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Abstract. Isotope-based quantitation is routinely employed in chemical
measurements. Whereas most analysts seek for methods with linear theoretical
response functions, a unique feature that distinguishes isotope dilution from many
other analytical methods is the inherent possibility for a nonlinear theoretical
response curve. Most implementations of isotope dilution calibration today either
eliminate the nonlinearity by employing internal standards with markedly different
molecular weight or they employ empirical polynomial fits. Here we show that
the exact curvature of any isotope dilution curve can be obtained from three-
parameter rational function, y = f(q) = (a0 + a1q)/(1 + a2q), known as the
Padé[1,1] approximant. The use of this function allows eliminating an unnecessary
source of error in isotope dilution analysis when faced with nonlinear calibration
curves. In addition, fitting with Padé model can be done using linear least squares.
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1. Introduction

In isotope dilution, a sample is mixed with isotopic
internal standard and the isotope amount ratio of the
resulting blend is measured. In biomedical sciences this
method is often known as the calibration with isotope-
labeled internal standard normalization. Frequently,
in order to calculate the amount of the analyte in
the sample, a graphical approach is employed whereby
the resulting isotope ratios are plotted against the
mixtures of the isotopic standard with known amounts
of natural standard (Figure 1). In situations when
the resulting curve is not sufficiently linear due to the
significant spectral overlap between the analyte and
isotopic standard [1], polynomial empirical functions
have been proposed to approximate the curvature of
the isotope dilution function.

The adversity to nonlinear calibration plots has
led to a variety of arbitrary calibration practices
in isotope dilution. Perhaps true a decade ago,
performing a nonlinear fitting is no longer an
arduous task in the era of abundant supply of
software. Despite this, many linearization methods
have been proposed. Most notably, in 1981 Bush
and Trager proposed plotting nB/(nA + znB) against
RAB instead of the traditional approach where RAB

is plotted against amount ratios of the analyte (A)
and isotopic internal standard (B), nA/nB [2]. In
this linearization procedure the auxiliary parameter
z is the denominator-isotope abundance ratio of the
spike and the analyte, z = xref,B/xref,A, and therein
lies a key assumption of the Bush-Trager approach:
linear least squares fitting is possible only when the
exact value of z is known. In practice, however,
the value of z is often unknown and needs to be
measured. Likewise, Colby and McCaman proposed
to plot [(RB − RAB)/(RAB − RA)] × [(1 + RA)/(1 +
RB)] against nA/nB (for two-isotope systems) [3]. A
common feature to such linearization methods is to
incorporate the isotopic composition of the analyte and
the spike into the dependent variable of the regression
but the uncertainty of the obtained fitting parameters
that is due to these correction factors (z, RA, RB)
remains ignored.

Other attempts have been taken to avoid
the nonlinear calibration graphs in isotope-based
quantitation: omission of the nonlinear portion of data,
use of inverse ratios [4], use of statistical weighing
schemes to counter the effects of nonlinearity [4],
or logarithmic coordinate transformations [5]. As
early as in 1983, a suggestion was made that “the
eventual curvature of IDMS calibration curves can
be described very accurately by means of higher
order polynomials”[6]. Indeed, the use of quadratic
[7] or cubic [8] polynomials remains popular to this
day [9, 10]. In mixtures of the analyte and its

Figure 1. Nonlinear response in isotope dilution. The
application of isotope dilution in life sciences commonly employs
a calibration curve whereby the isotope ratios of the analyte and
isotopic internal standard peak areas are plotted against their
mass ratios. Here, the analyte (A) is cholesterol, the internal
isotopic standard (B) is [13C3]-cholesterol (containing three 99
%-enriched carbon-13 atoms), and the isotope ratio represents
the ratio of the major isotope signals from A and B. Numerical
details of this plot are given in the Supporting Information.

isotopically labeled internal standard, the general
functional relationship between the isotope ratio and
the mass ratio of these two substances is neither linear
nor polynomial. Rather, it is a ratio of two linear
functions. In fact, if the curve shown in Figure 1 were
to be described (fitted) with a quadratic polynomial,
one obtains a half-percent average deviation from
the true curvature as shown in Figure 2. Albeit
half-percent may indeed be an acceptable error to
many, analysts should be aware that there are better
functions available for isotope-based calibration when
dealing with nonlinear calibration plots. This note
brings attention to the fact that the use of polynomial
curves in isotope dilution introduces unnecessary errors
which can be avoided by using rational Padé[1,1]
equation and linear least squares fitting.

