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Abstract

Numerous processes in the automotive, additive manufacturing or energy

storage industries require an accurate prediction of the solidification (freezing)

and melting (thawing) dynamics of substances, whether they be pure or blends

of components. The numerical modelling of such phase change is highly complex

because it includes sharp moving interfaces and strong discontinuities in the

materials properties. This complexity is often exacerbated by the occurrence

of natural convection, which induces a strong coupling between the motion of

the melted fluid and the position of the solid-liquid interface. This leads to

strongly coupled non-linear stiff thermo-fluid problems which have to be solved

in complex geometries.

In this work, we introduce two novel stabilized finite element model to predict

the phase change with natural convection. The first model uses a more classical

viscosity approach to impose stasis in the solidified region whereas the second

one is based on an immersed boundary formulation to accurately describe the

solid-fluid interface.

The efficiency of the stabilized approach is first demonstrated by studying

the Stefan problem. The two approaches to impose stasis are then compared

using 2D test cases before they are both used to study melting in a rectangular
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(2D) and prismatic (3D) cavity. Significant differences are observed in the flow

profiles and the solid-liquid interface between the 2D and the 3D simulations.

Keywords: Multiphase flows; Melting and Freezing; Selective Catalytic

Reduction (SCR; Computational Fluid Dynamics; Finite Element Method;

Immersed Boundary Method.

1. Introduction

The modelling of solidification and melting (or thawing) is a challenging

topic which had initially been studied extensively in the 80’s and 90’s for its

application in metallurgical processes such as casting in order to predict the

crystal growth structure and the ensuing metallurgic properties [1, 2, 3, 4]. Since

then, it has garnered continuous large interest for energy applications such as

latent heat storage [5, 6, 7, 8, 9, 10]. In this latter application, the interest has

lied more in predicting accurately the melting or freezing rate and the overall

heat storage instead of the precise position of the solid-liquid interface.

Other recent applications require an accurate prediction of the position of

the melting and solidification interface. An example lies in the storage of Ad-

Blue, a urea-water solution which is used for the Selective Catalytic Reduction

(SCR) of the exhaust gas of diesel engines [11, 12, 13]. The implementation of

this technology, which has the potential to greatly reduce nitrogen oxides (NOx)

emissions, faces considerable challenges in colder regions of the world since Ad-

Blue freezes and expands around -11◦C. This has two effects. First, the tanks

must be able to handle freezing of the fluid without endangering the structure of

the vessel, which could lead to leakage or worse, total breakage. Considering the

complex shape that such reservoir can take, this requires an accurate prediction

of the solidification front in order to prevent the occurrence of liquid entrapment

in solidified Adblue. Such entrapment leads to the generation of a high pressure

zone which could distort or break components. This has to be predictable while

taking into account various factors which may alter the freezing dynamics, such

as the parking angle of the vehicle. Secondly, the tank must house components
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that can thaw a sufficient amount of AdBlue using minimal energy so that the

system can operate even if the majority of the tank remain frozen. Thus, it is

important to develop robust numerical models that can simulate freezing and

thawing while predicting the position of the interface with great accuracy in

order to ensure adequate design and operation of SCR components.

A second application lies in laser powder-bed fusion additive manufacturing.

In this type of process, a laser is user to melt metal powder, creating a melted

pool of liquid which then solidifies, ensuring buildup of the desired geometry

[14, 15]. For such processes, accurate prediction of the solid-liquid interface and

the flow dynamics are critical.

From a physical and mathematical point of view, the modelling of phase

change (i.e. melting or solidification) is complex since they lead to sharp mov-

ing non-linear interfaces, an issue that may be exacerbated by the occurrence

of natural convection. When the flow is at high Rayleigh number, natural con-

vection can have a considerable influence on the freezing or melting processes

since the motion of the fluid alters the temperature gradient felt at the solidified

interface. We recall the definition of the Rayleigh number :

Ra =
ρ2βg (Tw − Ts)L

3

kµ
(1)

with ρ the density of the fluid, β its linear coefficient of expansion, g the gravity,

Tw the wall temperature, Ts the melting point temperature, k the thermal

conductivity, µ the dynamic viscosity and L the characteristic dimension of the

liquid volume. Models for freezing and melting become inherently complex due

to the coupling between the solid-liquid discontinuity, the natural convection and

the non-linear variations of the physical properties of the material (such as the

thermal conductivity) [16]. Consequently, the velocity and the energy equation

become tightly coupled. However, the phase change can occur on a very slow

time scale compared to the convective or conductive one. This separation of

time scale is in part characterized by the Stefan numbers for melting (Stm) and
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solidification (Sts):

Stm =
cp (Tw − Tm)

hl
(2)

Sts =
cp (Tm − Tc)

hl
(3)

with cp the specific heat, hl the latent heat, Tm is the melting (or solidification)

temperature and Tw or Tc is the temperature of the heating or cooling wall re-

spectively. This must be taken into account when designing numerical methods.

It can, for instance, render direct explicit approach prohibitively expensive due

to the long physical time that must be simulated.

Numerous models have been developed to model solidification and melting.

The models can be distinguished by two traits: the manner in which the latent

heat due to the phase change is modeled and the strategy used to impose stasis

within the solidified fluid. Generally, the phase change is taken into account

by introducing a solidification interval (∆T = Tl − Ts, sometimes referred to as

mushy region) over which the contribution of the latent heat is introduced ei-

ther via a modified specific heat [17] or a volumetric source term [11].To impose

the stasis of the solidified region, Darcy penalization (using velocity), brinkman

penalization (using velocity and viscosity), viscous penalization (via a rheologi-

cal model) or a direct imposition of Dirichlet boundary condition [18] are used.

We refer the reader to the work of Angot et al. [19] or Blais et al. [20] for

an analysis of penalization approaches and their consequences on accuracy and

robustness.

Many of these strategies (or combinations of strategies) them have been

developed in the context of more classical methods such as the finite element

(FEM) [17, 18] or finite volume (FVM) approaches [11, 17, 21, 12]. They have

also been used in the context of the Lattice Boltzmann method (LBM) with two

distinct sets of populations for the velocity and the temperature [22, 23, 24].

In these cases, stasis in the solidified region was imposed either via a viscosity

model [22] or a probabilistic porous media approach [23, 24]. However, we recall

that the LBM is an explicit method and uses a diffusive time scaling (∆t ∝ ∆x2).
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Therefore the treatment of cases where there is a sharp separation between the

time scale of conduction, convection and melting (esp. for low Stefan number)

can be computationally expensive due to the large number of iterations required.

