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Abstract. The Rule Interchange Format (RIF) is a W3C recommenda-
tion that allows rules to be exchanged between rule systems. Uncertainty
is an intrinsic feature of real world knowledge, hence it is important to
take it into account when building logic rule formalisms. However, the
set of truth values in the RIF Basic Logic Dialect (RIF-BLD) currently
consists of only two values (t and f), although the RIF Framework for
Logic Dialects (RIF-FLD) allows for more. In this paper, we first present
two techniques of encoding uncertain knowledge and its fuzzy semantics
in RIF-BLD presentation syntax. We then propose an extension leading
to an Uncertainty Rule Dialect (RIF-URD) to support a direct represen-
tation of uncertain knowledge. In addition, rules in Logic Programs (LP)
are often used in combination with the other widely-used knowledge rep-
resentation formalism of the Semantic Web, namely Description Logics
(DL), in many application scenarios of the Semantic Web. To prepare
DL as well as LP extensions, we present a fuzzy extension to Description
Logic Programs (DLP), called Fuzzy DLP, and discuss its mapping to
RIF. Such a formalism not only combines DL with LP, as in DLP, but
also supports uncertain knowledge representation.4

Keywords: Rule Interchange Format, Uncertainty, Fuzzy Logic

1 Introduction

Description Logics (DL) and Logic Programs (LP)5 are the two main paradigms
of knowledge representation formalisms for the Semantic Web, both of which are
based on subsets of first-order logic [19]. DL and LP cover different but overlap-
ping areas of knowledge representation. They are complementary to some degree;

4 This work was done mainly while the first author was affiliated with the University
of New Brunswick, Fredericton, Canada.

5 In this paper, we only consider the Horn Logic subset of LP, without negation-as-
failure.
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for example, typical DL cannot directly express LP’s n-ary function applications
(complex terms) while classic LP cannot express DL’s disjunctions (in the head).
Combining DL with LP in order to ”build rules on top of ontologies” or, ”build
ontologies on top of rules” has become an emerging topic for various applications
of the Semantic Web. It is therefore important to research the combination of
DL and LP with different strategies. There have been various achievements in
this area, including several proposed combination frameworks [11, 9, 17, 22, 23].
As a minimal approach in this area, the Description Logic Program (DLP) ’in-
tersection’ of DL and LP has been studied, along with mappings from DL to LP
[11]. Both [9] and [22] studied the combination of standard Datalog inference
procedures with intermediate DL satisfiability checking.

On the other hand, as evidenced by Fuzzy RuleML [6] andW3C’s Uncertainty
Reasoning for the World Wide Web (URW3) Incubator Group [20], handling
uncertain knowledge is becoming a critical research direction for the (Seman-
tic) Web. For example, many concepts needed in business ontology modeling
lack well-defined boundaries or, precisely defined criteria of relationships with
other concepts. To take care of these knowledge representation needs, different
approaches for integrating uncertain knowledge into traditional rule languages
and DL languages have been studied [19, 18, 27–29, 26, 21, 31, 34, 7].

The Rule Interchange Format (RIF) has been developed by W3C’s Rule
Inter-change Format (RIF) Working Group to support the exchange of rules
between rule systems [4]. In particular, the Basic Logic Dialect (RIF-BLD) cor-
responds to the language of definite Horn rules with equality and a first-order
semantics. While RIF’s Framework for Logic-based Dialects (RIF-FLD) [5] per-
mits multi-valued logics, RIF-BLD instantiates RIF-FLD with the set of truth
values consisting of only two values, t and f , hence is not designed for expressing
uncertain knowledge.

According to the final report from the URW3 Incubator group, uncertainty
is a term intended to include different types of uncertain knowledge, includ-
ing incompleteness, vagueness, ambiguity, randomness, and inconsistency [20].
Mathematical theories for representing uncertain knowledge include, but are not
limited to, Probability, Fuzzy Sets, Belief Functions, Random Sets, Rough Sets,
and combinations of several models (Hybrid). The uncertain knowledge represen-
tations and interpretations discussed in this paper are limited to Fuzzy Sets and
Fuzzy Logic (a multi-valued logic based on Fuzzy set theory); other approaches
should be studied in future work.

The main contributions of this paper are: (1) two techniques of encoding
uncertain information in RIF as well as an uncertainty extension to RIF; (2) an
extension of DLP to Fuzzy DLP and the mapping of Fuzzy DLP to RIF.

Two earlier uncertainty extensions to the combination of DL and LP that
we can expand on are [30] and [32]. While our approach emphasizes the inter-
operation in the intersection of fuzzy DL and fuzzy LP allows DL atoms in the
head of hybrid rules and DL subsumption axioms in hybrid rules, the approach
of [30] does not allow the expressiveness. Our approach deals with fuzzy sub-
sumption of fuzzy concepts of the form C ⊑ D = c whereas [32] deals with crisp
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subsumption of fuzzy concepts of the form C ⊑ D. Also, we do not limit hybrid
knowledge bases to the intersection of (fuzzy) DL and (fuzzy) LP. We extend
[32] and study the decidable union of DL and LP.

The rest of this paper is organized as follows. Section 2 reviews earlier work
on the interoperation between DL and LP in the intersection of these two for-
malisms (known as DLP) and represents the DL-LP mappings in RIF. Section 3
addresses the syntax and semantics of fuzzy Logic Programs, and then presents
two techniques of bringing uncertainty into the RIF presentation syntax (and
then into its semantics and XML syntax), using encodings as RIF functions
and RIF predicates. Section 4 adapts the definition of the set of truth values
in RIF-FLD for the purpose of representing uncertain knowledge directly, and
proposes the new Uncertainty Rule Dialect (RIF-URD), extending RIF-BLD.
Section 5 extends DLP to Fuzzy DLP, supporting mappings between fuzzy DL
and fuzzy LP, and gives representations of Fuzzy DLP in RIF and RIF-URD.
Finally, Section 6 summarizes our main results and gives an outlook on future
research.

