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Greenland Temperatures and Solar Activity: A Computational

Intelligence Approach

Julio J. Valdés and Antonio Pou

Abstract— The complexity of the earth’s climate and its rela-
tionship with solar activity are here approached by means of two
computational intelligence techniques: Multivariate Time Series
Model Mining (MVTSMM) and Genetic Programming (GP).
They were applied to a temperature record (Delta O18/16),
obtained from an ice core in Central Greenland, representative
of the climate variations in the North Atlantic regions, and
the International Sunspot Number series, as a proxy of solar
activity, both covering the period from 1721 to 1983. Several
experiments were conducted using these records jointly and
separately with the purpose of characterize and reveal their
time dependencies.

Preliminary results show this mining approach is a valid
and promising research line. The time-lag spectra obtained
with MVTSMM seem to point out to time stamps of some of
the most important Earth-climate and solar variations, as well
as the contribution of solar activity and sunspot solar cycles
along time. The GP provided equations which approximate
the relative contribution of particular solar time-lags. Although
suggestive, this research is at an early stage and the results are
preliminary, emphasizing methodological aspects.

I. INTRODUCTION

A large number of studies have focused on the relationship

between the solar activity and climate. The presence of a

correlation with climate has been widely acknowledged but,

due to the large number of intervening processes acting at

different spatial and temporal scales, it is extremely difficult

to determine a cause-effect relationship. In the present debate

on global warming and future climate scenarios, it is of

the utmost interest to determine the relative contributions of

external forcing mechanisms and anthropogenic changes.

There are inherent difficulties in dealing with external

climate forcing mechanisms. The possible physical processes

relating them to climate are still obscure and their contribu-

tion is part of an ongoing debate. They are extremely difficult

to predict and are outside of our control capabilities. So,

it is not surprising that most simulation models stay away

from them and instead they put the accent on well known

climate-related processes [4]. However, solar physicists have

been pointing to the extraordinary activity of magnetic solar

ejections for the last half century. Some say the activity is

without precedent in the last ten thousand years [19] [14],

but others disagree [10]. The general consensus is that the

Sun is responsible for some general climatic trends, but the
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abnormal climatic situations we are experiencing, for the

last thirty years or so, are believed to be a consequence of

anthropogenic activities. Apparently, the solar activity has

reached a peak and perhaps has already passed its maximum.

This paper explores the use of computational intelligence

techniques for time series analysis and model discovery

of analytic functions. The purpose is to mine relationships

between temperatures on earth and solar activity via two

of their proxies: isotope ice core data from Greenland and

sunspot numbers.

II. DATA

The temperature records are Delta O18/16 values obtained

from an ice core drilled at Crete Site-E (71.12 N - 37.32

W), in the center of Greenland. Drilled in 1985, the series

covers from 1721 to 1983 (National Climatic Data Center).

(Fig.1) The area gets an annual snow accumulation rate

of about 20− 30 g · cm−2. Each year, the accumulation of

winter snow buries the much darker and thinner summer

layer, as the warmer temperatures tend to evaporate part of

the snow, making more visible the dust particles fallen from

long distance winds in late winter/early spring. The layered

structure of alternating light and dark bands remains visible

even when the weight of the accumulated snow turns it into

ice. These bands can be counted by eye. With records a few

centuries long and high quality sampling, as with Crete Site-

E ice core (eight samples per year), the dating accuracy for

yearly data is considered reliable.

The water vapor which becomes snow flakes in Greenland

comes from equatorial latitudes. During the long travel,

the heavier Oxygen 18 isotope is more easily incorporated

into water droplets than the Oxygen 16, a process called

Rayleigh fractionation, resulting in a relative increase of

the lighter one when reaching the high latitudes. Thus, the

Oxygen 18/16 ratio varies as latitude increases, depending

also on temperature, cloudiness, and distance to the sea. For a

certain location, if general atmospheric circulation conditions

remain more or less constant, ground observations show a

direct correlation, even if with a small seasonal variability,

between the decreasing O18/16 ratio and diminishing air

temperatures.