The goal of the present work is to design an implicit 3D finite element model

for phase change with natural convection. This requires a formulation for which

the phase change can be taken into account in a robust implicit manner with-

out requiring under-relaxation of the non-linear solver as used for instance by

Ogoh and Groulx [25].This will allow the simulation of the full melting and so-

lidification problem while minimizing the issues related to the sharp time scale

differences between conduction/convection and phase change Furthermore, we

wish to be able to model phase change of pure and well as non-pure substances

and as such, the influence of the solidification interval on the dynamics should

be well characterized and, for the case of pure substance, be minimized. As

such, the influence of the solidification interval will be investigated therein this

work

We present two novel stabilized implicit finite element model for phase

changes with natural convection. These model differ by the approach used to

impose stasis of the solidified material. In the first model the stasis of the fluid

is enforced by using a viscous penalization of the momentum equation. The

second approach uses a conformal decomposition to reconstruct the solid-liquid

interface within the elements. Thus an immersed boundary condition can be

used to impose no-slip on the surface of the solidified material. This decomposi-

tion is also used for the energy equation to ensure conformity of the convection

terms with the immersed interface.

The approaches to resolve the phase change are first verified on the classical

Stefan test case. The role of stabilization to improve the stability and robust-

ness of the model is discussed. The influence of the model parameters on the

stability and the accuracy of the model as well as on the thickness of the phase

change interval is established using mesh refinement analysis. The accuracy of

the strategies used to impose stasis are compared via order of convergence anal-

ysis. The model is then validated by studying the melting of solidified liquid
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in a rectangular (2D) and prismatic (3D) cavity heated up by its lateral wall.

Comparison with the literature shows that the models are able to reproduce

melting front instabilities at high Rayleigh number and the relative accuracy of

the models are compared. Future work possibilities deriving from this model,

such the modelling of phase change of substances with different solid and liquid

densities, are discussed as concluding remarks.

2. Model Formulation

The incompressible Navier-Stokes equations describing the momentum and

mass conservation with the Boussinesq approximation are used in the present

work [26]

∇ · u =0 (4)

ρ
∂u

∂t
+ ρ (u · ∇)u =−∇p+∇ · τ + ρβg (T − Tr) (5)

where ρ is the fluid density evaluated at a reference temperature, u is the veloc-

ity, β is the linear coefficient of thermal expansion, T is the fluid temperature

and Tr is a reference temperature around which the density variation is lin-

earized. The deviatoric stress tensor for an incompressible fluid, τ , can be

expressed as a function of the velocity gradient:

τ =
(

µ
(

∇u+∇u
T
))

(6)

The energy equation is [26] :

ρ
∂

∂t
(cpT ) + ρu · ∇ (cpT ) = ∇ · (λ∇T ) (7)

where cp is the specific heat, T the temperature and λ the thermal conductivity.

In order to correctly account for the energy balance during phase change we

compute the specific heat based on the change in enthalpy as :

cp =
H(T )−H(T0)

T − T0
(8)
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whereH is the temperature dependent enthalpy, T is the temperature at current

time step and T0 is the temperature at the previous time step. The enthalpy of

the fluid, H, is computed from :

H = H0 +

∫ T

T0

c∗p (T
∗) dT ∗ (9)

where the specific heat c∗p is defined as :

c∗p(T ) =























cp,s ∀ T < Ts

cp,s+cp,l
2 + hl

Tl−Ts
∀ T ∈ [Ts, Tl]

cp,l ∀ T > Tl

(10)

where indices s and l refer to the solid and liquid state values respectively.

The phase transition (or mushy) interval, ∆T = Ts − Tl, controls the tem-

perature interval over which the phase change occurs. For pure substances, in

which the phase change occurs at a single temperature, ∆T can be seen as nu-

merical parameter to relax the phase transition. However, blended substances,

such as Adblue or metal alloys, can solidify or melt over a relatively important

temperature range (0.5◦C to 1◦C). In this latter case, ∆T should represent the

physical phase transition interval.

2.1. Finite Element Formulation for the Navier-Stokes equation

In this work, a GLS (Galerkin Least-Squares) formulation is used with con-

tinuous linear interpolants for the velocity, the pressure and the temperature.

A first order implicit Euler scheme is used for the time derivative. The ensuing

weak form for the Navier-Stokes equation are:

∫

Ω

ρ

(

u− u0

∆t
+ u · ∇u

)

Nu
i dΩ−

∫

Ω

p∇Nu
i dΩ+

∫

Ω

µ
(

∇u+∇u
T
)

· ∇Nu
i dΩ−

∫

Ω

ρβg (T − Tr)N
u
i dΩdΩ+

∑

K

∫

ΩK

[

ρ

(

u− u0

∆t
+ u · ∇u

)

+∇p−∇ ·
[

µ
(

∇u+∇u
T
)]

− ρβg (T − Tr)

]

τsu · ∇Nu
i dΩK =

∫

Γ

(τ · n̂− pn̂)Nu
i dΓ (11)

7



∫

Ω

∇ · uNp
i dΩ+

∑

K

∫

ΩK

[

ρ

(

u− u0

∆t
+ u · ∇u

)

+∇p−∇ ·
[

µ
(

∇u+∇u
T
)]

− ρβg (T − Tr)

]

τs · ∇Np
i dΩK = 0 (12)

where u and p are the velocity and pressure solution at the current time step tn,

u0 is the solution at the previous time step tn−1 and ∆t = tn− tn−1 is the time

step. Nu
i and Np

i are the continuous, piecewise linear test functions related to

the velocity and the pressure respectively. The index K refers to the element.

The first four integrals in the left hand side of 11 and the first integral in the

left hand side of 12 correspond to the classical Galerkin formulation whereas

the integrals over the element interior are the GLS stabilization terms. The

stabilization parameter τs is computed as [27, 28]:

τs =

[

(

2ρ |u|
hK

)

+

(

4µ

mKh2
K

)2
]−1/2

(13)

where hK is the size of the element K (the diameter of the smallest inscribed

sphere) and mK is a coefficient set to 1/3 for linear elements [27, 29].

2.2. SUPG/GGLS stabilized formulation for the energy equation

A SUPG/GGLS formulation of the energy equation is used:

∫

Ω

ρcp

(

T − T0

∆t
+ u · ∇T

)

NT
i dΩ +

∫

Ω

λ∇T · ∇NT
i dΩ

+
∑

K

∫

ΩK

[(

T − T0

∆t
+ u · ∇T

)

−∇ · (λ∇T )

]

τT (u · ∇NT
i )dΩK

+
∑

K

∫

ΩK

τ
∇
λ∇

(

ρcp
T − T0

∆t

)

· ∇NT
i dΩK (14)

= −
∫

Γc

hc(T − Tc)N
T
i dΓ

where T is the solution at the current time step tn, T0 is the solution at the

previous time step tn−1 and NT
i are the continuous, piecewise linear test func-

tions associated to the temperature equations. The first two integrals in the
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left hand side of equation (14) correspond to the Galerkin formulation, the in-

tegrals over the elements interior in the third term are the SUPG stabilization

and the integrals over the elements interior in the fourth term are the GGLS

stabilization. SUPG is used to stabilize the finite element formulation in the

presence of important advective terms (high Reynolds number flow) and GGLS

is a stabilized method dealing with sharp gradients in the solution [30]. The

SUPG stabilization parameter is computed for element K as [27]:

τT =

[

(

2ρcp|u|
hK

)2

+

(

4λ

mkh2
K

)2
]−1/2

(15)

The GGLS stabilitation parameter τ
∇

is computed as [30]:

τ
∇
=

h2
K

6λ
ξ, (16)

where

ξ =
cosh(

√
6α) + 2

cosh(
√
6α)− 1

− 1

α
, (17)

α =
(ρcp/∆t)h2

K

6λ
, (18)

The dimensionless parameter ξ tends towards to unity for very large values of

α and to 1/2 for α much smaller than the unity.