2 Description Logic Programs and Their Representation

in RIF

In this section, we summarize the work on Description Logic Programs (DLP)
[11] and then show how to represent the mappings between DL and LP in RIF
presentation syntax.

The paper [11] studied the intersection between the leading Semantic Web
approaches to rules in LP and ontologies in DL, and showed how to interoperate
between DL and LP in the intersection known as DLP. A DLP knowledge base
permits:

1. stating that a class C is a Subclass of a class D, C ⊑ D;
2. stating that the Domain of a property R is a class C, ⊤ ⊑ ∀R−.C;
3. stating that the Range of a property R is a class C, ⊤ ⊑ ∀R.C;
4. stating that a property R is a Subproperty of a property P ,R ⊑ P ;
5. stating that an individual a is an Instance of a class C,C(a);
6. stating that a pair of individuals (a, b) is an Instance of a property R, R(a, b);
7. using the Intersection connective (conjunction) within class descriptions,

C1 ⊓ C2;
8. using the Union connective (disjunction) within subclass descriptions, C1 ⊔

C2 ⊑ D;
9. using Universal quantification within superclass descriptions, C ⊑ ∀R.D;
10. using Existential quantification within subclass descriptions∃R.C ⊑ D;
11. stating that a property R is Transitive, R+ ⊑ R;
12. stating that a property R is the Inverse of a property P .

Here C,D,C1, C2 are concepts, ⊤ is the universal concept, R,P are roles, R−

and R+ are the inverse role and the transitive role of R, respectively, and a,b
are individuals.
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In RIF presentation syntax, the quantifiers Exists and Forall are made ex-
plicit, rules are written with a “:-” infix, variables start with a “?” prefix, and
whitespace is used as a separator. Table 1 summarizes the mappings in [11]
between DL and LP in the DLP intersection, and shows its representation in
RIF. Note that in DLP, a complex concept expression which is a disjunction
(e.g. C1 ⊔ C2) or an existential (e.g. ∃R.C) is not allowed in the right side of a
concept subsumption axiom (superclass).

Table 1. Mapping between LP and DL

LP Syntax DL Syntax RIF

D(x)← C(x) C ⊑ D Forall ?x (D(?x) :- C(?x))

C(y)← R(x, y) ⊤ ⊑ ∀R.C Forall ?x ?y (C(?y) :- R(?x ?y))

C(x)← R(x, y) ⊤ ⊑ ∀R−.C Forall ?x ?y (C(?x) :- R(?x ?y))

P (x, y)← R(x, y) R ⊑ P Forall ?x ?y (P(?x ?y) :- R(?x ?y))

C(a) C(a) C(a)

R(a, b) R(a, b) R(a,b)

D(x)← C1(x) ∧ C2(x) C1 ⊓ C2 ⊑ D Forall ?x (D(?x) :- And(C1(?x) C2(?x)))

D1(x)← C(x), C ⊑ D1 ⊓D2 Forall ?x (D1(?x) :- C(?x))
D2(x)← C(x), Forall ?x (D2(?x) :- C(?x))

D(x)← C1(x), C1 ⊔ C2 ⊑ D Forall ?x (D(?x) :- C1(?x))
D(x)← C2(x) Forall ?x (D(?x) :- C2(?x))

D(y)← C(x), R(x, y) C ⊑ ∀R.D Forall ?x ?y (D(?y) :- And(C(?x) R(?x ?y)))

D(x)← C(y), R(x, y) ∃R.C ⊑ D Forall ?x ?y (D(?x) :- And(C(?y) R(?x ?y)))

R(x, z)← R(x, y), R(y, z) R+
⊑ R Forall ?x ?y ?z(R(?x ?z) :- And(R(?x ?y) R(?y ?z)))

R(x, y)← P (y, x), P ≡ R− Forall ?x ?y(R(?x ?y) :- P(?y ?x))
P (y, x)← R(x, y) Forall ?x ?y(P(?y ?x) :- R(?x ?y))

3 Encoding Uncertainty in RIF

Fuzzy set theory was introduced in [37] as an extension of the classical notion of
sets to capture the inherent vagueness (the lack of crisp boundaries) of real-world
sets. Formally, a fuzzy set A with respect to a set of elements X (also called a
universe) is characterized by a membership function µA(x) which assigns a value
in the real unit interval [0,1] to each element x ∈ X. µA(x) gives the degree to
which an element x belongs to the set A. Fuzzy logic is a form of multi-valued
logic derived from fuzzy set theory to deal with reasoning that is approximate
rather than precise. In Fuzzy Logic the degree of truth of a statement can range
between 0 and 1 and is not constrained to the two truth values, t and f , as
in classic predicate logic [24]. Such degrees can be computed based on various
specific membership functions, for example, a trapezoidal function.

Fuzzy Logic extends the Boolean operations defined on crisp sets and rela-
tions for fuzzy sets and fuzzy relations. Basic operations in Fuzzy Logic apply to
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fuzzy sets include negation, intersection, union, and implication. Today, in the
broader sense, Fuzzy Logic is actually a family of fuzzy operations [35] [13] di-
vided into different classes, among which, the most widely known include Zadeh
Logic [37], Lukasiewicz Logic [16], Product Logic [13], Gödel Logic [10, 1], and
Yager Logic [36]. For example, in Zadeh Logic, the membership function of the
union of two fuzzy sets is defined as the maximum of the two membership func-
tions for the two fuzzy sets (the maximum criterion); the membership function of
the intersection of two fuzzy sets is defined as the minimum of the two member-
ship functions (the minimum criterion); while the membership function of the
complement of a fuzzy set is defined as the negation of the specified membership
function (the negation criterion).

