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ABSTRACT 1 

Azaspiracids (AZAs) are marine biotoxins that induce human illness following the consumption of 2 

contaminated shellfish. EU regulation stipulates that only raw shellfish are tested, yet shellfish are 3 

often cooked prior to consumption. Analysis of raw and heat-treated mussels (Mytilus edulis) 4 

naturally contaminated with AZAs revealed significant differences (up to 4.6-fold) in AZA 1−3, 1−3, 5 

and -6, 6, values due to heat induced chemical conversions. Consistent with previous studies high 6 

levels of 3 and 6 were detected in some samples that were otherwise below the limit of quantitation 7 

before heating. Relative to 1, in heat treated mussels the average (n=40) levels of 3 (range 11−502%) 8 

and 6 (range 3−170%) were 62% and 31% respectively. AZA4, 4, (range <1–27%), AZA5, 5 (range 9 

1–21%) and AZA8, 8 (range 1–27%) were each ~ 5%, while AZA7, 7, AZA9, 9 and AZA10, 10 10 

(range <1–8%) were each under 1.5%. Levels of 5 and 10 (and AZA13, 13 and AZA15, 15) 11 

increased after heating leading to the identification of novel carboxylated AZA precursors in raw 12 

shellfish extracts which were shown by deuterium labeling to be precursors for 5, 10, 13 and 15. 13 

 14 

KEYWORDS: Azaspiracid, decarboxylation, hydroxylation, chemical conversion, heating, mass 15 

spectrometry, metabolism. 16 

  17 
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INTRODUCTION 18 

AZAs were first identified following a poisoning incident in which several people became ill in the 19 

Netherlands after consuming mussels (Mytilus edulis) harvested off the West coast of Ireland.1,2,3 20 

Since that time more than 30 analogues have been observed in shellfish,4,5,6 phytoplankton,7,8,9 21 

crabs10 and a marine sponge.11 AZA1–10, 1–10,2,3,12−14 and 37-epi-115 have been isolated from 22 

shellfish and their structures elucidated through a combination of NMR spectroscopy, LC-MS and 23 

chemical reactions. Further analogues AZA33 and -34 were isolated from bulk cultures of A. 24 

spinosum.9 Only 1, 2 and 3 are currently regulated in raw shellfish.16 Compounds 1 and 2 are 25 

produced by the dinoflagellate Azadinium spinosum.17 Many of the other analogues have been shown 26 

to be shellfish metabolites18−21 and a metabolic pathway for some of the AZAs described has been 27 

proposed.18,21 28 

 29 

Oral administration of AZAs induces chronic effects in mice22 and damage to internal organs.23 In 30 

vitro AZAs are cytotoxic to mammalian cell lines24 and teratogenic to fish embryos.25 To date, the 31 

mode of action has not been identified. AZAs have been shown to be K+ channel blockers,26 32 

however, the concentrations required are two-fold those for cytotoxicity. The current regulatory limit  33 

is in part based on intraperitoneal mouse studies performed following the initial isolation of 1–3.2,3 34 

These studies indicated that 2 and 3 were more toxic than 1 and toxic equivalent factors are applied 35 

to results to reflect the difference in toxicity.27 However, recent oral and intraperitoneal mouse 36 

studies have contradicted these results showing that 1 is more toxic than 2 and 3.28 Furthermore, an 37 

oral mouse study on 6 was performed for the first time showing that it is slightly less toxic than 1.28 38 

In vitro, the order of potency was 2 > 6 > 8  3 > 1 > 4  5 using the Jurkat T lymphocyte cell 39 

assay.14  40 

 41 

Studies, comparing the analysis of raw and cooked mussels, have shown significant differences in 42 

concentrations. Levels of AZAs were found to increase 2-fold in tissues that were cooked due to loss 43 
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of water from the matrix.29 A similar study also reported the same effect for the OA group toxins,30 44 

while additional work on the OA group toxins reported significant increases (up to 150 %) which 45 

could not be accounted for due to a concentration effect alone but was additionally due to increased 46 

extraction of toxins following heat treatment.31 Further studies on AZAs revealed that levels of 3, 4, 47 