2.3. Stasis imposition

Two strategies are considered in the present work to impose the stasis

(u = 0) in the solidified region: a viscous penalization (henceforth referred

to as µ-Penalization) via rheological model and an Immersed Boundary-Body

Conformal Enrichment approach (henceforth referred to as IB).

2.3.1. Viscous penalization - µ-Penalization

In the viscous penalization approach, a rheological model in which the vis-

cosity depends on the fraction of solidified material φ is introduced. The solid
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fraction is directly related to the temperature via the relation :

φ =























1 ∀ T < Ts

Tl−T
Tl−Ts

∀ T ∈ [Ts, Tl]

0 ∀ T > Tl

(19)

Aus der Wiesche et al. [11] proposed a semi-empirical viscosity model which

is very similar to the Kriger-Dougherty model for solid suspension:

µ =























µs ∀ T < Ts

min
(

µs, µl

(

1− φ
φc

)n)

∀ T ∈ [Ts, Tl]

µl ∀ T > Tl

(20)

where µl is the viscosity of the liquid while φc and n are empirical parame-

ters which correspond respectively to a critical solid fraction and a thickening

exponent. The solid viscosity, µs, is a numerical parameter to impose stasis.

Preferably, µs should be chosen to be sufficiently large in order to ensure no

advection of solidified material in the bulk of the flow, but not too large in or-

der not to degrade too significantly the condition number of the global system

matrix.

2.3.2. Immersed Boundary-Body Conformal Enrichment - IB

The Immersed Boundary-Body Conformal Enrichment method introduced

by Ilinca and Hétu [31, 32, 33, 34, 35, 36, 37] is extended in the present work

to natural convection flow in the presence of phase change. Instead of using a

penalization technique to approximate the no-flow behavior in the solid region,

the IB method uses a local enrichment of the velocity interpolation space such as

to be able to represent accurately the solid-liquid interface when it lies within

elements. The procedure was described in details in [31, 32]. This method

was previously extended to study natural convection [36] and conjuguated heat

transfer [37], but only in static configurations.

In the case of solid geometries, the position of the interface can be described

using an analytical signed distance function. The case of phase change studied
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in the present work is significantly different because of the motion of interface

is controlled by the energy equation. Thus, the position of the interface is

described using the nodal temperature values as well as a critical temperature

value which is generally equal to the liquidus temperature Tl.

Elements which are cut by the fluid/solid interface are decomposed into sub-

elements which are either entirely in the fluid or entirely in the solid regions.

Then, flow equations are solved in the entire fluid region (i.e. including fluid

sub-elements) and the velocity at interface nodes is imposed as a boundary

condition, while the pressure degrees of freedom at interface nodes are eliminated

at element level by static condensation.

Since the local enrichment of the velocity and pressure interpolation space

is condensed at the element level, these degrees of freedom are not kept globally

and cannot be used straightforwardly. Consequently, a special procedure must

be carried out to calculate the convection terms of Eq. (14). For each of

the element which contain an interface, the interpolation space for velocity is

locally enriched using the nodal values as well as the value at the interface

which is known due to the no-slip boundary condition. This does not lead

to any additional degree of freedoms, as the velocity are knowns at the time

of the calculation, but this alters the integration rules by adding gauss points

and altering their position as a function of the interface position. Thus, the

integration rule for the convection term can be changed to take into account the

enriched velocity space without altering the underlying mesh.

We have found that this local enrichment of the velocity interpolation space

for the energy equation was necessary, otherwise strong convection of solidified

material would occur which lead to results which were non-physical.

2.4. Error calculations

For the three verification test case investigated in this article, the methods

are compared using the L2 norm of the error which is defined as :

‖e(ξ)‖2 =

(

Ne
∑

ie

∫

ΩK

(ξ − ξa)
2
dΩK

)

1

2

(21)
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where ‖e(ξ)‖2 is the L2 norm of the error for ξ, K is the element number, ΩK

is the element volume and ξ and ξa are respectively the numerical solution and

analytical solution for a variable (i.e temperature, velocity). The integration

over each element (tetrahedral in our case) is carried out using the same Gauss

integration rule used in the element integration of the finite element formulation.

2.5. Implementation of the model

Both the µ-Penalization and the IB approaches were implemented in our

in-house software DFEM. This software allows memory efficient MPI domain

decomposition where each of the processes are aware of their local elements and

the surrounding ghost nodes. As such, large problems can be solved without

necessitating a large amount of memory since the value of the unknowns are

only stored for the processes in which they belong.

In DFEM, the Navier-Stokes equation with Boussinesq hypothesis (4) and

the energy equation (7) are solved in a decoupled fashion and global iterations

are carried out within each time-step to ensure convergence of the two-way

coupling between the two equations. We have found that few global iterations

(two to three) were required for convergence in transient analysis. Considering

the stiffness of the energy equation due to the phase change, we believe this

approach is more robust and faster than a monolithic resolution.

This software was verified using the method of manufactured solutions no-

tably for flows and temperature (or enthalpy) profiles for which non-trivial two-

way coupling between (4) and (7) was ensured. We refer to [38, 39] for an

extensive presentation of the method of manufactured solutions and to Blais

and Bertrand [40] for the procedure used to implement it automatically using

Python.

3. Verification

3.1. Stefan problem

The Stefan problem describes the melting or the solidification of a pure

substance by conduction in a 1D semi-infinite domain. This classical problem,
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extensively described in the literature [11], is often used as the core test case to

establish the accuracy and the robustness of numerical scheme for phase change.

Although it is established for a semi-infinite domain, it can be solved on a finite

domain provided that it is sufficiently long. In this case, insulation (Neumann)

boundary condition are applied at the end. This problem is illustrated in Figure

1.

Figure 1: In the Stefan test case, a solidified fluid is allowed to thaw, which in turns displaces

the solid-liquid interface.