In this section, we first present the syntax and semantics for fuzzy Logic
Programs based on Fuzzy Sets and Fuzzy Logic [37] and on previous work on
fuzzy LP [31, 34, 33], and then propose two techniques of encoding the semantics
of uncertain knowledge based on Fuzzy Logic in the presentation syntax of RIF-
BLD using BLD functions and BLD predicates respectively.

3.1 Fuzzy Logic Programs

Rules in van Emden’s formalism for fuzzy LP have the syntactic form

H ←c B1, · · · , Bn (1)

where H,Bi are atoms, n ≥ 0, and the factor c is a real number in the interval
[0,1] [31]. For n = 0, such fuzzy rules degenerate to fuzzy facts.

The fuzzy LP language proposed by [34, 33] is a generalization of van Emden’s
work [31]. Rules are constructed from an implication (←) with a corresponding
t-norm adjunction operator (f1), and another t-norm operator denoted by f2. A
t-norm is a generalization to the many-valued setting of the conjunction connec-
tive. In their setting, a rule is of the form H ←f1 f2(B1, · · · , Bn) withCF c,
where the confidence factor c is a real number in the unit interval [0,1] and
H,Bi are atoms with truth values in (0, 1]. If we take the operator f1 as the
product following Goguen implication and the operator f2 as the Gödel t-norm
(minimum), this is exactly of the form by van Emden [31].

In [40], we presented norm-parameterized fuzzy Description Logics. In this
paper, we follow this norm-parameterized approach when considering the DL
counterpart of the DLP and propose a corresponding norm-parameterized fuzzy
extension to Logic Programs, more precisely, to the Horn Logic subset of Logic
Programs. We call it norm-parameterized as we integrate different norms from
the Fuzzy Logic family into the fuzzy extension. A fuzzy LP knowledge base
consists of these norm parameters and a finite set of fuzzy rules. The norm
parameters, FIN , FU , and FIM , define the intersection, union, and implication
operators respectively. Since only Horn Logic is considered, we can ignore the
negation operation for now. A fuzzy rule has the following form:

H(−→x )← B1(
−→x1), · · · , Bn(

−→xn) /c (2)
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Here H(−→x ), Bi(
−→xi) are atoms, −→x , −→xi are vectors of variables or constants,

n ≥ 0 and the confidence factor c (also called certainty degree) is a real number
in the interval [0,1]. For the special case of fuzzy facts this becomes H /c. These
forms with a “/” symbol have the advantages of avoiding possible confusion with
the equality symbol usually used for functions in logics with equality, as well as
using a unified and compact format to represent fuzzy rules and fuzzy facts.

The semantics of such fuzzy LP is an extension of classical LP semantics.
Let BR stand for the Herbrand base of a fuzzy knowledge base KBLP . A fuzzy
Herbrand interpretation HI for KBLP is defined as a mapping BR → [0, 1].
It is a fuzzy subset of BR under fuzzy semantics and can be specified by a
function val with two arguments: a variable-free atom H(or B1, · · · , Bn) and
a fuzzy Herbrand interpretation HI . The returned result of the function val is
the membership value of H(or B1, · · · , Bn) under HI , denoted as val(H,HI) (or
val(Bi, HI)).

Therefore, if min is specified as the intersection operator and × is as the
implication operator, a variable-free instance of a rule 2 is true under HI iff
val(H,HI) ≥ c×min{val(Bi, HI)|i ∈ {1, · · · , n}} (min{}=1 if n = 0). In other
words, such an interpretation can be separated into the following two parts [12–
14].

– The body of the rule consists of n atoms. Our confidence that all these atoms
are true is interpreted under Gödel’s semantics for fuzzy logic:
val((B1, · · · , Bn), HI) = min{val(Bi, HI)|i ∈ {1, · · · , n}}

– The implication is interpreted as the product:
val(H,HI) = c× val((B1, · · · , Bn), HI)

Furthermore, a rule is true under HI iff each variable-free instance of this
rule is true under HI and a fuzzy knowledge base KBLP is true under HI iff
every rule in KBLP is true under HI . Such a Herbrand interpretation HI is
called a Herbrand model of KBLP .

For a fuzzy knowledge base KBLP , the reasoning task is a fuzzy entailment
problem written as KBLP |= H /c (H ∈ BR, c ∈ [0, 1]).

For simplicity, we take the min and × operators as default specifications in
the examples presented hereafter.

Example 1. Consider the following fuzzy LP knowledge base:
cheapF light(x, y)← affordableF light(x, y) /0.9 (1)
affordableF light(x, y) /left shoulder0k4k1k3k(y) (2)

Figure 1 shows the left shoulder membership function left shoulder(0, 4000, 1000, 3000).
We use the name left shoulder0k4k1k3k for this parameterization. The function
has the mathematical form

left shoulder0k4k1k3k(y)=











1 0 ≤ y ≤ 1000

−0.0005y + 1.5 1000 < y ≤ 3000

0 3000 < y ≤ 4000



7

Fig. 1. A Left shoulder Membership Function

For example, the certainty degree computed by this function for the fact
affordableF light(flight0001, 1800) is 0.7.

Applying the semantics we discussed, val(cheapF light(flight0001, 1800), HI)=0.9∗
0.7 = 0.63, so we have that KBLP |= cheapF light(flight0001, 1800) /0.63.