The O18/16 ratio of the ice, expressed as Delta values, is

thus a proxy for the air temperatures at the time the snow

fell. However, detailed observations show decadal variations

on recent data [9] something which points out to the many

uncertainties when dealing with climate temperature from

ancient times, as the patterns of the general circulation

system could have been very different. However, in the case



Fig. 1. Sunspot numbers and Delta O18/16 for the Crete ice core samples in the 1721-1983 time range.

of the data for this paper, such an effect may not have had

a strong relevance, as the analyzed time span is relatively

short and, also, because our interest is mainly focused on

the time-series inner structure and its variations, not on its

absolute temperature values.

These temperature data have been analyzed in relationship

with the solar activity as expressed by the International

Sunspot Number during the same period of time (Fig.1).

These, obtained from the Solar Influences Data Analysis

Center in Belgium, use present observations and historical

records derived from the procedures laid out by Rudolf Wolf

in 1849. Sunspot numbers are considered a good proxy of

solar activity. Easy to observe, they appear in variable cycles

of, roughly, 11 years, or in 22 year cycles if the north-

south magnetic polar shift is taken into account. The average

lifetime of sunspots is six days, but many last about two

days, with the largest ones being visible for weeks and even

months. As the Sun makes one rotation at the equator every

25.6 days (but for poles it takes about 36 days), and as we

are witnessing only half of the solar surface, the real daily

total sunspot number is invisible to us (however, it can now

be guessed by Helioseismic Holography, but that information

is still not used when counting Sunspot numbers).

III. MULTIVARIATE TIME SERIES MODEL MINING

The purpose of model mining in complex data coming

from heterogeneous, multivariate, time varying processes

[16], [17], [18] is to discover dependency models. A model

expresses the relationship between values of a previously se-

lected time series (the target), and a subset of the past values

of the entire set of series. Different classes of functional

models could be considered, in particular, a generalized non-

linear auto-regressive (AR) model

ST (t) = F









S1(t − τ1,1), · · · ,S1(t − τ1,p1
),

S2(t − τ2,1), · · · ,S2(t − τ2,p2
),

. . .
Sn(t − τn,1), · · · ,Sn(t − τn,pn)









(1)

where ST (t) is the target signal at time t, Si is the i-th time

series, n is the total number of signals, pi is the number of

time lag terms from signal i influencing ST (t), τi,k is the k-th

lag term corresponding to signal i (k ∈ [1, pi]), and F is the

unknown function describing the process.

The classical approaches in time series consider mostly

univariate, homogeneous (real-valued) time series without

missing values [1], [13], [12]. Conventional multivariate

approaches are complex and have difficulties in handling

heterogeneity, imprecision and incompleteness. A hybrid

soft-computing algorithm for this kind of problems using

heterogeneous neural networks and genetic algorithms was

introduced in [16], in the spirit of [11]. It requires the

simultaneous determination of: (i) the number of required

lags for each series, (ii) the particular lags within each series

carrying the dependency information, and (iii) the prediction

function. A requirement on function F is to minimize a

suitable prediction error measure. The procedure is based on:

(a) exploration of a subset of the model space with a genetic

algorithm, and (b) use of a similarity-based neuro-fuzzy

system representation for the unknown prediction function

F. The process implies a search in the space of neuro-fuzzy

networks (Fig.2).

Fig. 2. Multivariate Time Series Model Miner System (MVTSMM). The arc
(left) is a parallel genetic algorithm evolving populations of similarity-based
hybrid neural networks. The binary strings encode dependency patterns for
the target signal. For each, a hybrid neural network is constructed and trained
with a fast algorithm. The network represents the prediction function, and
is applied to an independent test set. The best models are collected.

This approach is applied on a sliding time-window such



that an exploration of the structure of the multivariate series

can be made, using the mined models as indicator of internal

changes within the process. One way of describing the results

is by computing the weighted lag importance function whose

general form is

L
w(t,τp,q) =

∑
card(M̂ )
i=1 µ(τp,q,M̂i(t)) · f (M̂i(t))

∑
card(M̂ )
i=1 f (M̂i)(t)

(2)

where M̂ is the set of discovered models for a given

window, card(M̂ ) is its cardinality, M̂i(t) ∈ M̂ is the i-

th model found at time t, µ(τp,q,M̂i(t)) is the boolean

membership function of lag τp,q ( from Eq.1 ) with respect

to M̂i(t), and f (M̂i(t)) is a strictly positive model quality

measure (fitness) on M̂ .