The solution for the temperature in the liquid is given by:

T (x, t)− Tw

Ts − Tw
=

erf

(

x
√

λ
ρ
t

2

)

erf(β)
(22)

where Tw is the wall temperature and Ts is the melting (or solidification) point

of a pure substance. The parameter β is obtained by solving the non-linear

algebraic equation:

β expβ
2

erf (β) =
Ste√
π

(23)

In the present work this equation is solved using the SciPy package and Python

[41]. The displacement of the melting front (the dashed lined in Figure 1) is:

δ(t) = 2β
√
αlt (24)

with αl =
λl

ρlCpl
the diffusivity coefficient in the liquid phase and δ(t) the melting

front displacement.

Although simple, this problem can be challenging to solve numerically be-

cause of the sharp impact of the phase change on the specific heat within the

solidification interval. Even if this problem is inherently a 1D problem, we anal-

yse it in 3D by generating structured hexahedral meshes on a [0, 0, 0]×[1, 0.1, 0.1]
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domain. The number of nodes in the y and z directions is kept constant at 6

(for 5 intervals), but it is adjusted from 101 to 1001 in the x direction which

represents the direction in which the heat transfer occurs (3636 to 36036 total

nodes or DOF). Finally, these hexahedrons are each divided into 5 tetrahedron.

This only changes the number of elements, but does not alter the number of

nodes. In what follow, ∆x is defined as the distance in the x direction between

each nodes.

Figure 2 shows a typical result for Stl = 0.01, αl = 1, ∆x = 0.01 and

∆T = 0.01 with GGLS stabilization. It can be seen that even for a relatively

coarse mesh, a very sharp interface can be captured between the liquid and solid

phase. Indeed, the smoothing of the interface due to the solidification interval

is barely perceivable for this case.

0.0 0.2 0.4 0.6 0.8 1.0

Position - x 

0.0

0.2

0.4

0.6

0.8

1.0
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e
m
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e
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Simulation

Analytical solution

Figure 2: Temperature profile for the Stefan problem with Stl = 0.01, αl = 1, ∆x = 0.01 and

∆T = 0.01.

We then investigate the influence of the phase change interval ∆T = Tl −
Ts as well as the mesh size on the error of the numerical solution for both
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the stabilized and non-stabilized scheme. All simulations are carried out using

a constant ratio between the time step and the mesh size such that ∆x ∝
∆t. Furthermore, the final time (5s) is chosen so that the Neumann boundary

condition used to model the semi-infinite domain does not alter the solution.

For the coarser mesh (∆x = 0.01), 100 time steps are used to simulate 5s.

Consequently, 200 time steps are used for ∆x = 0.005, 400 for ∆x = 0.0025 and

so on and so forth.

We note that the analytical solution for the Stefan problem is defined for a

pure substance. Consequently, on an uniform mesh, the L2 norm of the error

measured in our analysis will be due to two component:

‖e(T )‖2 ∝ h2
e + g(∆T ) (25)

where he is the element size and g(∆T ) is an unknown function. The goal

of this analysis is to assess the relative importance of these two errors and to

demonstrate that the scheme is coherent and that, as he and ∆T go towards

zero, the error also goes to zero. Figure 3 and 4 present the L2 norm of the error

for the temperature for the non-stablized and the GGLS stabilized approach.

Clearly, the value of the solidification interval ∆T has the highest impact on the

norm of the error. It can be seen that for higher values of ∆T , the solutions is

barely affected by the mesh size. The discretization error is negligible in front

of the solidification interval error and the solidification interval is sufficiently

large such that it is smoothly represented on all meshes. This is true for both

the stablized and non-stablized cases.

For coarse meshes (∆x = 0.01) in both cases (Figure 3 and Figure 4), de-

creasing the value of ∆T lowers the error up until a certain value of the so-

lidification interval (∆T = 0.02) for the non-stablized and ∆T = 0.01 for the

stabilized). This decrease in error is due to a sharpening of the interface which

reduces the length over which the phase change occurs. However, after a certain

value, the error starts to increase again. The results for the stabilized and non-

stabilized scheme differ greatly at this point. For the case of the non-stabilized

scheme, the error increase is drastic and is due to the appearance of oscillations
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Figure 3: L2 norm of the error for the Stefan problem using a standard Galerkin formulation
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Figure 4: L2 norm of the error for the Stefan problem with GGLS stabilization
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in the first few time steps which lead to a violation of the positivity of the tem-

perature. This, in turns leads to zones of negative temperature which induce

significant errors over the whole domain. For the stabilized scheme, the temper-

ature remains positive and the error remains of the same order of magnitude.

It also took on average 5 times less iterations of the non-linear resolution to

reach a solution with the GGLS stabilization compared to the regular Galerkin

formulation.

As the mesh is refined (for lower ∆x in Figure 3 and 4), the threshold value

of ∆T over which a minimal error is obtained is lowered since there are more

nodes that be can used to represent the phase change interval. For ∆x = 0.001,

it can be clearly observed that the scheme converges to the analytical solution

as the solidification interval decreases. In this case, reducing the solidification

interval by a factor of 50 leads to a decrease in the norm of the error by a factor

of 100.

Figure 5 shows the normalized interface thickness (∆x∆T

∆x ) , which is defined

as the maximal distance between two nodes which are at a value Tl−0.01∆T and

Ts+0.01∆T when using GGLS. For the higher values of the solidification interval

(∆T = 0.1 and ∆T = 0.05), the relative thickness is inversely proportional to

∆x, which means that the interface length is mesh independent. However,

for the smaller intervals (∆T = 0.005 and ∆T = 0.002) the relative thickness

barely increases as the mesh is refined. This means that the original mesh

does not contain a sufficient number of elements to accommodate the interface.

It is interesting to note that the GGLS stabilization allows the interface to

reside in thickness as small as two elements while ensuring the positivity of the

temperature and preventing oscillations.

From our in-depth analysis of the Stefan test case, it appears that in conduction-

dominated problems, the interface thickness, is a parameter that has the highest

impact on the error of the solution. This has not been studied in-depth before

in the literature. Furthermore, the stabilized scheme allows the use of a smaller

solidification interval without generating oscillations. It preserves the positivity

of the temperature which is a highly desirable property, especially for uses in
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Figure 5: Relative thickness of the interface for various mesh spacing ∆x and phase change

interval ∆T .

meshes for which the element size can vary greatly such as those required for

industrial problems.