Example 2. Consider the following fuzzy LP knowledge base:
A(x)← B(x), C(x) /0.5 (1)
C(x)← D(x) /0.5 (2)
B(d) /0.5 (3)
D(d) /0.8 (4)

We have that KBLP |= A(d) /0.2. The reasoning steps of example 2 are
described as follows:

val(A(d), HI) = 0.5×min(val(B(d), HI), val(C(d), HI)) accordingto(1)
= 0.5×min(val(B(d), HI), 0.5× val(D(d), HI)) accordingto(2)
= 0.5×min(0.5, 0.5× val(D(d), HI)) accordingto(3)
= 0.5×min(0.5, 0.5× 0.8) accordingto(4)
= 0.5× 0.4
= 0.2

3.2 Encoding Uncertainty Using RIF Functions

RIFs main logic dialect is RIF-BLD [3]. RIF-BLD corresponds to the language
of definite Horn rules with equality and a standard first-order semantics. Syntac-
tically, RIF-BLD has a number of extensions to support features such as objects
and frames as in F-logic, internationalized resource identifiers (IRIs) as identi-
fiers for concepts, and a rich set of datatypes and built-ins. RIF-BLD uses a
standard first-order semantics. For example, there is a rule in English describes
that A buyer buys an item from a seller if the seller sells the item to the buyer
and a fact John sells LeRif to Mary. Assuming Web IRIs for the predicates buy
and sell, as well as for the individuals John, Mary, and LeRif, the above English
text can be represented in the RIF-BLD Presentation Syntax as follows.
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Document(
Base(<http://example.com/people#>)
Prefix(cpt <http://example.com/concepts#>)
Prefix(bks <http://example.com/books#>)
Group
( Forall ?Buyer ?Item ?Seller (

cpt:buy(?Buyer ?Item ?Seller) :- cpt:sell(?Seller ?Item ?Buyer)
)
cpt:sell(<John> bks:LeRif “Mary” ‘rif:iri)
))

One technique to encode uncertainty in logics with equality such as the cur-
rent RIF-BLD (where equality in the head is “At Risk”) is mapping all predi-
cates to functions and using equality for letting them return uncertainty values
[15]. We assume that H,Bi of the fuzzy rule of equation 2 contain variables
in {?x1, · · · , ?xk} and that the head and body predicates are applied to terms
t1, · · · , tr and tj,1, · · · , tj,sj (1 ≤ j ≤ n) respectively, which can all be variables,
constants or complex terms. A fuzzy rule in the form of equation 2 can then be
represented in RIF-BLD as (for simplicity, we will omit prefix declarations)

Document(
Group
( Forall ?x1 . . . ?xk (

h(t1 . . . tr)=?ch :- And(b1(t1,1 . . . t1,s1)=?c1 . . . bn(tn,1 . . . tn,sn)=?cn
?ct =External(FIN (?c1 . . . ?cn))
?ch=External(FIM (c ?ct))) ))

Each predicate in the fuzzy rule thus becomes a function. Body predicates bi
(1 ≤ i ≤ n) in the fuzzy rule has uncertainty values between 0 and 1 by definition.
The semantics of the fuzzy rules is then defined by the norm parameters: the
intersection operator FIN and the implication operator FIM . For example, if
FIN and FIM are specified using the minimum membership function and the
multiply membership function respectively, the semantics of the fuzzy rules can
be encoded in RIF-BLD using the built-in functions numeric-multiply from RIF
Datatypes and Built-Ins (RIF-DTB) [25] and an aggregate function numeric-
minimum proposed here as an addition to RIF-DTB (this could also be defined
using rules). Based on the properties of the functions, it is fairly obvious that
the uncertainty value for the variable ?ct is a positive number less than 1 and
the value for the variable ?ch (i.e., the value returned for the head predicate
function)is between 0 and 1. Therefore, each predicate in the fuzzy rule returns
a uncertainty value between 0 and 1.

A fact of the form H /c can be represented in RIF-BLD presentation syntax
as

h(t1 . . . tr)=c
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Example 3. We can rewrite example 1 using RIF functions as follows:

(* <http://example.org/fuzzy/membershipfunction > *)
Document(
Group
( (* “Definition of membership function left shoulder(0, 4000, 1000, 3000)”[] *)
Forall ?y(

left shoulder0k4k1k3k(?y)=1 :- And(External(numeric-less-than-or-equal(0 ?y))
External(numeric-less-than-or-equal(?y 1000))))

Forall ?y(
left shoulder0k4k1k3k(?y)=External(numeric-add(External(numeric-multiply(-0.0005?y))

1.5))
:- and(External(numeric-less-than(1000 ?y))
External(numeric-less-than-or-equal(?y 3000))))

Forall ?y(
left shoulder0k4k1e3k(?y)=0 :- And(External(numeric-less-than(3000 ?y))
External(numeric-less-than-or-equal(?y 4000))))

. .
) )

Note that membership function left shoulder(0, 4000, 1000, 3000) is encoded
as three rules.

Document(
Import(<http://example.org/fuzzy/membershipfunction >)
Group
( Forall ?x ?y(

cheapFlight(?x ?y)=?ch :- And(affordableFlight(?x ?y)=?c1
?ch=External(numeric-multiply(0.9 ?c1))))

Forall ?x ?y(affordableFlight(?x ?y)=left shaulder0k4k1k3k(?y))
) )

The Import statement loads the left shoulder0k4k1k3k function defined at
the given “< . . . >” IRI.

Example 4. We can rewrite example 2 in RIF functions as follows:
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Document(
Group
( Forall ?x(

A(?x)=?xh :- And(B(?c)=?c1 C(?x)=?c2
?ct =External(numeric-minimum(?c1 ?c2))
?ch=External(numeric-multiply(0.5 ?ct))))

Forall ?x(
C(?x)= ?ch :- And(D(?x)=?c1 ?ch=External(numeric-multiply(0.5 ?c1)))

)
B(d)=0.5
D(d)=0.8

) )

3.3 Encoding Uncertainty Using RIF Predicates

Another encoding technique is making all n-ary predicates into (1+n)-ary pred-
icates, each being functional in the first argument which captures the certainty
factor of predicate applications. A fuzzy rule in the form of equation 2 can then
be represented in RIF-BLD as

Document(
Group
( Forall ?x1 . . . ?xk (

h(?ch t1 . . . tr) :- And(b1(?c1 t1,1 . . . t1,s1) . . . bn(?cn tn,1 . . . tc,sn)
?ct =Exetrnal(FIN (?c1 . . . ?cn))
?ch=Exetrnal(FIM (c ?ct)) )

) )

Likewise, a fact of the form H /c can be represented in RIF-BLD as

h(c t1 . . . tr)

Example 5. We can rewrite example 1 in RIF predicates as follows:

Document(
Import (<http://example.org/fuzzy/membershipfunction>)
Group
( Forall ?x ?y(

cheapFlight(?ch ?x ?y) :- And(affordabldFlight(?c1 ?x ?y)
?ch=External(numberic-multiply(0.9 ?c1)))
)

Forall ?x ?y(affordableFlight(?c1?x ?y) :- ?c1=left shoulder0k4k1k3k(?y))
) )
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4 Uncertainty Extension of RIF

In this section, we adapt the definition of the set of truth values from RIF-
FLD and its semantic structure. We then propose a RIF extension for directly
representing uncertain knowledge.