2. Theory

2.1. The equation

The use of rational functions to describe the
isotope dilution curves becomes evident from the
rearrangement of the isotope dilution equation. In
particular, the isotope dilution equation [11]

wA = wB
RB −RAB

RAB −RA

mB(AB)

mA(AB)

MA

∑

RA

MB

∑

RB
(1)
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Figure 2. Higher order polynomials do not describe the isotope
dilution curves “very accurately”as it is commonly believed.
Here, the theoretical isotope ratios from Figure 1 are fitted with
quadratic and cubic polynomials, and the deviations of the fitted
results from the true values are shown here. Padé[1,1] fit is also
given for comparison. Numerical details of this plot are given in
the Supporting Information.

inverts with respect to RAB into a first-order Padé
function, RAB-i = (a0 + a1qi)/(1 + a2qi), where qi =
wAmA(AB)-i/mB(AB)-i:

RAB-i =
a0 + a1(wAmA(AB)-i/mB(AB)-i)

1 + a2(wAmA(AB)-i/mB(AB)-i)
(2)

where

a0 = RB (3)

a1 = RAa2 (4)

a2 = w−1
B

MB

∑

RB

MA

∑

RA
(5)

The notation used in the above equations is explained
in Table 1. In addition, Eq. (2) will also be
denoted as y = f(q) = (a0 + a1q)/(1 + a2q) where y
and q represent dependent and independent regression
variables, respectively. Hence, the general isotope
dilution curve is described using the Padé[1,1] function
(Eq. (2)) with three fitting parameters. It is
important to reiterate that, unlike the polynomial
equations which are empirical approximations of the
isotope dilution curve, Padé[1,1] function provides an
exact description of the curve. Consequently, the use
of Padé equation for isotope dilution will not incur
additional errors due to the arbitrary choice of the
model equation. In addition, one does not have to
resort to a larger number of fitting parameters in
order to describe more pronounced curvatures as it
is practiced with polynomials. Last, but not least,
Padé[1,1] is a monotonous function and does not have
inflection points in contrast to polynomials. All of

these properties make Padé[1,1] reliable not only for
interpolation but also for extrapolation which is useful
in the method of standard addition [12].

2.2. The fitting

It has been long known that the curvature of isotope
dilution curves is described by rational function [13],
and early isolated attempts to employ this function
using non-linear fitting procedures appear as early as
in 1977 [14]. The non-linear fitting of the rational
functions in isotope dilution, however, has not found
widespread acceptance likely due to its complexity.
In this vein, we draw attention to the fact that,
similar to linear and polynomial models, fitting with
Padé[1,1] equation, y = (a0 + a1q)/(1 + a2q), can also
be performed using the linear least squares method
whereby the fitting parameters (a0, a1, a2) are given
by the familiar matrix expression [15].

a = (QTQ)−1QTY (6)

Here Q is the regression design matrix and Y is the
vector of predictor values (typically, the measured
isotope ratios). Design matrix Q in Eq. (6) is N × k
matrix containing the input variables where N is the
number of measurements and k is the number of fitting
parameters. For the Padé[1,1] model, one can use

Q = {1,q,−qy} (7)

which follows from the rearrangement of y = (a0 +
a1q)/(1 + a2q) into y = a0 + a1q − a2qy. Fitting
parameters can be obtained using the Microsoft Excel’s
LINEST function [12] and one can also obtain explicit
solution of Eq. (6):

a =





N
∑

q −
∑

qy
∑

q
∑

q2 −
∑

q2y
∑

qy
∑

q2y −
∑

q2y2





−1 



∑

y
∑

qy
∑

qy2



 (8)

The linear least squares fitting with Padé[1,1] [16,
17] involves both dependent and independent variables
(y and q) and, strictly speaking, it does not satisfy
the least squares condition for a minimum value of
∑

[yi − f(qi)]
2. However, despite the fact that the

above least squares approach for Padé[1,1] does not
yield the lowest residual regression variance possible,
it nevertheless outperforms polynomial functions (see
Figure 2). Consequently, the approximate nature
of linear fitting with Padé[1,1] does not impede its
usefulness. Needless to say, rigorous nonlinear fitting
algorithms are readily available if necessary.