3.2. Natural convection between plates

A simple natural convection flow is the case of the natural convection be-

tween two infinite plates for which an analytical solution exist [26]. The config-

uration for this flow is illustrated at Figure 6. This test is highly representative

of natural convection when there is a distinct scale seperation between the ge-

ometrical dimensions of the flow, such as in the initial state of a melting cavity

of reservoir. In this case, the temperate profile is independent of the velocity

profile since H/W >> 1. This results in a Couette profile for the temperature

driven by conduction alone:

T (x) = TL + (TL − TR)
x

2B
(26)
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This temperature profiles then drives the Boussinesq source term in the

Navier-Stokes equation, which in turns leads to the following profile [26]

u = [0, v(x), 0]

v(x) =
ρ0gβ (TL − TR)B

2
F

12µ

(

(

x

BF

)3

−
(

x

BF

)

)

(27)

(a) Regular natural convection be-

tween two plates

(b) Natural convection between

two plates with phase change

Figure 6: Natural convection between two plates. The configuration in (a) is the classical case

from Bird et al. [26] whereas the configuration in (b) considers a solid-liquid interface and is

used in the present work for verification. Both flows possess the same analytical solution (27)

with a differently defined width B.

This test can easily be extended to account for phase change flow if the phase

transition is set at a temperature in the interval [min(TL, TR),max(TL, TR)].

This has the consequence of reducing the velocity magnitude and the flow width

due to the change of width of free flowing fluid domain (i.e a change of B to

B∗ in (27)). This configuration is illustrated in Figure 6b. The infinite plate
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geometry cannot be simulated directly, but we consider the case where the ratio

between the height (H) and the width (2B) is 100 and we monitor the velocity

profile in a small region in the center of the domain (y ∈ [4.5, 5.5]). Table 1

presents the parameters and the mesh characteristics of the case studied.

Table 1: Simulation parameters for the natural convection flow between plates.

Half-width (B) 0.05m

Depth 0.1 m

Height (H) 10m

Domain [0,0,0]×[0.1,10,0.1]

Fluid viscosity 1 Pa.s

Fluid density 1 Kg/m3

Coefficient of expansion β 1 ◦C−1

Reynolds number 0.15

This test is carried out by simulating the steady flow between the plates

and altering the position of the solid-liquid interface, by modifying the liquidus

temperature, such that this position goes from 0.05 to 0.0498 (δxinterface from

0 to 0.002). Consequently, the interface has been displaced over a complete

element ( δx
∆x from 0 to 1). In cases where the position of the solid-liquid interface

is not conformal with the mesh, the no-slip boundary condition in the solidified

region is imposed using either the µ-Penalization or the IB method. Figure 8

presents the ratio between the norm of the error when using the µ-Penalization

and the IB method (
‖e(v)µ‖2

‖e(v)IB‖
2

) as a function of the displacement of the interface

(δxinterface) normalized by the spacing between the elements in the x direction

(∆x). For cases where the interface is aligned with the mesh, both methods

have the same error. However, when the interface is moved to reside within

the elements, the µ-Penalization approach induces an additional error due to

the way the no-slip boundary condition is imposed. This error is linked to the

position of the discrete gauss points at which the viscous stress are calculated

which alters the position of the interface on the discretized domain. Figure
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7 shows the y component of the velocity for the case where the interface is

located at x = 0.4996 which is the case where the relative error between the

approach is maximal (
δxinterface

∆x = 0.2). It can clearly be seen that the maximal

velocity is underestimated and that the no-slip condition is actually applied at

a significant distance away from the interface. Cleary, the IB method allows

for a much more accurate resolution of the fluid velocity for cases where the

mesh is non-conformal with the position of the solid-liquid interface. However,

since the analytical solution is only valid for an infinite domain, rigorous error

convergence analysis cannot be carried out for this flow. Hence, in the next

verification case, a Taylor-Couette flow is used to carry out such an analysis.
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Figure 7: Axial velocity profile for the natural convection flow between two infinite plate with

a solidified interface.
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Figure 8: Relative L2 norm of the error between the µ-Penalization and the IB method. The

IB method is more accurate than the µ-Penalization when the interface is within elements.

3.3. Taylor-Couette flow

The second verification test case that we investigate is the well-established

Taylor-Couette flow[26]. This flow, often referred to as the flow between two-

concentric cylinder, is a well-established test case for methods which are de-

signed to handle geometries which are not aligned with underlying mesh since it

possesses a non-trivial analytical solution at low Reynolds number. Assuming

a laminar flow, the velocity profile takes the form :

u = [0 uθ(r) 0]
T (28)

where uθ is the azimuthal velocity for which the analysis solution is [26]:

uθ(r) = ΩκRo

(

Ro

r − r
Ro

1
κ − κ

)

(29)

where r is the radial coordinate, Ω is the angular velocity of the inner cylinder,

R is the radius of the outer cylinder and κ is the ratio of the inner cylinder Ri

to the outer cylinder Ro such that κ = Ri

Ro
. We note that an analytical solution
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also exists for the case where both the inner cylinder and the outer cylinder are

rotating [26, 42].

To compare the µ-Penalization and the IB approach, we study this flow

in the three configurations illustrated in Figure 9. For the first configuration

(Figure 9a), a conformal mesh is used to mesh the inner cylinder whereas the

outer cylinder is imposed via the viscous penalization by imposing a jump in

viscosity from the radius corresponding to the outer cylinder. In the second case

(Figure9c), the same conformal mesh is used, but the outer cylinder is imposed

using the IB method. Finally, for the third configuration at Figure 9b, both

the moving inner cylinder and the static outer cylinder are modeled using the

IB method. Theses choices of configurations were made in order to ensure that

the only differences in L2 norm of the error between the first and the second

configuration was due to the choice of the strategy to impose no-slip on the

surface of the outer cylinder. The third case is included to illustrate the capacity

of the method to handle non-homogeneous Dirichlet boundary condition as well

as a solid-liquid interface due to the phase transition.

Table 2 presents the dimension of the domain and the cylinders used for this

case and Figure 10 illustrates the two mesh topologies used.

(a) µ-Penalization case (b) IB-Conformal case (c) IB-Full case

Figure 9: The three configurations used to study the Taylor-Couette flow. The shaded circles

represent a cylinder over which no-slip is imposed by the viscous penalization wheras the

blue-filled cylinder represent cylinders over which the IB method is used.

Figure 11 shows the evolution of the ‖e(u)‖2 as a function of the mesh size.
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Table 2: Simulation parameters for the Taylor-Couette flow

Inner cylinder radius (dp) 0.45

Outer cylinder radius (ρp) 0.15

Domain (Ω) [0, 0, 0]× [1, 1, 1]

Reynolds number 0.15

Figure 10: Mesh configurations used for the couette cases. Left : Full-IB case, Right: µ-

Penalization and IB-Conformal cases

24



We note that for structured P1-P1 tetrahedral GLS stabilized elements used in

this work, the L2 norm of the error should be such that ‖e(u)‖2 ∝ Ω2
K , where ΩK

is the characteristic size of the elements of the mesh of identical topology. For

the same meshes (µ-Penalization and IB-Conformal cases), the µ-Penalization

approach degrades the overall order of convergence of the scheme to first order

whereas the IB method preserves it. Such decrease in order of convergence

are often observed in penalization or other immersed boundary approach. For

instance, Blais et al. observed a decrease to a 1.33 convergence rate for their

cell-centered finite volume semi-implicit immersed boundary method.