4.1 Definition of Truth Values and Truth Valuation

In previous sections, we showed how to represent the semantics of fuzzy LP with
RIF functions and predicates in RIF presentation syntax. We now propose to
introduce a new dialect for RIF, RIF Uncertainty Rule Dialect (RIF-URD), so
as to directly represent uncertain knowledge and extend the expressive power of
RIF.

The set TV of truth values in RIF-BLD consists of just two values, t and f .
This set forms a two-element Boolean algebra with t = 1 and f = 0. However,
in order to represent uncertain knowledge, all intermediate truth values must
be allowed. Therefore, the set TV of truth values is extended to a set with
infinitely many truth values ranging between 0 and 1. Our uncertain knowledge
representation is specifically based on Fuzzy Logic, thus a member function maps
a variable to a truth value in the 0 to 1 range.

Definition 1. (Set of truth values as a specialization of the set in RIF-FLD)
In RIF-FLD, ≤t denotes the truth order, a binary relation on the set of truth
values TV . Instantiating RIF-FLD, which just requires a partial order, the set
of truth values in RIF-URD is equipped with a total order over the 0 to 1 range.
In RIF-URD, we specialize ≤t to ≤, denoting the numerical truth order. Thus,
we observe that the following statements hold for any element ei, ej or ek in the
set of truth values TV in the 0 to 1 range, justifying to write it as the interval
[0,1].

1. The set TV is a complete lattice with respect to ≤, i.e., the least upper bound
(lub) and the greatest lower bound (glb) exist for any subset of ≤.

2. Antisymmetry. If ei ≤ ej and ej ≤ ei then ei = ej.
3. Transitivity. If ei ≤ ej and ej ≤ ek then ei ≤ ek.
4. Totality. Any two elements should satisfy one of these two relations: ei ≤ ej

or ej ≤ ei.
5. The set TV has an operator of negation, ∼: TV → TV , such that

(a) ∼ ei=1-ei
(b) ∼ is self-inverse, i.e., ∼∼ ei=ei.

Let TV al(ϕ) denote the truth value of a non-document formula, ϕ, in RIF-
BLD. Here a non-document formula could be a well-formed term whose signa-
ture is formula, or a group formula, but not a document formula. TV al(ϕ) is a
mapping from the set of all non-document formulas to TV , I denotes an inter-
pretation, and c is a real number in the interval [0,1].
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Definition 2. (Truth valuation adapted from RIF-FLD) Truth valuation for
well-formed formulas in RIF-URD is determined as in RIF-FLD, adapting the
following cases.

(1) Conjunction (glbt becomes FIN ): TV alI(And(B1 · · ·Bn)) = FIN (TV al(B1) · · ·TV al(Bn)).
(2) Disjunction (lubt becomes FU ): TV alI(Or(B1 · · ·Bn)) = FU (TV al(B1) · · ·TV al(Bn)).
(3) Rule implication (t becomes 1, f becomes 0, condition valuation is multiplied with c):
TV alI(conclusion : −condition /c) = 1 if TV alI(conclusion) ≥ FIM (c, TV alI(condition))
TV alI(conclusion : −condition /c) = 0 if TV alI(conclusion) < FIM (c, TV alI(condition))

4.2 Using RIF-URD to Represent Uncertain Knowledge

A fuzzy rule in the form of equation 2 can be directly represented in RIF-URD
as

Document(
Group
( Forall ?x1 . . . ?xk (

h(t1 . . . tr) :- And(b1(t1,1 . . . t1,s1) . . . bn(tn,1 . . . tn,sn))
) / c
)

Likewise, a fact of the form H /c can be represented in RIF-URD as

h(t1 . . . tr) / c

Such a RIF-URD document of course cannot be executed by an ordinary RIF-
compliant reasoner. RIF-URD-compliant reasoners will need to be extended to
support the above semantics and the reasoning process shown in Section 3.

Example 6. We can directly represent example 1 in RIF predicates as follows:

Document(
Import (<http://example.hog/fuzzy/membershipfunction >)
Group
( Forall ?x ?y(

cheapFlight(?x ?y) :- affordableFlight(?x ?y)
) / 0.9

Forall ?x ?y(affordableFlight(?x ?y)) / left shoulder0k4k1k3k(?y)
) )

5 Fuzzy Description Logic Programs and Their

Representation in RIF

In this section, we extend Description Logic Programs (DLP) [11] to Fuzzy
DLP by fuzzifizing each axiom in DLP and studying the semantics and the
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mappings in Fuzzy DLP; we also show how to represent such mappings in RIF-
BLD and RIF-URD based on the three uncertainty treatment methods addressed
in previous sections.

Since DL is a subset of FOL, it can also be seen in terms of that subset of
FOL, where individuals are equivalent to FOL constants, concepts and concept
descriptions are equivalent to FOL formulas with one free variable, and roles
and role descriptions are equivalent to FOL formulas with two free variables.