6 and 9 increased when samples were heat treated due to decarboxylation of AZA17, -21, -19 and -48 

23 respectively,18 however the scale of these increases was not fully evaluated. Levels of the 37-49 

epimers of AZAs were also found to increase after application of heat, with levels increasing to as 50 

much as 16% that of the parent analogue.15  51 

Here we evaluate the current regulatory methods used for the detection of AZAs in shellfish by 52 

accurately quantitating and comparing the toxin profiles in both raw and heat treated mussels. We 53 

additionally describe new AZA analogues and subsequently amend the previously proposed 54 

metabolic pathway in M. edulis.  55 

 56 

MATERIALS AND METHODS 57 

Chemicals All solvents (pesticide analysis grade) were from Labscan (Dublin, Ireland). Distilled 58 

H2O was further purified using a Barnstead nanopure diamond UV purification system (Thermo 59 

Scientific, Waltham, MA). Formic acid (>98%), ammonium formate and deuterated MeOH 60 

(CH3OD, >99.5 atom-% D) were from Sigma–Aldrich (Steinheim, Germany). AZA CRMs for 1–3 61 

were obtained from the National Research Council (Halifax, NS, Canada).32 Non certified calibrant 62 

standards for 4–10 were prepared as described previously.14 63 

 64 

Analysis of Raw and Heat Treated Mussel Tissues. AZA-contaminated raw samples, tested as part 65 

of the routine monitoring programme in Ireland, were selected for analysis. The shellfish were 66 

shucked and homogenised before extraction. Tissue samples were weighed (2 g) in duplicate into 67 
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50 mL centrifuge tubes with one set placed in a water bath (Grant Ltd) and heated to 90 °C for 68 

10 min, then allowed to cool. The samples were extracted by vortex mixing for 1 min with 9 mL of 69 

MeOH, centrifuged at 3,950 g (5 min), and the supernatants decanted into 25 mL volumetric flasks. 70 

The remaining pellet was further extracted using an Ultra Turrax (IKA) for 1 min with an additional 71 

9 mL of MeOH, centrifuged at 3,950 × g (5 min), and the supernatants decanted into the same 25 mL 72 

volumetric flasks, which were brought to volume with MeOH. The samples were then passed 73 

through Whatman 0.2 µm cellulose acetate filters into HPLC vials for analysis by LC-MS/MS. 74 

 Raw Hepatopancreas Extract. 5g of homogenised hepatopancreas (dissected from AZA 75 

contaminated M. edulis, collected from the Northwest of Ireland in 2005) was extracted with MeOH 76 

by vortex mixing for 1 min with 4 mL of MeOH, centrifuged at 3,950 g (5 min), and the supernatant 77 

decanted into a 10 mL volumetric flask. The remaining pellet was further extracted using an Ultra 78 

Turrax (IKA) for 1 min with an additional 4 mL of MeOH, centrifuged at 3,950 × g (5 min), and the 79 

supernatant decanted into the same 10 mL volumetric flask. The sample was passed through a 80 

Whatman 0.2 µm cellulose acetate filter into a HPLC vial for analysis. A 500 µL of the extract was 81 

placed in a water bath heated to 90 °C for 10 min, then allowed to cool. 82 

Deuterium Incorporation. Two 500 µL aliquots of the hepatopancreas extract were transferred to 83 