IV. GENETIC PROGRAMMING

Analytic functions are among the most important building

blocks for modeling, and are a classical way of expressing

knowledge and a long history of usage in science. From a

data mining perspective, direct discovery of general analytic

functions poses enormous challenges because of the (in

principle) infinite size of the search space.

Within computational intelligence, genetic programming

techniques aim at evolving computer programs, which ulti-

mately are functions. Genetic Programming (GP) introduced

in [5] and further elaborated in [6], [7] and [8], is an

extension of the Genetic Algorithm. The algorithm starts with

a set of randomly created computer programs. This initial

population goes through a domain-independent breeding pro-

cess over a series of generations. It employs the Darwinian

principle of survival of the fittest with operations similar

to those occurring naturally, like sexual recombination of

entities (crossover), occasional mutation, duplication and

gene deletion. A computer program is understood as an

entity that receives inputs, performs computations which

transform these inputs and produces some output in a finite

amount of time. The operations include arithmetic computa-

tion (possibly involving many other functions), conditionals,

iterations, recursions, code reuse and other kinds of informa-

tion processing organized into a hierarchy. GP combines the

expressive high level symbolic representations of computer

programs with the search efficiency of the genetic algorithm.

For a given problem, this process often results in a computer

program which solves it exactly, or if not, at least provides

a fairly good approximation.

There are many approaches to GP leading to a plethora

of variants (and implementations) and a discussion about

their relative merits, drawbacks and properties is beyond the

scope of this paper. One of these GP techniques is the so-

called Gene Expression Programming (GEP) [2], [3]. GEP

individuals are nonlinear entities of different sizes and shapes

(expression trees) encoded as strings of fixed length. For

the interplay of the GEP chromosomes and the expression

trees (ET), GEP uses an unambiguous translation system to

transfer the language of chromosomes into the language of

expression trees and vise versa. The structural organization of

GEP chromosomes allows a functional genotype/phenotype

relationship, as any modification made in the genome always

results in a syntactically correct ET or program. The set

of genetic operators applied to GEP chromosomes always

produces valid ETs.

The chromosomes in GEP itself are composed of genes

structurally organized in a head and a tail [2]. The head

contains symbols that represent both functions (elements

from a function set F) and terminals (elements from a

terminal set T), whereas the tail contains only terminals.

Therefore, two different alphabets occur at different regions

within a gene. For each problem, the length of the head h

is chosen, whereas the length of the tail t is a function of

h, and the number of arguments of the function with the

largest arity. The length of the tail is evaluated given by

t = h(n−1)+ 1. As an evolutionary algorithm GEP defines

its own set of crossover, mutation and other operators [3].

V. EXPERIMENTAL SETTINGS

The experiments for exploring the bivariate series com-

posed of the z-scores (zero-mean, unit-variance) of both the

Delta O18 and the Sunspot numbers with the MVTSMM

algorithm were made with the parameters shown in Table.V.

The series spans the 1721−1983 time range (the sampling

interval is one year), with a length of 163 points. The

number of sliding windows runs was 489 as networks with

3,4 and 5 number of responsive neurons were explored.

The experiments were performed in a distributed computer

environment using the Condor system (http://www.cs.

wisc.edu/condor/).

TABLE I

SETTINGS FOR THE EXPERIMENTS WITH THE MVTSMM ALGORITHM.

General parameters Genetic parameters

maximum lag/series 25 population size 1000

number of number of
responsive neurons 3, 4, 5 generations 50

similarity measure based on
euclidean selection operator tournament
distance

model quality RMSE crossover operator single-point

sliding window size 101 crossover prob. 0.6

training set 75% mutation operator bit reversal

validation set 25% mutation prob. 0.01

reproduction prob. 0.1
number of best
chromosomes 300
retained

Three time windows were used for the exploration of local

models with Genetic Programming, placed at the beginning,

middle and final points of the time-series (mid-window point

years of 1795, 1863 and 1933). Some of them cannot reflect

the recent climatic anomalies usually associated with human

influence. These windows covered the following time ranges:

first window: 1746-1845, middle window: 1814-1913, last

window: 1884-1983. Within each window, 75% of the ob-

servations were used for training and the remaining 25% for



testing the model. Two sets of experiments composed of 500

independent runs each were conducted for all of the three

windows previously described, with the genetic programming

algorithm parameters shown in Table. V.