A concept inclusion axiom of the form C ⊑ D is equivalent to an FOL sen-
tence of the form ∀x.C(x) → D(x), i.e. an FOL implication. In uncertainty
representation and reasoning, it is important to represent and compute the de-
gree of subsumption between two fuzzy concepts, i.e., the degree of overlap, in
addition to crisp subsumption. Therefore, we consider fuzzy axioms of the form
C ⊑ D = c generalizing the crisp C ⊑ D. The above equivalence leads to
a straightforward mapping from a fuzzy concept inclusion axiom of the form
C ⊑ D = c(c ∈ [0, 1]) to an LP rule as follows: D(x)← C(x) /c.

Similarly, a role inclusion axiom of the form R ⊑ P is equivalent to an FOL
sentence consisting of an implication between two roles. Thus we map a fuzzy
role inclusion axiom of the form R ⊑ P = c(c ∈ [0, 1]) to a fuzzy LP rule
as P (x, y) ← R(x, y) /c. Moreover, ∩ni=1Ri ⊑ P = c can be transformed to
P (x, y)← R1(x, y), · · · , Rn(x, y) /c.

A DL assertion C(a) (respectively, R(a, b)) is equivalent to an FOL atom of
the form C(a) (respectively, R(a, b)), where a and b are individuals. Therefore, a
fuzzy DL concept-individual assertion of the form corresponds to a ground fuzzy
atom C(a) /c in fuzzy LP, while a fuzzy DL role-individual assertion of the form
R(a, b) = c corresponds to a ground fuzzy fact R(a, b) /c.

The intersection of two fuzzy concepts in fuzzy DL is defined as (C1 ⊓
C2)

I(x) = FIN (CI
1 (x), C

I
2 (x)). Therefore, a fuzzy concept inclusion axiom of

the form C1 ⊓ C2 ⊑ D = c including the intersection of C1 and C2 can be
transformed to an LP rule D(x) ← C1(x), C2(x) /c. Here the certainty degree
of (variable-free) instantiations of the atom D(x) is defined by the valuation
val(D,HI) ≥ FIM (c, FIN (val(Ci, HI)|i ∈ {1, 2})). If the intersection connective
is within the Superclass description, that is, C ⊑ D1 ⊓ D2 = c, it can be
transformed to LP rules D1(x) ← C(x) /c and D2(x) ← C(x) /c. Instan-
tiations of the atoms D1 and D2 as well as the conjunctive query of the two
atoms have a certainty degree defined by the valuation FIM (c, val(C,HI)). It is
easy to see that such fuzzy concept inclusion axioms can be extended to include
the intersection of n concepts (n > 2). Furthermore, when the Union connec-
tive is adopted in the subclass descriptions of a fuzzy concept inclusion axiom,
C1 ⊔ C2 ⊑ D = c, it can be transformed to two LP rules D(x) ← C1(x) /c
and D(x) ← C2(x) /c. Semantically, the certainty degree of the atom D(x)
is defined by the valuation val(D,HI) ≥ FIM (c, FU (val(Ci, HI)|i ∈ {1, 2}) =
FU (FIM (c, val(C1, HI)), FIM (c, val(C2, HI))).

For an axiom stating that the Domain of a property R is a class C is true
to some degree, ⊤ ⊑ ∀R−.C = c, it can be mapped to a fuzzy LP rule
C(x) ← R(x, y) /c with the valuation val(C,HI) ≥ FIM (c, val(R,HI)); an
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axiom stating that the Range of a property R is a class C, ⊤ ⊑ ∀R.C = c,
can be mapped to a fuzzy LP rule C(y) ← R(x, y) /c with the valuation
val(C,HI) ≥ FIM (c, val(R,HI)). As in DLP, Fuzzy DLP allows the Universal
quantification within superclass descriptions, C ⊑ ∀R.D = c. Such an axiom
is mapped to the following fuzzy LP rule D(y) ← C(x), R(x, y) /c. Next, a
fuzzy axiom using the Existential quantification within subclass descriptions in
the form of ∃R.C ⊑ D = c can be mapped to the fuzzy LP rule D(x) ←
C(y), R(x, y) /c.

In classic logics, a role R is symmetric iff for all x, y ∈ HI , val(R
−, HI) =

val(R,HI), where R− defines the inverse of a role. The same property holds
for a fuzzy symmetric role. Therefore, in Fuzzy DLP, the axiom stating that a
property R is the Inverse of a property P has the same syntax as in DLP.

In classic logics, a role R is transitive iff for all x, y, z ∈ HI , R(x, y) and
R(y, z) imply R(x, z). While in Fuzzy Logic, a fuzzy role R is transitive iff for
all x, y, z ∈ HI , it satisfies the following inequality [8]:

R(x, z) ≥ sup
y∈HI

FIN (R(x, y), R(y, z)) (3)

where FIN denotes the intersection operator. For example, in the case of Zadeh
Logic, a transitive role satisfies:

R(x, z) ≥ sup
y∈HI

min(R(x, y), R(y, z)) (4)

Therefore, in Fuzzy DLP, we define the axiom stating that a property R is
Transitive use the following syntax R+ ⊑ R. Table 2 summarizes all the map-
pings in Fuzzy DLP. In summary, Fuzzy DLP is an extension of Description Logic
Programs supporting the following concept and role inclusion axioms, range and
domain axioms, concept and role assertion axioms to build a knowledge base:
∩ni=1Ci ⊑ D = c, ⊤ ⊑ ∀R.C = c, ⊤ ⊑ ∀R−.C = c, ∩ni=1Ri ⊑ P = c, P ≡ R−,
R+ ⊑ R, C(a) = c, and R(a, b) = c, where C,D,C1, · · · , Cn are concepts, P,R
are roles, a, b are individuals, c ∈ [0, 1] and n ≥ 1. Notice that the crisp DLP ax-
ioms in DLP are special cases of their counterparts in Fuzzy DLP. For example,
C ⊑ D is equal to its fuzzy version ∩ni=1Ci ⊑ D = c for n = 1 and c = 1.

