fig. 9. Expression (left column) and differential expression (fold 
change, right column) profiles of genes significantly correlated with 
one or more QTLs. Data shown here are significantly correlated 
between both the expression data and differential fold change on one 
side and digitized trait specificity on the other.   



the two most informative clusters. Polygalacturonase-inhibiting 
proteins (PGIPs) are plant proteins that weaken the function of 
fungal polygalacturonases, which are important virulence 
factors [9]. We found two putative leucine-rich repeat (LRR) 
family protein-coding genes (Traes_2BS_3F8D903181 and 
Traes_2AS_28CFE9EB7) in cluster P, believed to encode for 
PGIP1, which were down-regulated in response to Fusarium 
infection both in the susceptible line 2-2890 and the resistant 
line 2-2614, but were expressed at a higher level in the resistant 
lines as compared with the susceptible line with or without the 
infection. It is interesting to note that the reduction in gene 
expression caused by the infection was more drastic in the 
susceptible line than in the resistant line (60% vs. 30%). PGIPs 
are usually disease induced in response to infection by 
pathogen, but our results show that without infection the 
resistant line 2-2614 had over 150% more PGIP1 mRNA (1.3 
FC) than the susceptible line 2-2890. With infection, the 
differential fold change was even higher at 2.1 FC (320% 
more). This suggests that these putative PGIP1 genes are 
involved in wheat defense against Fusarium infection, most 
likely through the inhibition of polygalacturonases. The two 
PGIP1-like genes were directly associated in the network with 
a putative ELIP (Traes_4DL_458D01B961), another hub gene, 
which is known to protect from photooxidative stress in 
Arabidopsis [11], and believed to be involved in cold 
adaptation of Rhododendron plants [36].  

These three inter-connected genes were all connected to 
five other hub genes in cluster R, three putative splicing factors 
(SCL30A, U2AF 35 kDa subunit and SRp30) and two potential 
aquaporin protein genes. SCL30A is a serine/arginine-rich 
protein splicing factor and is involved in alternative splicing 
and the regulation of flowering time. In Arabidopsis, SCL30A 
itself produces seven different transcripts in root, leaf, stem and 
inflorescence under different hormones and abiotic stresses 
[25]. The splicing factor U2AF 35 kDa subunit (U2AF35) is 
conserved from fusion yeast to human [35]. It is not well 
understood how U2AF35 functions in plants, but its homologs 
are found in Arabidopsis, rice, maize and other flowering 
plants [26].  The alternative splicing regulator SRp30 exists in 
three alternative splicing forms that are differentially expressed 
in Arabidopsis [4] and the alternative splicing pattern of other 
SR protein genes has been found to be altered in transgenic 
lines overexpressing Arabidopsis SRp30 [16]. The fact that 
these three splicing factors and regulators were co-expressed in 
wheat under Fusarium infection in the resistant lines as 
compared with the susceptible line is interesting and deserves 
further investigation. Aquaporins (AQPs) are integral 
membrane proteins that form pores called water channels in the 
membrane of biological cells, and are known to play important 
roles in abiotic stress tolerance of durum wheat [1]. The 
expression of aquaporin genes varies depending on the organ, 
hormone levels and abiotic stress treatments. In our study, 
expression of two wheat aquaporin genes decreased 
significantly after Fusarium infection, more drastically in the 
susceptible line 2-2890 (1.7 FC) than in the resistant line 2-
2614 (1.1 FC). The resistant line had a higher expression than 
the susceptible line with (2.9 FC) and without (2.3 FC) 
infection. Reduction of aquaporin water channels is thus 
probably a stress response to Fusarium infection.  

Generally, these hub genes are more or less involved in 
plant tolerance or stress response to adverse environmental 
conditions. Some are directly involved in defense again 
pathogens invasion, such as PGIP1, others are involved in 
overall tolerance or stress responses, such as AQPs. Yet, 
others, such as SCL30A, U2AF35 and SRp30 are probably 
involved in downstream response after plants are stressed. 
There are more hub genes worth studying in this small scope 
network. A broader network study is beyond the scope of this 
paper. Subsequent work is in progress to characterize in more 
detail the wheat response to Fusarium infection and 
mechanisms of resistance to the infection.   

VI. CONCLUSION 

We applied digitization of trait associated with Fusarium 
susceptibility and resistance in wheat lines with and without 
infection. This was necessary for the subsequent analysis that 
revealed clusters and individual genes that were correlated with 
certain types of resistance or QTLs, or with the infection. In 
this study, we focused our attention on genes in 9 clusters that 
were significantly correlated with one or more resistant QTLs 
and specifically on the 11 well connected hub genes in the 
associated network. Our study therefore demonstrates the 
usefulness of such digitization. Microarray gene expression 
data are very information rich. Beyond expression itself, 
differential expression contains additional information. In order 
to properly explore such information, we devised specific 
exclusion model for the digitization of trait specificity. Our 
results demonstrate that the exclusion model outperformed the 
inclusion model in digitization of differential expression fold 
change data. The combination of gene expression and 
differential gene expression data extract in higher confidence 
groups of genes in certain transcript profiles that are correlated 
with one or more of the three QTLs in the second dataset. This 
study is a preliminary step that demonstrates the success of the 
digitization approach. A broader scale and more detailed 
systems biology study is in progress and will be reported 
subsequently. 
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