TABLE II

GENETIC PROGRAMMING SETTINGS AND GENETIC OPERATORS FOR THE

EXPERIMENTS PERFORMED ON THE THREE TIME WINDOWS.

General parameters Genetic parameters

Chromosomes 50 Mutation Rate 0.044
Genes 5 Inversion Rate 0.1
Head Size 15 IS Transposition Rate 0.1
Tail Size 16 RIS Transposition Rate 0.1
Linking Function Addition One-Point

Recombination Rate 0.3
Two-Point
Recombination Rate 0.3
Gene Recombination Rate 0.1
Gene Transposition Rate 0.1

Exp-1 was performed with Root Relative Squared Er-

ror (RRSE), whereas Exp-2 used the classical Root Mean

Squared Error (RMSE). They are given by

RMSE =

√

∑
n
i=1 (Pi −Ti)2

n
, RRSE =

√

∑
n
i=1 (Pi −Ti)2

∑
n
i=1 (Ti −T )2

(3)

where Pi and Ti are the predicted and target values for the

i-th observation respectively. T is the mean of the observed

values.

Partially overlapping function sets were chosen for the

two rounds of GP experiments in order to change slightly

the number and complexity of the functional building blocks

for the models. For each rounds 500 GP runs were made,

changing the initial population at random. The results were

ranked according to their training and test fitness, derived

from the corresponding error measures as f itness = 1000 ∗
(1/(1+ error)) (Table.V.).

TABLE III

ERROR MEASURES AND FUNCTION SETS FOR THE TWO ROUNDS OF GP

EXPERIMENTS.

Exp-1 Exp-3

Error measure RRSE RMSE

+,−,∗,/,x2,x3, +,−,∗,/,xy,ex, ln,
Function Set

√, 3
√,ex, ln, sin,cos,asin,acos,

sin,cos,atan asinh,acosh

VI. RESULTS

A. Multivariate Time Series Model Mining

Three independent runs were done (Fig.3): the ice core

temperature series (a), the Sunspot series (d), and a join

analysis of both of them (b, c), using the temperatures as the

target. The image in (c) is the contribution of Sunspot activity

to the explanation of the ice core temperature record. Image

(b) is what is left of the internal structure of the ice core

record when the solar influence is discounted. The horizontal

axis is time in years. The vertical axis is time-lags (25, for

this exercise) for each one of the years, visualized by its

importance spectra. These have been progressively displaced

to the left in order to be placed at the right time.

Fig. 3. Lag importance spectra (Lw(t,τp,q) functions) (sheared). Horizontal
axis is time in years, vertical axis is the lag with respect to the current time
position: (a): Delta O18/16 Crete (univariate), (b)(c): the bivariate series
Delta O18/16 Crete (b) and Sunspot numbers (c). (d): Sunspot numbers
(univariate). Top, plot of the International Sunspot Number series for the
period. The spectra were sheared 45 degrees to the left in order to get
vertical lines as Isochrones.

A common feature of the images is the persistence of

particular time-lags running continuously for a number of

years. Frequently several bands are interrupted, or begin, at

the same time, suggesting packages of years with similar

characteristics or behavior. These discontinuities are marked

with a gray triangle. Five of the twelve discontinuities in

(a) are also exactly present at (d), clearly pointing out to

a common timing of the temperature records in Greenland

with the solar activity. Comparing (d) and (c) a number

of differences can be observed, showing clearly that only

part of the Sunspot activity has an influence on temperatures

and that it doesn’t follow necessarily the same pattern. The

letter V marks a period of time around 1880 with almost no

solar influence, in accordance with the low registered solar

irradiance for that period.