Furthermore, for the same number of degree of freedom, the IB method

always gives a lower error by a significant factor (at least 5×). For the IB-Full

case, the convergence rate is preserved, but the error constant is different from

the IB-Conformal case. This difference is due to the different mesh topology

used for both cases. As illustrated in Figure 10 is more adapted to the rotational

symmetry of the problem. However both cases exhibit an order of convergence

of 2.1.

This order of convergence is better than the theoretical order of convergence

of 2. This is not an anomaly, but is due to the added DOF linked with the

decomposed elements close to the IB boundary. These decomposed element

add additional degree of freedom on the surface boundaries. Since these DOF

are local to the decomposed elements, they are condensed at the elementary

level and they are not recovered at the post-processing stage. However, they

contribute to the accuracy of the solution and as such, when only the mesh DOFs

are considered, the scheme exhibits better convergence. This is a nice feature to

have a scheme for phase-change. Indeed, in melting cases, the accuracy of the

solution close to the solid-liquid interface is critical to an accurate estimation of

the interface dynamics.

We conclude that both the µ-Penalization and IB approach lead to conver-

gence in non-trivial flow case, but that the IB approach induces less errors and

ensures that the second order L2 convergence of the scheme is preserved.
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Figure 11: L2 norm of the error on the velocity for the µ-Penalization and the IB method for

the configurations investigated.

4. Validation: Melting cavity with natural convection

4.1. Melting cavity with natural convection

The melting of metals (either tin or gallium) with natural convection within

a cavity has been the benchmark for numerous numerical models for phase

change and has been studied by numerous authors [4, 22, 18, 21, 43, 44, 45, 46].

It has notably been the topic of a comparison exercise [47, 17].

This case studies the melting of an initially solidified fluid within a rectan-

gular (or prismatic in 3D) cavity which is heated by keeping one of its lateral

wall at a temperature higher than the melting point. As the solid phase melts,

the liquid acquires more space and natural convection becomes important. The

flow structure that arise can be highly complex and multiple convection rolls

can be formed depending on the value of the dimensionless number (St, Ra,

Gr, etc.). [46]. This convection in turn, contributes to the heat transfer at

the solidified interface and alters the melting rate over the height of the cavity.
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Consequently, the top of the cavity melts quicker than the bottom due to the

action of natural convection. At high Rayleigh number, the role of natural con-

vection is considerable. Strong convection rolls occur and the solid at the top

of the cavity melts far quicker than the bottom, leading to the formation of a

distinct curved solid-liquid interface. This phenomena, which is illustrated at

Figure 12, depends on the aspect ratio of the cavity (A = H/L).

Figure 12: Illustration of the melting cavity case. Initially, the entire cavity is frozen (in

grey). Then, the solid melts with an uniform front due to the action of conduction. As time

progresses and the fluid occupies more space, natural convection starts to play an important

role in the heat transfer and significantly alters the shape of the solid-liquid interface, leading

to the formation of a curved interface.

This problem has been studied experimentally by two groups of author:

Gau and Viskanta [1, 48] and Campbell et al. [2]. In their work [1], Gau

and Viskanta studied the melting of Gallium in a three cavities of different

aspect ratio (A = 0.714,A = 0.5,A = 0.286). They measured the position of

the interface at different pre-determined time by pouring out the molten metal

and probing the surface of the solid interface. For the largest aspect ratio

(A = 0.714) they monitored the displacement of the interface at the top, center

and bottom location. Furthermore, they measured the fraction of molten solid

as a function of time. This data has been extracted from their article and will

be used to validate the model in the present work.

Some authors [16] have reported that the experimental results of Gau and

Viskanta are uncertain, notably when it comes to the interface position. This

seems to be confirmed by the inability of Campbell et al. to reproduce these
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results experimentally [2] or the inability of authors to reproduce them numeri-

cally [49]. However, Campbell et al. used a radioscopy based method to measure

the interface position and this method also comes with a certain degree of un-

certainty. Furthermore, some of their results implying that the interface melts

quicker at the bottom than at the top appears to be non-physical.

The inability of some authors to reproduce these experiments numerically

has been discussed extensively by Hannoun et al. [46] who highlighted the

following experimental uncertainties: boundary conditions, initial conditions,

metal purity and the two dimensional assumption. Indeed, since the cavity

studied by Gau and Viskanta had a depth to length ratio D/R = D/L = 0.428,

it unclear if the flow at high Rayleigh number might not become fully three-

dimensional. Hannoun et al. also discussed extensively on the need for rigorous

mesh-convergence analysis. Indeed, the solid-liquid interface position and the

flow structures (i.e the number of rolls) were found to be dependent of numerical

accuracy of the model.

In this work, we study the melting cavity in both 2D and 3D for the highest

aspect ratio and Rayleigh number (A = 0.714, Ra = 105, Gr = 5.5 · 106,Stl =
0.041) using the results from Gau and Viskanta [1] for the interface position, the

melted fraction and the average Nusselt number. The domain used is illustrated

at Figure 12. It is initially at constant temperature of 28◦C and constant

Dirichlet boundary conditions for the temperature are applied at the left (the

hot wall, T = 38◦C) and at the right (the cold wall, T = 28◦C). Insulated

boundary conditions are applied at the top and the bottom. No-slip boundary

conditions are applied at the left, right, top and bottom wall. When the case is

studied in 2D, a thin slice is meshed and slip boundary conditions are applied

in the front and back. For the 3D analysis, the full prismatic cavity is meshed

and no-slip boundary conditions are applied on all walls.

The liquidus temperature Tl is fixed at 29.8◦C and the value of the solidus

temperature Ts is defined via the solidification interval Ts = Tl − ∆T . When

the IB model is used, no-slip boundary condition on the solid-liquid interface is

imposed at the positions where T = Tl.
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Table 3 presents the cases studied as well as the mesh used. All meshes are

made from structured hexahedral meshes which are then divided into tetrahe-

dron. The number used in Table 3 denotes the number of intervals per dimension

used to construct the hexahedral mesh. We note that we could not study the

3D case using the µ-Penalization approach since the computational cost of the

model was significantly (10-20x) higher than the IB model. This is linked to the

difficulties in solving the linear system of equations due to the poor conditioning

of the matrices caused by the high viscosity ratio required to impose stasis when

the flow is dominated by convection.

To allow for an easy comparison with the results of Gau and Viskanta, all

transient results are presented using the dimensionless time τ = αt
L2 × Stl. Sim-

ulations presented in this work were carried out with a sufficiently small time

step (∆τ = 2×10−5). We have found that decreasing the time step for the finer

or coarser meshes considered in this work did not alter the results. However,

the results are sensitive to the mesh density and a mesh convergence analysis is

first carried out.