HPLC vials and evaporated under N2 without the use of heat. One of the dried residues was dissolved 84 

in 500 µL of CH3OD and the other was dissolved in 500 µL of MeOH. Both aliquots were heated in 85 

a water bath at 70 °C for 10 min. The samples were evaporated under N2 without the use of heat. The 86 

residues were then re-dissolved in 500 µL of MeOH and analyzed by LC–MS.  87 

LC-MS Experiments.  88 

Method A. Analysis was performed on a model 2695 LC instrument (Waters, Manchester, UK) 89 

coupled to a triple-stage quadrupole (TSQ) Ultima instrument (Micromass, Manchester, UK) 90 

operated in selected reaction monitoring (SRM) mode, with the following transitions: 5 m/z 91 
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844.5808.5/362.3, AZA44, 11 m/z 888.5808.5/362.3, 10 m/z 858.5822.5/362.3, AZA45, 12 92 

m/z 902.5822.5/362.3, 13 m/z 860.5824.5/362.3, AZA46, 14 m/z 904.5824.5/362.3, 15 m/z 93 

874.5838.5/362.3, AZA47, 16 m/z 918.5838.5/362.3. The cone voltage was 60 V and the 94 

collision voltage was 40 V, the cone and desolvation gas flows were set at 100 and 800 L/h, 95 

respectively, and the source temperature was 150 °C. 96 

Binary gradient elution was used, with phase A consisting of water and phase B of 95% acetonitrile 97 

in water (both containing 2 mM ammonium formate and 50 mM formic acid). The column used was 98 

a 50 mm × 2.1 mm i.d., 3 µm, Hypersil BDS C8 column with a 10 mm × 2.1 mm i.d. guard column 99 

of the same stationary phase (Thermo Scientific, Waltham, MA). The gradient was from 30−90% B 100 

over 8 min at 0.25 mL/min, held for 5 min, then held at 100% B at 0.4 mL/min for 5 min, and 101 

returned to the initial conditions and held for 4 min to equilibrate the system. The injection volume 102 

was 5 µL and the column and sample temperatures were 25 °C and 6 °C, respectively. 103 

Method B. Analysis was performed on an Acquity UPLC coupled to a Xevo G2-S QToF (Waters, 104 

Manchester, UK) operated in MSe mode, scanning from 100−1200 m/z. Leucine encephalin was used 105 

as the reference compound. The cone voltage was 40 V, collision energy was 50 V, the cone and 106 

desolvation gas flows were set at 100 and 1000 L/h, respectively, and the source temperature was 107 

120 °C. 108 

The column used was a 50 mm × 2.1 mm i.d., 1.7 µm, Acquity UPLC BEH C18 (Waters, Wexford, 109 

Ireland), using the same mobile phase described in method A. The gradient was from 30–90% B 110 

over 5 min at 0.3 mL/min, held for 0.5 min, and returned to the initial conditions and held for 1 min 111 

to equilibrate the system. The injection volumes were 2 µL and 5 µL and the column and sample 112 

temperatures were 25 °C and 6 °C, respectively. 113 
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Method C. Carboxylated precursors were monitored using the same instrument and UPLC conditions 114 

as was used for method B, scanning in MS/MS mode for the following ions: m/z 844.4 (5), 888.5 115 

(11), 858.5 (10), 902.5 (12), 860.5 (13), 904.5 (14), 874.5 (15) and 918.5 (16). 116 

RESULTS AND DISCUSSION 117 

Proportions of 1–10 in Raw and Heat Treated Mussels. To determine the relative importance of 118 

1–10, raw shellfish contaminated with AZAs were heated to simulate cooking (with no water loss). 119 

The analysis of cooked mussels most accurately reflects what is ingested by the consumer, and 120 

additional differences have been reported between the analysis of raw and cooked shellfish (M. 121 

edulis) in terms of concentrations.29−31 Compounds 3, 4, 6 and 9 are produced by heat- induced 122 

decarboxylation of AZA17, -21, -19 and -23 respectively (Figure 1), and are not normally present in 123 

significant amounts in uncooked mussels.18 Compounds 5 and 10 were proposed to be direct 124 

bioconversion products of 3 and 6 respectively.21,20 LC-MS showed that 1–3 (regulated) and 6 were 125 

the predominant analogues in heat treated mussels (Table 1, Figure 2). There was huge variation in 126 

the levels of the analogues 3−10 (Figure 2), possibly due to differing rates of metabolism in the 127 

mussels. Time of harvesting may also be significant as mussels harvested directly following an 128 

intense bloom will likely have higher proportions of 1 and 2 than if they were harvested at some time 129 

after the bloom (due to metabolism). The average levels (relative to 1) of 3 and 6 were 62% (range 130 