In (d), apart from the inverted triangles signaling the

main blocks of the image, there are also a number of other

minor divisions marked by vertical segments. Some of them

could perhaps be artifacts due the parameters chosen for the

analysis or to poor data quality, as it may be the case for

the interruption at 1792, inside a period from 1790-1794

with few observations [15], but most of the rest seem to

be related to particular features of the International Sunspot

Number (top). A very clear feature of the image is the

presence of the Dalton Minimum (1793-1820), a shorter



period than the Maunder Minimum (1645-1715) responsible

for the Little Ice Age. The temperatures (a) also register

the event, but beginning in 1795-1797 and lasting till 1816,

where another event may perhaps be masking the signal:

the 1815 eruption of the Tambora (island of Sumbawa,

Indonesia) which produced the so known ”Year Without a

Summer.”

In Fig.4 each point is the mean of the 300 best networks

found. It shows that the fitness is large at the beginning and

end of the series, and low in the middle. Since the search

strategy is the same in all cases, this behavior suggests the

existence of three time intervals along the process with dif-

ferent properties (also suggested by the Lw(t,τp,q)-spectra).

Fig. 4. Mean model quality expressed as f itness = (1000/(1+RMSError))
over the best 300 models computed for each year.

B. Genetic Programming Results

The analytical models corresponding to the 1746-1845

window are given by Eqs.4, for Exp-1 run 099 (RRSE) and

Eqs.5, for Exp-3 run120 (RMSE):

δt = sin(k1 ∗δt−19)

+ cos(atan2(e(SSNt−13+(k2∗
√

SSNt−21)) −SSNt−11))

+ sin(sin(sin(k3 ∗δt−19)))

+ δt−19

+ sin2(SSNt−23) (4)

where δ is the isotope ratio Delta O18/16, SSN is the sunspot

number, the subscript t − i for i ∈ [1,25] represents the i-th

time lag and k1 = 0.99888, k2 = −4.216797, k3 = 0.99522

are constants.

δt = asinh(sin(asinh(sin(e(δt−1−(SSNt−11+δt−7)))))∗SSNt−1)

+cos(cos(asinh((SSNt−10 − ((SSNt−11 − (k1 ∗SSNt−22))

∗k2))−SSNt−21)−SSNt−10))

+k3

+asinh(sin(δt−10/k4)+ e(sin(SSNt−24)−ln(asinh(SSNt−12+k5))))

+asin(cos(δt−16))+δt−16

(5)

the notation is the same as in Eq.4, and k1 = 9.134369,

k2 = 8.423248, k3 = −6.08489 10−4, k4 = 2.236908, k5 =
5.55658 are constants.

From the individual best models found, two committees

of experts (ensemble models) were computed based on: i)

their mean, ii) their weighted mean using the fitness derived

from their error measures as weights. The main results for the

1746-1845 window are shown in Table.VI-B. The ensemble

models improved the individual ones from the point of view

of both error and correlation quality (Table.VI-B, Fig.5).

TABLE IV

GENETIC PROGRAMMING MODELS FOR THE 1746-1845 TIME WINDOW.

TEST SET DATA CORRESPONDING TO YEARS 1821-1845. SIGNIFICANCE

AT 0.05% CONFIDENCE IS INDICATED WITH (*) IN ALL TABLES.

First Exp-1 Exp-3 mean weighted
Window run-099 run-120 model model

(RRSE) (RMSE) (RMSE) (RMSE)

Error measure 0.8288 0.9069 0.7042 0.7033

Correlation 0.5386 (*) 0.7125 (*) 0.7808 (*) 0.7808 (*)

Fig. 5. GP results for the first window: Observed Delta O18/16 series and
test set predictions according to the weighted ensemble model.

For the same window, the corresponding analytic models

are given by Eqs.4,5. Although these models contain highly

nonlinear dependencies, it is interesting to observe that: i)

they involve only a small number of variables (6 out of the

potential 50) and ii) the three solar sunspot terms are arround

those of the solar cycle (11 and 22 years) (Table.VI-B).

