
Publisher’s version  /   Version de l'éditeur: 

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la 

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez 
pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at 

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the 
first page of the publication for their contact information. 

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Physical Review. B, Condensed Matter and Materials Physics, 81, 033403, pp. 1-
4, 2010-01-13

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. 

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :
https://nrc-publications.canada.ca/eng/view/object/?id=cde76f8e-2081-4050-a1b4-b140d0e0a245

https://publications-cnrc.canada.ca/fra/voir/objet/?id=cde76f8e-2081-4050-a1b4-b140d0e0a245

NRC Publications Archive
Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / 
La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version 
acceptée du manuscrit ou la version de l’éditeur.

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien 
DOI ci-dessous.

https://doi.org/10.1103/PhysRevB.81.033403

Access and use of this website and the material on it  are subject to the Terms and Conditions set forth at

Zero-energy states in triangular and trapezoidal graphene structures
Potasz, P.; Güçlü, A.D.; Hawrylak, P.



Zero-energy states in triangular and trapezoidal graphene structures

P. Potasz,1,2 A. D. Güçlü,1 and P. Hawrylak1

1Institute for Microstructural Sciences, National Research Council of Canada, Ottawa, Canada
2Institute of Physics, Wroclaw University of Technology, Wroclaw, Poland

�Received 21 October 2009; published 13 January 2010�

We derive analytical solutions for the zero-energy states of degenerate shell obtained as a singular eigen-

value problem found in tight-binding �TB� Hamiltonian of triangular graphene quantum dots with zigzag

edges. These analytical solutions are in agreement with previous TB and density-functional theory results for

small graphene triangles and extend to arbitrary size. We also generalize these solutions to trapezoidal structure

which allow us to study bowtie graphene devices.

DOI: 10.1103/PhysRevB.81.033403 PACS number�s�: 73.22.Dj

Low-dimensional graphene nanostructures are promising

candidates as building blocks for future nanoelectronic appli-

cations due to their band gaps and magnetic properties tun-

able with size and shape.1–6 Remarkable progress has been

made in cutting graphene sheets into nanostructures with de-

sired shape and size, significantly influencing their

properties.5–7 In particular, the existence of a band of degen-

erate states near Fermi level localized at the edges in zigzag

ribbons8–10 and triangular dots11–17 was predicted by tight-

binding model and confirmed by density-functional theory

calculations. These zero-energy edge states play important

role due to their large contribution to the density of

states.11,14,18 In triangular graphene quantum dots, numerical

results show that the degeneracy of the band of zero-energy

states is proportional to the edge size and can be made mac-

roscopic. This opens up the possibility to design a strongly

correlated electronic system as a function of filling of the

shell, in analogy to the fractional quantum Hall effect.17

While the existence of zero-energy states was predicted

analytically for zigzag ribbons,8 for triangular structures, the

analysis of zero-energy states was limited to numerical tech-

niques such as tight-binding and density-functional theory

for specific and small sizes of quantum dots. A size-

independent general analytical analysis is therefore desirable.

In this work, we present analytical solutions to zero-energy

edge states in graphene triangles with zigzag edges. We also

show how the results can be generalized to the trapezoidal

structures and applied to the bowtie structures.19 Our method

allows the prediction of the number of zero-energy states as

a function of the size in all triangular, trapezoidal, and

bowtie structures.

Our starting point is the nearest-neighbor tight-binding

model. It has been successfully used to describe graphene

lattice20 and applied to other graphene materials such as

nanotubes, nanoribbons, and quantum dots.8,9,11–15,21 The

Hamiltonian is written as

H = t�
�i,j�

ai
†
a j ,

where t is hopping integral, ai
† and ai are creation and anni-

hilation operators on a site i respectively, and �i , j� indicate

summation over nearest neighbors. It is important to distin-

guish between two types of atoms which appear in the unit

cell of the honeycomb lattice of graphene sheet. For triangu-

lar structures, these atoms form two nonequivalent sublat-

tices �A and B� and they are indicated by red �light gray� and

blue �dark gray� circles of the graphene triangle in Fig. 1.

Our goal is to find zero-energy solutions to the singular ei-

genvalue problem,

H� = 0.

In this case there is no coupling between two sublattices and

the solutions can be written separately for A-type and B-type

atoms as ��=�ci�i
� with �=A ,B. The coefficients ci obey

�
�i,j�

ci = 0, �1�

where the summation is over ith nearest neighbors of an

atom j. In other words, the sum of coefficients around each

site must vanish.8 Let us first focus on the sublattice labeled

by A, represented by red �light gray� circles in Fig. 1. We

label each atom by two integer numbers n and m �with 0

�n ,m�N+1, where N is the number of A-type atoms on

the one edge�. The dash lines and open circles indicate aux-

iliary atoms which will later help to introduce boundary con-

ditions. We will now show that coefficients cn,m for all atoms

in the triangle can be expressed as a linear combination of

coefficients corresponding to atoms on one edge, i.e., cn,0.