11−502%) and 31% (range 3−170%) respectively. The average levels of 4, 5 and 8 were each ~ 5%, 131 

while 7, 9 and 10 were each under 1.5% (Figure 2). Figure 3 shows an LC-MS/MS chromatogram of 132 

a heat treated sample with significant levels of 3, 4 and 6 that were not present in significant 133 

quantities in the raw sample. A feeding study (in which M. edulis was fed with A. spinosum)21 134 

showed that metabolism of 1 and 2 to AZA17 and -19, respectively, was detectable after 3 h, with 135 

levels of these metabolites increasing up to 2 days and then remaining constant to the end of the 136 

experiment (4 days). Relative to 1, the proportions of AZA17 and -19 reached a maximum of 145% 137 

and 55% respectively while the analogues 4, 5 and 7–10 accounted for ~ 58% in total. However, that 138 
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study was performed under laboratory conditions, and the high levels of AZA accumulation 139 

observed in naturally contaminated mussels33 was not replicated.  140 

In a recent study, 6 was found to be 7-fold more cytotoxic than 1,14 whereas a mouse oral dosing 141 

study found it to be only slightly less toxic than 1.28 Nonetheless, these results highlight the degree to 142 

which AZA-toxicity can be underestimated in routine monitoring programs where uncooked 143 

shellfish are tested. Previously, total levels of AZA analogues other than 1–3 were reported to 144 

comprise less than 5%,6 however this study indicates that the analogues 4–10 comprise on average 145 

13% (ranging from 5% to 24%) of the total AZAs (1–10) in heat treated mussels. Further analysis of 146 

AZA contaminated mussels using an ELISA method showed the total concentration of AZAs was 147 

significantly higher than the regulated toxins (AZA1−3) detected by LC-MS/MS.34 All of the six 148 

formal risk assessments for AZAs35 have been based on a poisoning event in 199736 and only take 149 

into account the analogues AZA1, -2 and -3. However, it is now clear that other analogues must have 150 

also been present at the time. Different toxin profiles have been reported from other countries, where 151 

2 is more abundant than 1,11,37−39 and the shellfish from these locations are therefore likely to contain 152 

higher levels of 6, 9 and 10. In such circumstances, these analogues may have greater significance.  153 

Identification of Novel Carboxylated Analogues. Previously 5 and 10 were suggested to be formed 154 

via C-23 hydroxylation of 3 and 6, respectively.21 In the present study, however, levels of  5 and 10 155 

increased significantly after heat treatment (Figures 2 and 3). This suggested that 5 and 10 are, as 156 

previously demonstrated for 3, 4, 6, and 9,18 produced via heat-promoted decarboxylation of the 157 

corresponding 22-carboxy-precursors (AZA44 and AZA45, respectively). In the heating process, 158 

enzymes responsible for hydroxylation would have been destroyed, so it is unlikely that the observed 159 

increase in 5 and 10 after heating were due to enzymatic hydroxylation of 3 and 6, respectively. To 160 

test this hypothesis, LC-MS/MS analysis of AZA contaminated M. edulis samples for AZA44 (m/z 161 

888) and AZA45 (m/z 902) was performed. Analogous carboxylated precursors for 13 and 15 were 162 

also anticipated, so the possible presence of AZA46 (m/z 904) and -47 (m/z 918) was also 163 
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investigated. It was expected that concentrations of these postulated analogues would be low, so a 164 

concentrated M. edulis hepatopancreas extract containing high levels of AZAs was analysed. The 165 

precursor compounds AZA44–47 (11, 12, 14 and 16) were observed in the hepatopancreas extract, 166 

however the presence of the analogues 3, 6, 4, 5, 9, 13 and 15 (Figure 4) also indicated that some 167 

decarboxylation had already occurred prior to extraction. Following the application of heat (90 °C, 168 