Table 2: Representing Fuzzy DLP in RIF

LP syntax D(x)← C1(x), · · · , Cn(x) /c

DL syntax ∩
n

i=1Ci ⊑ D = c

RIF function Forall ?x( D(?x) =?ch : −
And(C1(?x) =?c1 · · ·Cn(?x) =?cn
?ct = External(FIN (?c1 · · ·?cn))
?ch = External(FIM (c ?ct)))

RIF predicate Forall ?x( D(?ch?x) : −
And(C1(?c1 ?x) · · ·Cn(?cn ?x)
?ct = External(FIN (?c1 · · ·?cn))
?ch = External(FIM (c ?ct)))

Continued on next page
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RIF-URD Forall ?x(
D(?x) : − And(C1(?x) · · ·Cn(?x))
) /c

LP syntax P (x, y)← R1(x, y), · · · , Rn(x, y) /c

DL syntax ∩
n

i=1Ri ⊑ P = c

RIF function Forall ?x ?y( P (?x ?y) =?ch : −
And(R1(?x ?y) =?c1 · · ·Rn(?x ?y) =?cn
?ct = External(FIN (?c1 · · ·?cn))
?ch = External(FIM (c ?ct)))

RIF predicate Forall ?x ?y( P (?ch ?x ?y) : −
And(R1(?c1 ?x ?y) · · ·Rn(?cn ?x ?y)
?ct = External(FIN (?c1 · · ·?cn))
?ch = External(FIM (c ?ct)))

RIF-URD Forall ?x ?y(
P (?x ?y) : − And(R1(?x ?y) · · ·Rn(?x ?y))
) /c

LP syntax C(y)← R(x, y) /c

DL syntax ⊤ ⊑ ∀R.C = c

RIF function Forall ?x?y( C(?y) =?ch : −
And(R(?x ?y) =?c1 ?ch = External(FIM (c ?c1)))

RIF predicate Forall ?x?y( C(?ch ?y) : −
And(R(?c1 ?x ?y) ?ch = External(FIM (c ?c1)))

RIF-URD Forall ?x?y( C(?y) : − R(?x ?y)) /c

LP syntax C(x)← R(x, y) /c

DL syntax ⊤ ⊑ ∀R−.C = c

RIF function Forall ?x?y( C(?x) =?ch : −
And(R(?x ?y) =?c1 ?ch = External(FIM (c ?c1)))

RIF predicate Forall ?x?y( C(?ch ?x) : −
And(R(?c1 ?x ?y) ?ch = External(FIM (c ?c1)))

RIF-URD Forall ?x?y( C(?x) : − R(?x ?y)) /c

LP syntax C(x)← R(x, y) /c

DL syntax ⊤ ⊑ ∀R−.C = c

RIF function Forall ?x?y( C(?x) =?ch : −
And(R(?x ?y) =?c1 ?ch = External(FIM (c ?c1)))

RIF predicate Forall ?x?y( C(?ch ?x) : −
And(R(?c1 ?x ?y) ?ch = External(FIM (c ?c1)))

RIF-URD Forall ?x?y( C(?x) : − R(?x ?y)) /c

LP syntax D1(x)← C(x) /c,D2(x)← C(x) /c

DL syntax C ⊑ D1 ⊓D2 = c

RIF function Forall ?x( D1(?x) =?ch : −
And(C(?x) =?c1 ?ch = External(FIM (c ?c1)))

Forall ?x( D2(?x) =?ch : −
And(C(?x) =?c1 ?ch = External(FIM (c ?c1)))

RIF predicate Forall ?x( D1(?ch ?x) : −
And(C(?c1 ?x) ?ch = External(FIM (c ?c1)))

Forall ?x( D2(?ch ?x) : −

Continued on next page
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And(C(?c1 ?x) ?ch = External(FIM (c ?c1)))

RIF-URD Forall ?x( D1(?x) : − C(?x)) /c
Forall ?x( D2(?x) : − C(?x)) /c

LP syntax D(x)← C1(x) /c,D(x)← C2(x) /c

DL syntax C1 ⊔ C2 ⊑ D = c

RIF function Forall ?x( D(?x) =?ch : −
And(C1(?x) =?c1 C2(?x) =?c2
?ch = External(FU (FIM (c ?c1), FIM (c ?c2)))

RIF predicate Forall ?x( D(?ch ?x) : −
And(C1(?c1 ?x) C2(?c2 ?x)
?ch = External(FU (FIM (c ?c1), FIM (c ?c2)))

RIF-URD Forall ?x( D(?x) : − C1(?x)) /c
Forall ?x( D(?x) : − C2(?x)) /c

LP syntax D(y)← C(x), R(x, y) /c

DL syntax C ⊑ ∀R.D = c

RIF function Forall ?x?y( D(?y) =?ch : −
And(C(?x) =?c1 R(?x ?y) =?c2 ?ch = External(FIM (c FIN (?c1 ?c2))))

RIF predicate Forall ?x?y( D(?ch ?y) : −
And(C(?c1 ?x) R(?c2 ?x ?y) ?ch = External(FIM (c FIN (?c1 ?c2))))

RIF-URD Forall ?x?y( D(?y) : − And(C(?x) R(?x ?y))) /c

LP syntax D(x)← C(y), R(x, y) /c

DL syntax ∃R.C ⊑ D = c

RIF function Forall ?x?y( D(?x) =?ch : −
And(C(?y) =?c1 R(?x ?y) =?c2 ?ch = External(FIM (c FIN (?c1 ?c2))))

RIF predicate Forall ?x?y( D(?ch ?x) : −
And(C(?c1 ?y) R(?c2 ?x ?y) ?ch = External(FIM (c FIN (?c1 ?c2))))

RIF-URD Forall ?x?y( D(?x) : − And(C(?y) R(?x ?y))) /c

LP syntax R(x, y)← P (y, x), P (y, x)← R(x, y)