2.3. Calculation of the result

When polynomial expressions are employed in the
standard fashion whereby the y-axis is established
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Table 1. Standard symbols employed in this work.

Symbol Description

A Analyte (sample)
B Isotopic internal standard
AB Mixture of analyte A and B
nE Amount of E (E = A or B)
ME Molar mass of E (E = A or B)
RE Isotope amount ratio, n(iE)/n(refE), in material E (E = A, B, or AB)∑

RE Sum of all isotope ratios, RE, over all isotopes of E
xref,E Isotopic abundance of the reference (denominator) isotope in material E (E = A or B), xref,E = 1/

∑
RE

wE Mass fraction of E in the solution (E = A or B)
mE(AB) Mass of E (E = A, B) in the solution of AB
y Dependent regression variable of isotope amount ratios (y-axis), yi = RAB-i

q Independent regression variable of mass ratios (x-axis), qi = wAmA(AB)-i/mB(AB)-i

from the measured isotope ratios and the x-axis is
formed from the mass of the analyte in the standard
solutions (normalized to the mass of the internal
standard), one needs to perform polynomial inversion
in order to obtain the mass of the analyte in the
analyzed sample. This is an unnecessary complication
(especially for the cubic polynomial). Coordinate
swapping obviates the problem of polynomial inversion,
but another complication arises polynomial functions
do not give stable results with coordinate swapping of
isotope dilution plots. Unlike polynomial expressions,
however, Padé[1,1] function is readily invertible, a
feature which arises from the fact that the inverse of
Padé[1,1] function is also a Padé[1,1] function: y =
(a0+a1q)/(1+a2q) inverts into q = (a0−y)/(a2y−a1).
The complexity of this inversion is comparable to the
linear regression where y = a0 + a1q leads to q =
(y − a0)/a1.

3. Experimental

Mass fraction of bromide was determined in synthetic
water samples using negative chemical ionization
gas chromatography mass spectrometry after aqueous
derivatization of bromide ions with triethyloxonium
salt at ambient temperature. Analytical procedures,
such as the sample aliquoting or the addition of isotopic
internal standard, were performed gravimetrically. All
5 g aliquots of the calibration standards or samples
(ranging in the mass fraction of bromide from 0.0 to
9.6 µg/g) were spiked with ca. 5 g of isotopic internal
standard containing w(79Br−) = 2.3 µg/g. Calibration
plots were obtained by plotting the observed isotope
ratio of 81Br to 79Br versus the variable wA(mA/mA)
where wA is the mass fraction of bromide in the natural
standard, mA is the mass of the natural standard
aliquot, and mB is the mass of the isotopic internal
standard (bromine-79 labeled bromide) added to the
sample aliquot. More detailed account of this method
are not pertinent to this manuscript and these can be

consulted elsewhere, if necessary [11, 18]. Supporting
Information provides all measurement results employed
in this manuscript.

4. Discussion

When sufficient linearity of the calibration curve
cannot be achieved, analysts may resort to nonlinear
fitting. In isotope-based quantitation, however,
one does not have to use empirical polynomial
functions because the true nonlinear model is given
by the Padé[1,1] equation. The Padé[1,1] equation
involves three parameters. Hence, an isotope dilution
calibration can be performed with the minimum of
three standard/spike mixtures, and measurement of
the sample requires the subsequent fourth mixture
that of the sample and the isotopic spike. This
procedure is called the quadruple isotope dilution.
One can also employ less exhaustive isotope dilution
strategies whereby some of the coefficients in Eq. (3)
are established from other sources. For example, if
all variables in Eq. (3) are given, one can establish
the calibration plot (Eq. (2)) without any recourse
to experiment. Albeit rarely used, this corresponds
to the single isotope dilution. A common single-point
calibration strategy establishes the calibration plot by
analyzing a single calibration blend in order to obtain
wB (double isotope dilution).