10 min) the carboxylated precursors (AZA17, AZA19, AZA21, AZA23, 11, 12, 14 and 16) could no 169 

longer be detected in the extract, and there was a corresponding increase in the intensities of the 170 

peaks corresponding to their 22-decarboxylation products (3, 6, 4, 9, 5, 10, 13 and 15, respectively). 171 

Because this experiment was performed in filtered methanolic solutions, enzymatic catalysis is 172 

unlikely to be directly involved in the transformation. 173 

Accurate mass measurements (Table 2) were consistent with the proposed structures of AZA44–47. 174 

The carboxylated and decarboxylated analogues displayed similar fragmentation patterns, with the 175 

carboxylated precursors showing an increase in mass of 44 Da. The spectra of the carboxylated 176 

precursors displayed an initial water loss, followed by a loss of 44 Da due to loss of the 22-177 

carboxylic acid group as CO2 (Table 2, Figures 5 and 6). Relative to their decarboxylated products, a 178 

smaller RDA fragment at m/z 674.4 is observed, in addition to the absence of the m/z 408.3 fragment 179 

that is characteristic2 to the C-23 hydroxylated analogues (Figures 5 and 6). To confirm that 5, 10, 13 180 

and 15 are formed following decarboxylation of AZA44, -45, -46 and -47 respectively, an 181 

experiment on the hepatopancreas extract was performed to show incorporation of deuterium 182 

following heat treatment in the presence of deuterated MeOH. Uptake of deuterium was observed for 183 

all analogues with increases in the + 1 Da isotope, that was not observed for 1 and 2. The uptake of 184 

deuterium and conversion to known and established structures provides very strong structural 185 

evidence for AZA44 and -45 (Supporting information). As the structures for AZA13 and -15 have 186 

not yet been fully characterized, the proposed structures for AZA46 and -47 remain tentative. The 187 

available evidence is consistent with the pathway shown in Figure 7, with oxidative metabolism at 188 



 

10 
 

 

C-3, C-13 and on the 22-Me, and slow (but accelerated by heating) decarboxylation of the resulting 189 

22-carboxy group. 190 

In terms of retention time, distinct differences were observed. AZA44 and -45 eluted ~ 0.5 min 191 

earlier than their respective decarboxylated products (5 and 10), while smaller retention time 192 

differences were observed for AZA46 and -47 compared to 13 and 15 respectively (difference of ~ 193 

0.3 min) (Figure 4).  194 

In summary, analysis of heat-treated mussels from Ireland that were naturally contaminated with 195 

AZAs revealed high levels of 3 and 6. These compounds were not present at significant levels in the 196 

uncooked shellfish, highlighting the fact that AZA equivalent values for raw mussels can grossly 197 

underestimate the toxicity of the AZAs present (up to 4.6-fold difference for 1−3 and 6). This effect 198 

is further compounded by the increase in concentration of these compounds due to water loss during 199 

cooking.29 Levels of 4, 5 and 7–10 were generally low in Irish mussels, and did not contribute 200 

significantly to overall toxicity, although the situation may be different for other shellfish species. 201 