4.2. Mesh independence analysis and comparison of the models

As highlighted by Hannoun et al. [46], the melting cavity problem can be

highly sensitive to the mesh and the order of accuracy of the scheme used.

We have shown in the verification cases that the IB method maintains the

second order accuracy of the scheme, which is not the case for the µ-Penalization

approach. Moreover, the study of the Stefan problem shown in Section 3.1,

indicated that the accuracy of the solution is dependent not only on the mesh

size but also on the phase change interval ∆T .

In this section we present the results of the effect on the solution accuracy

of both the mesh and the solidification interval. Since we aim at validating

the position of the solid-liquid interface, the dimensionless displacement will

be used to assess the mesh independence of the solution. This dimensionless
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Table 3: Simulation parameters for the Taylor-Couette flow

Case name Model used Meshes Viscosity Model

µ-2D µ-Penalization

80x65

125x100

187x150

250x200

Eq. (20)

µs = 100

µl = 0.0094

n = 1.5

φc = 0.6

IB-2D IB

80x65

125x100

187x150

250x200

500x200

500x400

None

IB-3D IB

125x100x20

125x100x40

187x150x40

225x175x60

None
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displacement is defined as:

δx(y) =
xint(y, t)− xint(y, t = 0)

L
(30)

where δx(y) is the dimensionless displacement of the solid-liquid interface at a

height y, xint(y, t) is the position of the interface at a time t and xint(y, t = 0)

the initial position of the interface.

We have found that both the position of the solid-liquid interface and the

velocity profiles were the most sensitive variables to the mesh. However, the

position of the interface can be easily compared over the duration of the whole

simulation while the velocity profile can mostly be compared at discrete times.

Analysing the former allows for an assessment of mesh independence over the

entire solution.

Figure 13 shows the position of the solid-liquid interface at the Top, Center

and Bottom as a function of the dimensionless time τ for combinations of two

meshes and two values of ∆T when using the IB method. Clearly, the values of

the position of the solid-liquid interface overlap for all cases considered except

for the coarser meshes at the top of the cavity.

Although the problem does not possess an analytical solution, by using the

finest grid (500x400) and the smallest solidification interval (∆T = 0.1) we

can evaluate the relative error on the position of the interface compared to the

reference solution and discriminate more easily between the meshes and the

values of ∆T . The graph at Figure 14 displays the relative error on the position

of the interface at the top of the cavity for the IB method. We see that the error

is mostly dominated by the mesh size and not by the solidification interval.

We note that the error undergoes a sharp change for all meshes close to

τ = 0.35, which is the point at which the top interface position undergoes a

slope transition as can be seen at Figure 13. Finally, meshes equal or finer than

250x200 all exhibit, for τ > 0.01, a relative error on the interface displacement

which is consistently below 2%. As such, we consider that IB results for these

meshes are mesh-independent. We note that a similar mesh-sensitivity analysis,

not shown here, was carried out in 3D and yielded similar results.
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Figure 13: Comparison of the position of the solid-liquid interface at the Top (solid line),

Center (dashed line) and Bottom (dotted lined) for two meshes (125x100 and 250x200) and

two values of the phase change interval (∆T = 0.3 and ∆T = 0.1).
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Figure 14: Relative error on the interface displacement for the IB method with respect to the

finer mesh (500x400) and the smallest value of the solidification interval (∆T = 0.1).
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The graph at Figure 15 displays the relative error on the position of the

interface at the top of the cavity for the µ-Penalization method. In this case,

the reference solution is taken for the 250x200 mesh with ∆T = 0.1. Because

of the high computational cost and the need for a sharp viscosity difference

between the solid and liquid, generating a reference solution on the 500x400

mesh would have been required a needlessly high computational time. Results

shown in Figure 15 indicate that the error is more affected by the value of

the solidification interval ∆T than the mesh size. Indeed, the relative error

remains very small for all meshes when ∆T = 0.1, but can be significantly

larger (and non-monotonic) when solutions for ∆T = 0.3 are compared to those

for ∆T = 0.1.
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Figure 15: Relative error on the interface displacement for the µ-Penalization method with

respect to the finer mesh (250x200) and the smallest value of the solidification interval (∆T =

0.1).

Figure 16 compares the two proposed methods for the 250x200 mesh with
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∆T = 0.1. Results are closer to each other for the center and the bottom

locations, but the µ-Penalization predicts slightly faster melting at the top. This

is in part due to the rheological law which allows for a partial advection of the

mushy zones at low solid fraction. We note that reproducing a rheological law

for partially solidified fluid is also possible with the IB method, but introducing

such a model should be physically justified.

As ∆T → 0 and as the mesh is refined, this difference is expected to decrease,

but even for the configurations at Figure 16 the relative difference between the

two results is smaller than 3%. Consequently, in the following sections, only the

results from the IB method will be considered.
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Figure 16: Comparison of the position of the solid-liquid interface at the Top (solid line),

Center (dashed line) and Bottom (dotted lined) for the IB and µ-Penalization approach for

the 250x200 mesh with ∆T = 0.1.
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4.3. Validation of the interface position in 2D

The graph at Figure 17 compares the results for the position of the interface

with the experimental results from Gau and Viskanta [1]. We note that the

band around the lines is made of three curve corresponding to T = Ts+0.01∆T ,

T = Tl−Ts

2 and T = Ts+0.99∆T . The fill between the lines therefore represents

98% of the width of the phase change interval. The numerical model captures

quite well the position of the interface at the bottom and at the center, but

under predicts the melting at the top of the cavity for larger time (τ > 0.03).

Although it underestimates the melting rate, the numerical solution exhibits

similar feature such as a change of slope which occurs for τ = 0.03 in the

experiments and τ = 0.04 in the model. It remains unclear why only the

prediction of the top interface is poor, but this could be partially explained by

experimental uncertainties surrounding the work of Gau and Viskanta [1] linked

to the use of the pour out method, the probing of the interface and the boundary

conditions.

An hypothesis put forward by Hannoun et al. [46] was that the flow might

actually become fully 3D as the melting of the solid progresses. Considering

the ratio between the cavity depth and length considered in the study by Gau

(C = D/L = 0.429) this could indeed occur. Thus we now study the same flow

but using full 3D simulations.

4.4. Validation of the interface position in 3D

Since all 2D simulations were actually carried out on a 3D slice, extending

the analysis to a full 3D analysis is an easy endeavour. The graph at Figure 18

shows the position of the solid-liquid interface for the 3D results when using the

structured 225x175x60 mesh. When comparing to the result at Figure 17, the

results for the center and the top position of the interface are indeed affected

by the transition to 3D. First, the two curves are much further apart than in

the 2D case. Secondly, the top interface results are closer to the experimental

results, at least for τ < 0.4. Still, the model underestimates the melting at the
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Figure 17: Comparison of the simulation results for the position of the solid-liquid interface

at the top, center and bottom of the cavity with the results obtained by Gau and Viskanta

[1].
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top, and furthermore, underestimates the melting at the center, which was not

the case for the 2D model.
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Figure 18: Comparison of the 3D simulation results for the position of the solid-liquid interface

at the top, center and bottom of the cavity with the results obtained by Gau and Viskanta

[1]. The tetrahedral mesh is made from 225x175x60 hexahedra decomposed in 5 tetrahedra

each and the solidification interval is fixed to ∆T = 0.3.