The performance of Padé[1,1] model (Eq. (2))
can also be demonstrated with experimental data. For
this purpose, determination of bromide was performed
in synthetic samples with known levels of bromide.
Five-level calibration curve with 0.00, 0.51, 1.02, 1.60
and 2.08 µg/g of bromide was constructed with all
isotope ratio measurements done in triplicate, and
the obtained curve was fitted with linear, quadratic,
cubic and Padé[1,1] functions as per Eqs. (6) and (7)
(Figure 2). Four samples with known levels of bromide
(0.10, 0.70, 1.31, and 1.73 µg/g) were then analyzed
in triplicate and the results were obtained by using
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Table 2. Errors (biases) due to the choice of model equation as exemplified in the determination of bromide using isotope dilution
GCMS methoda.

Calibration
molde

Sample 1
wBr = 0.10 µg/g

Sample 2
wBr = 0.70 µg/g

Sample 3
wBr = 1.31 µg/g

Sample 4
wBr = 1.73 µg/g

Average
absolute bias

Linear –66.1 % +14.7 % +6.3 % +0.5 % 21.9 %
Quadratic +3.2 % +1.8 % –1.4 % –0.8 % 1.8 %
Cubic +2.5 % +0.8 % –0.7 % 0.0 % 1.0 %
Padé[1,1] +1.4 % +0.6 % –0.5 % +0.1 % 0.6 %

a Consult the Supporting Information for detailed results and calculations.

linear, quadratic, cubic and Padé[1,1] models for the
calibration plot (see Table 2).

From the results presented in Figure 2 and Table 2,
it is clear that quadratic model can give significant
errors in isotope-based quantitation. Although the
cubic model provides reasonable performance, its
use should be discouraged for several reasons; it is
empirical model of high mathematical complexity and
requires more fitting parameters than necessary. In
this regard, Padé[1,1] model satisfies all the theoretical
and practical requirements which polynomial models
fail to do. Additional advantage of applying
the Padé[1,1] model over the existing linearization
approaches (Bush-Trager or Colby-McCaman) is that
isotopic composition of pure components (RA, RB) is
no longer required in order to construct the calibration
plot. In particular, this means that one does not have
to perform assay of pure isotopic internal standard.

An important consequence of the fact that
Padé[1,1] model is not an empirical choice is its
predictive power. To illustrate this, two additional
samples were measured for which the isotope ratios
fall well outside the calibration interval: sample 5 (wBr

= 2.77 µg/g) and sample 6 (wBr = 9.63 µg/g). The
results are shown in Figure 3. Although it is not a
common practice in analytical chemistry to extrapolate
calibration curves, the predictive power of Padé[1,1]
offers the ability to obtain results with reasonable
accuracy when extrapolation is performed in isotope-
based quantitation. One can clearly not say the same
when empirical polynomial models are used.

5. Conclusion

There are two reasons why non-linear calibration
plots are usually avoided: it is not trivial to
postulate an appropriate model from physical point-
of-view and the fitting parameters usually have to be
estimated iteratively. Both of these shortcomings are
addressed in isotope-based quantitation with the use
of three-parameter Padé[1,1] function. Fitting with
both Padé[1,1] and quadratic polynomial require a
minimum of three data points, and both curves can
be obtained using almost identical least square design

Figure 3. The predictive power of the various regression
models in isotope-based quantitation. The five black points with
bromide levels from 0.00 to 2.08 µg/g are used to construct the
calibration curve using linear, quadratic, cubic, and Padé[1,1]
models (same as in Table 2) whereas the two white points at
2.77 and 9.63 µg/g show the measured isotope ratios in two
additional samples which fall well outside the calibration range.
The superior predictive power of the Padé[1,1] model shows
the advantages of selecting a model based on first principles.
Numerical details of this plot are given in the Supporting
Information.

matrices. Unlike the Padé[1,1] function, however, the
quadratic function is an arbitrary model which can give
additional errors. In this vein, it is hoped that mass
spectrometers will soon enable fitting with Padé[1,1]
instead of the polynomial functions in their software.

Appendix

Supplementary data related to this article can be found
at http://dx.doi.org/10.1016/j.aca.2015.09.020.
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