However, in areas where 2 is the predominant AZA analogue, 6, 9 and 10 will most likely have more 202 

relevance than in Irish mussels. Not only do these results suggest that tissues should be heat-treated 203 

prior to analysis, but also that 6 should be included in the regulations to more accurately reflect the 204 

toxin profile to which shellfish consumers are exposed. Due to the huge variation in levels of the 205 

decarboxylated analogues it is difficult to build in a safety factor that deals with these bioconversions 206 

effectively based on the currently regulated toxins. The EU harmonized LC-MS method40 has been 207 

amended to deal with a concentration effect due to the loss of water during cooking for processed 208 

samples, however, for the analysis of raw samples a  heating step should be included. These measures 209 

are necessary to enhance human health protection and prevent loss of valuable processed product due 210 

to rejection by importing countries. Such amendments would warrant a review of the current 211 

regulatory limit, which should consider the fact that no cases of human intoxications were reported 212 

from mussels that were over the regulatory limit following heat treatment. 213 
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Four additional carboxylated AZA analogues were identified which were shown to be precursors for 214 

the analogues 5, 10, 13 and 15 and were named AZA44, -45, -46 and -47, respectively. 215 

  216 
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 364 

 365 

 Table 1. Measured Concentrations (µg/g) of 1−3 and 6 in Irish M. edulis Samples Before and After Heating (method A)  366 

Harvesting location  

(Irish Atlantic coast) 

Harvesting 

date 

Raw Heated 

1 

 

2 

 

3 

 

6 

 

*AZA equiv. 

(1−3) 
1 

 

2 

 

3 

 

6 

 

*AZA equiv. 

(1−3) 
 

Ratio of 1–3 + 6 in 

cooked and 

uncooked shellfish 

West 26/09/2012 0.06 0.02 0.00 0.00 0.10 0.06 0.02 0.07 0.02 0.18 2.1 
Southwest 27/09/2012 0.16 0.04 0.01 0.00 0.24 0.16 0.04 0.06 0.01 0.30 1.3 
Southwest 27/09/2012 0.10 0.02 0.00 0.00 0.15 0.10 0.02 0.04 0.01 0.20 1.4 
Northwest 27/09/2012 0.04 0.01 0.00 0.00 0.07 0.04 0.02 0.07 0.02 0.17 3.0 

West 24/09/2012 0.22 0.05 0.01 0.00 0.33 0.20 0.05 0.12 0.03 0.48 1.4 
West 24/09/2012 0.12 0.03 0.00 0.00 0.18 0.10 0.03 0.07 0.02 0.24 1.5 

Southwest 24/09/2012 0.11 0.03 0.00 0.00 0.16 0.09 0.02 0.04 0.01 0.18 1.1 
West 24/09/2012 0.03 0.01 0.01 0.00 0.07 0.03 0.02 0.14 0.04 0.25 4.6 

Southwest 26/09/2012 0.08 0.02 0.00 0.00 0.12 0.08 0.02 0.03 0.00 0.16 1.3 
West 24/09/2012 0.02 0.02 0.01 0.00 0.06 0.03 0.02 0.08 0.02 0.18 3.0 

*AZA equivalents of total regulated AZAs (1–3) calculated following application of the toxic equivalence factors for 2 (1.8) and 3 (1.4) relative to 1.23 Values exceeding the EU regulatory limit 367 
(0.16 μg/g) are shown in bold text. 368 
Red indicating areas where there is significant change. 369 

   370 
 371 

 372 

 373 

 374 

 375 

 376 
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Table 2. Accurate Mass Measurements (method B) of 11, 12, 14 and 16.  377 

 [M+H]+ [M+H -H2O-COO]+ Group 1  Group 2 Group 3 

AZA Measured 
mass 

Δ 
ppm 

Measured 
mass 

Δ ppm Measured 
Mass 

Δ 
ppm 

Measured 
Mass 

Δ 
ppm 

Measured 
Mass 

Δ 
ppm 

AZA44 (11) 888.4738 -0.2 826.4744 0.3 674.3895 -1.3 446.2901 -1.1 362.2679 -4.4 
AZA45 (12) 902.4898 0.2 840.4915 2.0 674.3900 -0.6 446.2891 -3.4 362.2695 0 
AZA46 (14) 904.4700 1.2 842.4667 -2.8 674.3912 1.2 446.2921 3.4 362.2681 -3.9 
AZA47 (16) 918.4825 -2.2 856.4838 -1.1 674.3897 -1.0 446.2901 -1.1 362.2680 -4.1 
 378 
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 379 