The flow pattern, not shown here, are altered when going from 2D to 3D.

After some time (τ > 0.02) velocity in the Z axis (depth) becomes a significant

component (approx. 20%) of the velocity magnitude. The flow circulating close

to the top actually moves significantly in the Z direction and thus spends more

time closer to the solidified fluid before going down. This could explain the larger

difference between the top and the center interface position which occurs in the

3D model. For both the 2D and 3D analysis, it appears that the agreement with

experimental results is satisfactory, but that predicting the measured position

of the top interface remains challenging. The important changes in flow pattern

and interface position that occur when transitioning from 2D to 3D are highly
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interesting and have never been isolated before. Although they lead to a more

distinct difference between the top and center interface position, they do not

lead to a better agreement with the experiments.

4.5. Melted fraction

The melted fraction is, from an engineering point of view, a highly important

information. We have found that the melted volume is less sensitive to the mesh,

the phase change interval ∆T and the dimensionality of the problem than the

interface position. Figure 19 presents the fraction of melted volume for the 2D

and 3D analysis as well as the data extracted from Gau and Viskanta [1]. Both

results agree well with the experimental results of Gau and Viskanta, but the

3D models predicts a slightly lower melted fraction at longer time. This may

be attributable to the flow hindering that occur due to the front and back wall,

which in turn reduces the action of convection and lowers the melting speed.

Overall, the agreement between the simulations and the experiment is good.

4.6. Nusselt number

The average Nusselt number is a good metric to quantify the role of convec-

tion in the thawing process within the melting cavity. It can easily be obtained

from simulation results by calculating the temperature gradient normal to the

hot wall. Obtaining it experimentally is a more complex endeavour. Gau and

Viskanta measure the average Nusselt number experimentally using the fraction

of melted solid which was measured via a pour out method. This actually, as

noted by the authors, measures a time-averaged Nusselt number. We note that

the X axis of the graph from Gau and Viskanta appears to be erroneously la-

belled (the values are 10x too small), otherwise the Nusselt results and the time

at which they are calculated do not match that of any of the other figures and

would correspond to a melting that would have occurred in 2 minutes instead

of the 20 minutes reported throughout the paper.

The graph at Figure 20 shows the average Nusselt NuA number on the hot

wall as a function of the dimensionless time τ for both the 2D and the 3D
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Figure 19: Comparison of the melted volume for the 2D and 3D simulations with the results

obtained by Gau and Viskanta [1].
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model. For all models, NuA is initially very large, due to the strong action of

conduction, and then levels off to a constant value due to the convection that

takes place within the cavity. In the 2D case, NuA undergoes a drastic change

at τ = 0.02. The graph at Figure 21 shows the local Nusselt profile along the hot

wall of the cavity for the 2D model. It can be seen that for τ < 0.02, the local

Nusselt number has three peaks which are associated with three vortices. For

τ > 0.02, the number of vortices is reduced to two and at longer time (τ > 0.06)

only a single vortex remains. This change in the number of vortices significantly

alters the heat transfer at the wall.

For the 3D model, the flow structure appear to be a lot more stable. Con-

sequently, the average Nusselt number NuA decreases quasi-monotonically and

level off at a value much closer to the experimental results. Furthermore, al-

though some slight oscillations appear in NuA, they are at a much lower fre-

quency. These results highlight the difference between the solutions reported in

Sections 4.3 and 4.4.
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5. Conclusion

The modelling of solidification and melting is a challenging topic due to the

strong coupling between the Navier-Stokes and energy equations as well as the

stiff non-linear dependence of the physical properties on the temperature. In

this work, we have presented two stabilized finite element models to accurately

solve phase change problems with natural convection.

The first model (µ-Penalization) uses a viscosity penalization to impose sta-

sis in the solidified region whereas the second model (IB) uses and immersed

boundary method to impose this stasis.

By our in depth analysis of the Stefan problem we have shown that the

accuracy of the scheme can be controlled not only by the mesh size, but also

by the choice of the solidification interval. Indeed, for conduction dominated

problems, this parameter can have a greater influence on the error than the

mesh size.

By analysing the natural convection between two infinite plates, we have

demonstrated that the IB method can resolve the flow with greater accuracy

when the solid-liquid interval lies inside elements, something which occurs nat-

urally in phase change problems. By studying the Taylor-Couette flow, we have

demonstrated that the IB approach consistently gives smaller error and pre-

serves the second order of convergence of the L2 norm of the error whereas the

µ-Penalization reduced the scheme to a first order one.

The two model were finally used to shed light on the melting within a rect-

angular cavity. After having demonstrated mesh convergence, we have shown

that both the IB and µ-Penalization method gave similar results. These results

showed good agreement with the experiments of Gau and Viskanta for the cen-

ter and bottom position of the interface, but under-predicted the melting at the

top of the cavity. Simulations in 3D were then carried out to evaluate if the

dimensionality of the problem was leading to this under-prediction. To the best

of our knowledge, these simulations were the first of their kind. The 3D results

were significantly different from the 2D results. They lead to a larger melting
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rate at the top which, while it lead to a better agreement with the experiments,

was still an under-prediction. However, the 3D results also showed less melting

in the center, which lead to a disagreement with both the experimental and 2D

results. Yet, the overall behaviour of the 3D results and the stronger distinction

between the center and the top melted position appeared in better agreement

with the experimental results overall.

The 2D and 3D model were also found to be able to predict accurately

the melted fraction of solid, with the 3D model slightly under-predicting this

fraction at larger time. Finally, significant differences were observed between the

2D and the 3D model for the prediction of the evolution of the average Nusselt

number. The average Nusselt number predicted by the 2D model was found

to be much higher at lower time and presented a sharp change after a certain

time (τ ≈ 0.02) which was associated to a change from a 3 vortices to 2 vortices

flow pattern. The 3D model presented a much smoother profile without any

sudden change and exhibited very good agreement to the experimental results,

especially at longer time. These results have highlighted the need for accurate

and robust CFD model which can take into account the phase change in complex

three-dimensional geometries since even simple geometries can be affected by

3D phenomena.

This work opens possibilities for numerous topics related to solidification and

melting. In future work, the method developed in this work will be extended

to free surface flows to study how changes in density during solidification affect

the position of the free surface. Furthermore, the stresses arising from the

solidification of an expanding liquid, such as AdBlue, will be studied via a

complete fluid-structure interaction model.
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