Starting from the first row and using Eq. �1�, we can obtain

all coefficients corresponding to atoms in the second row.

For the first two coefficients from the left we obtain

c0,1=−�c0,0+c1,0� and c1,1=−�c1,0+c2,0�. These coefficients

are just equal to the sum of two upper-lying coefficients with

the minus sign. In analogy, we can write expressions for all

coefficients in the second row. In the next step, coefficients

in the third row are expressed as a sum of two coefficients in

the second row. For first coefficient from the left in the third

row we obtain c0,2=−�c0,1+c1,1�= �c0,0+2c1,0+c2,0�. The sec-

ond and third ones will have similar form. By going down

rows one by one, we can obtain all coefficients in the struc-

ture regardless of the size of the triangle. Similar to the con-

struction of Pascal triangle,22 these coefficients can be writ-

ten in a suitable form using binomial coefficients,
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cn,m = �− 1�m�
k=0

m �m

k
�cn+k,0. �2�

Here, it is important to emphasize that the only unknown are

the N+2 coefficients �cn,0’s� from the first row; the rest are

expressed as their superpositions, as it is seen from Eq. �2�.
In addition, we must use the boundary conditions; the con-

struction of the triangle requires vanishing of the coefficients

corresponding to auxiliary atoms in each corner �Fig. 1�.
This gives three boundary conditions �c0,0=cN+1,0=c0,N+1,

=0�, reducing the number of independent coefficients to

N−1.

The same analysis can be done for B-type atoms indicated

by blue �dark gray� circles. In this case, it is convenient to

include some of boundary conditions at the beginning as

shown in Fig. 2, where we only keep coefficients belonging

to auxiliary atoms on the right edge. As a consequence, the

coefficient c0,0 determines all other coefficients in the tri-

angle. Since there are three auxiliary atoms �equivalently

three boundary conditions� but only one independent coeffi-

cient, we cannot obtain any nontrivial solution. Hence, zero-

energy states can only consist of coefficients of one type

atoms—these lying on the edges. Now we can write general

form for the eigenvectors for zero-energy states in the tri-

angle,

� = �
n=0

N+1

�
m=0

N+1−n ��− 1�m�
k=0

m �m

k
�cn+k,0	�n,m

A , �3�

where N is the number of atoms on the one edge and �n,m
A is

pz orbital on A-type site �n ,m�. In this expression the only

N−1 coefficients corresponding to atoms from the first row

are independent. Thus, we can construct N−1 linearly inde-

pendent eigenvectors which span the subspace with zero-

energy states. This is in agreement with Ref. 14—the number

of zero-energy states in the triangle is N−1, where N is the

number of atoms on one edge.

Using the Eq. �3� we can then construct an orthonormal

basis for zero-energy states. First, with the help of the three

boundary conditions, we make a choice for the N−1 inde-

pendent coefficients cn,0, from which we obtain N−1 linearly

independent vectors, for instance, by choosing only one non-

zero coefficient for all N−1 collections, different one for

each eigenvector. Resulting eigenvectors can then be or-

thogonalized using standard Gram-Schmidt process. The last

step is the normalization Knorm of the eigenvectors, using

expression

Knorm = �
n=0

N+1

�
m=0

N+1−n 
�
k=0

m �m

k
�cn+k,0
2

.

The method for obtaining zero-energy eigenfunction co-

efficients for the triangular structures can also be applied to

trapezoidal structures �inset of Fig. 3�b��. As explained

above, the value of the coefficients for atoms in a given row

is sufficient to determine the coefficients for atoms in the

lower-lying row. If we stop this process of going down the

ladder one by one at any row, we then obtain a trapezoidal

structure. Equation �3� takes the following form:

� = �
n=0

N+1

�
m=0

M ��− 1�m�
k=0

m �m

k
�cn+k,0	�n,m

A , �4�

where M =min�N+1−n ,Nrow−1� and Nrow is the number of

rows in the structure �see Fig. 3�b��. In this case the last row

contains N−Nrow+2 auxiliary atoms which increases the

number of boundary conditions. The number of zero-energy

states is then given by Nrow−2 �for Nrow�1�. Here we note

that similar to the triangle, zero-energy states consist of only

one type of atoms; the only difference is increased number of

boundary conditions. In Fig. 3�a� we show tight-binding

single-particle states for triangle with N=5 atoms on one

FIG. 1. �Color online� Triangular zigzag graphene structure with

N=3 atoms on the one edge. Under each A-type atom �indicated by

red �light gray� circles� are corresponding coefficients. Dash lines

and open circles indicate auxiliary A-type atoms in the three cor-

ners, which will help to introduce three boundary conditions. For

zero-energy states all coefficients can be expressed as superposi-

tions of coefficients corresponding to atoms from the one edge

�upper row of atoms in our case�.