380 
Figure 1. Structures of AZA1–16, -17, -19, -21, -23, -44, -45, -46 and -47, their protonated masses 381 

and origin. Note: Only 1–10 have had their structures confirmed by NMR, while AZA17, -19, -21, -382 

R1 R2 R3 R4 [M+H]+

AZA
(C-3) (C-8) (C-22) (C-23) m/z Origin Status Decarboxylation 

product

AZA1 (1) H H CH3 H 842.5 A. spinosum phycotoxin

AZA2 (2) H CH3 CH3 H 856.5 A. spinosum phycotoxin

AZA3 (3) H H H H 828.5 shellfish metabolite

AZA4 (4) OH H H H 844.5 shellfish metabolite

AZA5 (5) H H H OH 844.5 shellfish metabolite

AZA6 (6) H CH3 H H 842.5 shellfish metabolite

AZA7 (7) OH H CH3 H 858.5 shellfish metabolite

AZA8 (8) H H CH3 OH 858.5 shellfish metabolite

AZA9 (9) OH CH3 H H 858.5 shellfish metabolite

AZA10 (10) H CH3 H OH 858.5 shellfish metabolite

AZA11 OH CH3 CH3 H 872.5 shellfish metabolite

AZA12 H CH3 CH3 OH 872.5 shellfish metabolite

AZA13 (13) OH H H OH 860.5 shellfish metabolite

AZA14 OH H CH3 OH 874.5 shellfish metabolite

AZA15 (15) OH CH3 H OH 874.5 shellfish metabolite

AZA16 OH CH3 CH3 OH 888.5 shellfish metabolite

AZA17 H H COOH H 872.5 shellfish metabolite AZA3

AZA19 H CH3 COOH H 886.5 shellfish metabolite AZA6

AZA21 OH H COOH H 888.5 shellfish metabolite AZA4

AZA23 OH CH3 COOH H 902.5 shellfish metabolite AZA9

AZA44 (11) H H COOH OH 888.5 shellfish metabolite AZA5

AZA45 (12) H CH3 COOH OH 902.5 shellfish metabolite AZA10

AZA46 (14) OH H COOH OH 904.5 shellfish metabolite AZA13

AZA47 (16) OH CH3 COOH OH 918.5 shellfish metabolite AZA15
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23, 11, 12, 14 and 16 have had their structures confirmed by conversion to analogues with 383 

established structures (3, 6, 4, 9, 5, 10, 13 and 15, respectively). 384 

 385 

Figure 2. Proportions (% ± SD) of 2–10 relative to 1 (method B) in raw and heat treated M. edulis 386 

(n=40) harvested off the Atlantic coast of Ireland.  387 
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 404 

Figure 3. LC-MS (method B) of A) a raw M. edulis sample extract (0.7 µg/g AZA equivalents in the raw extract) from the Marine Institute biotoxin monitoring 405 

programme and B) the same extract after heat treatment, showing peaks for 1–10. 406 
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 407 

 408 

 409 

Figure 4. LC-MS analysis (method A) of: A) AZA44 (11) and AZA5 (5); B) AZA45 (12) and 410 

AZA10 (10); C) AZA46 (14) and AZA13 (13); and D) AZA47 (16) and AZA15 (15) in a raw M. 411 

edulis hepatopancreas extract.  412 
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 416 

Figure 5. LC-MS mass spectra (method C) of: A) AZA44 (11) and B) its decarboxylation product 417 

AZA5 (5); C) AZA45 (12) and D) its decarboxylation product AZA10 (10).  418 
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 424 

Figure 6. LC-MS mass spectra (method C) of: A) AZA46 (14) and B) its decarboxylation product 425 

AZA13 (13); C) AZA47 (16) and D) its decarboxylation product AZA15 (15). 426 
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 431 

 Figure 7. Proposed AZA inter-relationships in M. edulis. 432 
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