The GP results for the 1814 − 1913 (middle)

and the 1884 − 1983 (last) windows are shown in

Tables VI-B, VI-B, VI-B and in Figs. 6, 7 respectively. In

both cases the behavior and the properties of the ensemble

models are similar to those of the 1746− 1845 window in

terms of: i) approximation of the observed Delta O18/16

data, ii) improvement of the model error and correlation

measures, iii) sensitivity to only a small number of flagged

terms and iv) systematic influence of the solar sunspot

events arround the solar cycle (neighborhood of lags 11 and

22).

TABLE V

GENETIC PROGRAMMING MODELS FOR THE 1814-1913 TIME WINDOW.

TEST SET DATA CORRESPONDING TO YEARS 1889-1913.

Middle Exp-1 Exp-3 mean weighted
Window run-291 run-319 model model

(RRSE) (RMSE) (RMSE) (RMSE)

Error measure 1.0077 1.0055 0.9577 0.9577

Correlation 0.5253 (*) 0.5447 (*) 0.6107 (*) 0.6107 (*)

Fig. 6. GP results for the middle window: Observed Delta O18/16 series
and test set predictions according to the weighted ensemble model..



TABLE VI

GENETIC PROGRAMMING MODELS FOR THE 1884-1983 TIME WINDOW.

TEST SET DATA CORRESPONDING TO YEARS 1959-1983.

Last Exp-1 Exp-3 mean weighted
Window run-383 run-336 model model

(RRSE) (RMSE) (RMSE) (RMSE)

Error measure 0.8578 0.8847 0.8059 0.8058

Correlation 0.4987 (*) 0.2259 0.4586 (*) 0.4595 (*)

Fig. 7. GP results for the last window: Observed Delta O18/16 series and
test set predictions according to the weighted ensemble model.

VII. CONCLUSIONS

These are very preliminary results emerging from data

mining of a very complex problem, which requires further

investigation. Although suggestive, the connection of the

results with real physical processes remains uncertain in

spite of their very promising character. The models obtained

are only function approximations which seem to be valid

exploration tools for orienting further work. The use of these

and other computational techniques on different suspected

process-related data (with cross-checking), could provide

new and interesting momenta in the global warming issue.

The results cannot be used to prove or disprove the possible

physical mechanisms behind global warming.

ACKNOWLEDGMENT

The authors would like to thank Robert Orchard from the

National Research Council Canada (Institute for Information

Technology) for making this research possible.

REFERENCES

[1] G. Box and G. Jenkins, Time Series Analysis, Forecasting and Control,
Prentice Hall, 1976.

[2] Ferreira C, “Gene Expression Programming: A New Adaptive Algo-
rithm for Problem Solving,” Journal of Complex Systems vol. 13, 2, pp.
87–129, 2001.

[3] Ferreira C, Gene Expression Programming: Mathematical Modeling by

an Artificial Intelligence. Springer Verlag, 2006.
[4] IPCC Third Assessment Report. Working Group I: The Scientific Basis.

Intergovernmental Panel on Climate Change. WMO, UNEP, 2001.
[5] Koza, J. Hierarchical genetic algorithms operating on populations of

computer programs. In Proceedings of the 11th International Joint Con-

ference on Artificial Intelligence. San Mateo, CA: Morgan Kaufmann.
Vol. I. pp 768–774. 1989

[6] Koza, J. Genetic programming: On the programming of computers by
means of natural selection. MIT Press, 1992.

[7] Koza, J. Genetic programming ii: Automatic discovery of reusable
programs. MIT Press, 1994.

[8] Koza, J., Andre D., Keane M. Genetic programming III: Darwinian
invention and problem solving. Morgan Kaufmann, 1999.

[9] McKenzie, J.A., Anderson, W. T., Teranes, J. L., Bernasconi, S. M.
Has the relationship between the oxygen isotopic composition of pre-
cipitation and air temperature remained constant over the last century?
An example from central Europe. American Geophysical Union, Fall
Meeting 2002, abstract #PP52A-0318.

TABLE VII

LAGS CORRESPONDING TO THE VARIABLES COMPOSING THE TWO GP

MODELS OBTAINED FOR THE FIRST WINDOW (1746-1845) (TEST SET).

Delta O18/16 Sunspot Number Lag
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