DL syntax R−

≡ P

RIF function Forall ?x ?y( R(?x ?y) =?ch : −
And(P (?y ?x) =?c1 ?ch =?c1)

RIF predicate Forall ?x ?y( R(?ch ?x ?y) : −
And(P (?c1 ?y ?x) ?ch =?c1)

RIF-URD Forall ?x ?y( R(?x ?y) : − P (?y ?x))

LP syntax C(a) /c R(a, b) /c

DL syntax C(a) = c R(a, b) = c

RIF function C(a) = c R(a b) = c

RIF predicate C(c a) R(c a b)

RIF-URD C(a) /c R(a b) /c

In previous sections, we presented two techniques of encoding uncertainty
in RIF and proposed a method based on an extension of RIF for uncertainty
representation. Subsequently, we also showed how to represent Fuzzy DLP in
RIF-BLD and RIF-URD in Table 2.
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Layered on Fuzzy DLP, we can build fuzzy hybrid knowledge bases in order
to build fuzzy rules on top of ontologies for the Semantic Web and reason on
such KBs.

Definition 3. A fuzzy hybrid knowledge base KBhf is a pair < KDL,KLP >,
where KDL is the finite set of (fuzzy) concept inclusion axioms, role inclusion
axioms, and concept and role assertions of a decidable DL defining an ontology.
KLP consists of a finite set of (fuzzy) hybrid rules and (fuzzy) facts.

A hybrid rule r in KLP is of the following generalized form (we use the BNF
choice bar, |):

(H(−→y )|&H(−→z ))← B1(
−→
y1), · · · , Bl(

−→
yl),&Q1(

−→
zl), · · · ,&Qn(

−→zn) /c (5)

Here,H(−→y ), H(−→z ), Bi(
−→
yi), Qj(

−→
zj) are atoms, & precedes a DL atom,−→y ,−→z ,

−→
yi,
−→
zj

are vectors of variables or constants, where −→y and each
−→
yi have arbitrary lengths,

−→z and each
−→
zj have length 1 or 2, and c ∈ [0, 1]. Also, & atoms and /c degrees

are optional (if all & atoms and /c degrees are missing from a rule, it becomes
a classical rule of Horn Logic).

Such a fuzzy hybrid rule must satisfy the following constraints:
(1) H is either a DL predicate or a rule predicate (H ∈

∑

T
⋃∑

R). H is
a DL predicate with the form &H, while it is a rule predicate without the &
operator.

(2) Each Bi (1 < i ≤ l) is a rule predicate (Bi ∈
∑

R), and Bi(yi) is an LP
atom.

(3) Each Qj (1 < j ≤ n) is a DL predicate (Qj ∈
∑

T ), and Qj(zj) is a DL
atom.

(4, pure DL rule) If a hybrid rule has head &H, then each atom in the body
must be of the form &Qj (1 < j ≤ n); in other words, there is no Bi (l = 0). A
head &H without a body (l = 0, n = 0) constitutes the special case of a pure
DL fact.

Example 7. The rule &CheapF light(x, y)← AffordableF light(x, y) /c is not
a pure DL rule according to (4), hence not allowed in our hybrid knowledge base,
while CheapF light(x, y)← &AffordableF light(x, y) /c is allowed.

A hybrid rule of the form &CheapF light(x, y)← &AffordableF light(x, y) /c
can be mapped to a fuzzy DL role subsumption axiom AffordableF light ⊑
CheapF light = c.

Our approach thus allows DL atoms in the head of hybrid rules which satisfy
the constraint (4, pure DL rule), supporting the mapping of DL subsumption
axioms to rules. We also deal with fuzzy subsumption of fuzzy concepts of the
form C ⊑ D = c as shown in Example 7.

An arbitrary hybrid knowledge base cannot be fully embedded into the knowl-
edge representation formalism of RIF with uncertainty extensions. However, in
the proposed Fuzzy DLP subset, DL components (DL axioms in LP syntax) can
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be mapped to LP rules and facts in RIF. A RIF-compliant reasoning engine can
be extended to do reasoning on a hybrid knowledge base on top of Fuzzy DLP by
adding a module that first maps atoms in rules to DL atoms, and then derives
the reasoning answers with a DL reasoner, e.g. Racer or Pellet, or with a fuzzy
DL reasoner, e.g. fuzzyDL [2]. The specification of such a reasoning algorithm
for a fuzzy hybrid knowledge base KBhf based on Fuzzy DLP and a query q is
treated in a companion paper [38].

6 Conclusion

In this paper, we propose two different principles of representing uncertain knowl-
edge, encodings in RIF-BLD and an extension leading to RIF-URD. We also
present a fuzzy extension to Description Logic Programs, namely Fuzzy DLP.
We address the mappings between fuzzy DL and fuzzy LP within Fuzzy DLP,
and give Fuzzy DLP representations in RIF. Since handling uncertain informa-
tion, such as with fuzzy logic, was listed as a RIF extension in the RIF Working
Group Charter [3] and RIF-URD is a manageable extension to RIF-BLD, we pro-
pose here a version of URD as a RIF dialect, realizing a fuzzy rule sublanguage
for the RIF standard.

The paper is an extended version of our previous work with the same ti-
tle [39]. Here we presented a unified framework for uncertainty representation
in RIF. Our fuzzy extension directly relates to the semantics of fuzzy sets and
fuzzy logic, allowing the parameterization of RIF-URD to support Lotfi Zadeh’s,
Jan Lukasiewicz’s, and other classes in the family of fuzzy logics. We do not yet
cover here cover other uncertainty formalisms, based on probability theory, pos-
sibilities, or rough sets. Future work will include generalizing our fuzzy extension
of hybrid knowledge bases to some of these different kinds of uncertainty.

The combination strategy presented in this paper is based on resolving some
atoms in the hybrid knowledge base to DL queries. Therefore, another direc-
tion of future work would be the extension of uncertain knowledge to various
combination strategies of DL and LP without being limited to DL queries.
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