FIG. 2. �Color online� Triangular zigzag graphene structure

from Fig. 1. Above each B-type atom �indicated by blue �dark gray�
circles� are corresponding coefficients. For convenience, we only

left coefficients corresponding to auxiliary B-type atoms on the

right edge. For zero-energy states coefficient from upper left corner

�c0,0� determine all other coefficients in the structure. Introducing

three boundary conditions from auxiliary atoms we obtain only

trivial solution; zero-energy states consist of only A-type atoms.
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edge. As expected, there are four zero-energy states. For

comparison, in Fig. 3�b� we show single-particle states for

trapezoid with the same number of atoms in a first row. Here,

there are only two zero-energy states in agreement with our

analysis—increasing number of boundary conditions de-

crease number of zero-energy states. We note that the struc-

ture which consists of only two rows �the single chain of

benzene rings, called acene� does not have zero-energy states

while the triangular structure with N atoms on the one edge

has maximal number of zero-energy states equal to N−1. All

intermediate structures �trapezoidal structures� have number

of zero-energy states in the range between 1 and N−2, de-

pending on the number of rows.

Finally we note that the solutions of Eq. �4� can also be

applied to bowtie structures.19 These can be treated as two

trapezoidal structures connected by their shorter base, shown

in Fig. 4. It is important to emphasize that the upper trap-

ezoid has one zero-energy state which consists of A-type

atoms �red �light gray� circles� while lower trapezoid has one

zero-energy state which consists of B-type atoms �blue �dark

gray� circles�. Connecting these two systems does not affect

the zero-energy solutions since coefficients belonging to con-

necting atoms are zeros. Using zero-energy eigenvectors for

trapezoids, Eq. �4�, we obtain expressions for two groups of

zero-energy states in the bowtie structures,

�A = �
n=0

N+1

�
m=0

M ��− 1�m�
k=0

m �m

k
�cn+k,0	�n,m

A �5�

for upper trapezoid, where A indicates A-type atoms from

upper part and

�B = �
n=0

N�+1

�
m=0

M� ��− 1�m�
k=0

m �m

k
�cn+k,0� 	�n,m

B� �6�

for lower one, where B� indicates B-type atoms from lower

part. Two parts of the bowtie structure are separated by the

dash line in Fig. 4. Coefficients cn,0�cn,0� � correspond to N

A-type �N� B-type� atoms from the highest �lowest� row in

the bowtie structure from Fig. 4. Note that it is possible to

use Eqs. �5� and �6� to asymmetric bowtie structures consist-

ing of two different trapezoids �N�N��.
In summary, we derived here analytical expression for

zero-energy states in triangular and trapezoidal graphene

quantum-dot structures. Our method allows prediction of the

number of zero-energy states in quantum dots of arbitrary

size which can be understood in terms of a competition be-

tween the number of independent coefficients and the num-

ber of auxiliary atoms �the number of boundary conditions�.
We also showed that the number of zero-energy states can be

controlled by changing the number of rows in the trapezoidal

structures but does not depend on the number of atoms in the

base of the trapezoid. Finally, we applied our results to

bowtie structures and showed that two independent groups of

zero-energy states coexist in these systems.

The authors thank NRC-CNRS CRP, Canadian Institute

for Advanced Research, Institute for Microstructural Sci-

ences, QuantumWorks and Polish MNiSW under Grant No.

N202-071-32/1513 for support.

FIG. 3. �Color online� Single-particle spectrum from tight-

binding calculations for �a� 46 atoms triangle and �b� 38 atoms

trapezoid �with Nrow=4�. There are four zero-energy states in the

triangle �number of atoms on the one edge N=5� and two zero-

energy states in the trapezoid in agreement with our analysis.

Changing number of rows in the trapezoid we can control number

of zero-energy states.

FIG. 4. �Color online� Two trapezoids �left� and bowtie structure

�right�. Each of two trapezoids has one zero-energy state, consisting

of only A-type atoms �indicated by red �light gray� circles� for the

upper trapezoid and consisting of only B-type atoms �indicated by

blue �dark gray� circles� for the lower trapezoid. Connecting these

two systems does not affect the zero-energy solutions since coeffi-

cients belonging to connecting atoms are zeros �the four nearest

atoms to the dash line�. The bowtie structure on the right has two

zero-energy states: one which completely lies in upper part and

consists of A-type atoms and second one lies in lower part and

consists of B-type atoms.
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