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modelled, agents will ultimately have to strike a balance between breadth of coverage

(more entities modelled, little detail) and depth of coverage (less entities, more detail).

This issue is investigated in more detail elsewhere [7].

5 Conclusions

Through the above and a number of other single- and multi-agent coordination

experiments addressing such issues as the production of emergent behavioral patterns,

the TouringMachine architecture has been shown to be feasible and that, when suitably

configured, can endow rational autonomous agents with appropriate levels of effective,

robust, and flexible control for successfully carrying out multiple goals while

simultaneously dealing with a number of dynamic multi-agent events.

The integration of a number of traditionally expensive deliberative reasoning

mechanisms (for example, causal modelling and hierarchical planning) with reactive or

behavior-based mechanisms is a challenge which has been addressed in the

TouringMachine architecture. Additional challenges such as enabling effective agent

operation under real-time constraints and with bounded computational resources have

also been addressed. The result is a novel architectural design which can successfully

produce a range of useful behaviors required of sophisticated autonomous agents

embedded in complex environments.

The research presented here is ongoing; current work on the TouringMachine agent

architecture includes an effort to generalize further the TouringWorld testbed, in

particular, by separating the definition of the agent’s domain of operation (description of

the environment, initial goals to accomplish, criteria for successful completion of goals)

from the specified configuration (capabilities, internal parameters and constraints) of the

agent itself. Another aspect of the current work is to identify and incorporate new

capabilities in order to extend the behavioral repertoire of agents; capabilities being

considered at present include, among others, inductive learning, user modelling, and

episodic memory management. Relatedly, a new domain to which TouringMachines are

currently being applied involves adaptive information retrieval and filtering on the World

Wide Web.
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independent routes to one destination or another. The interesting agent to focus on here

— the one whose configuration is to be varied — is agent1 (the round one). The upper

left-hand frame of Fig.4 simply shows the state of the world at time T = 15.5 seconds.

Throughout the scenario, each agent continually updates and projects the models they

hold of each other, checking to see if any conflicts might be “lurking” in the future. At T

= 17.5 (upper right-hand frame of Fig. 4), agent1 detects one such conflict: an obey-

regulations4 conflict which will occur at T = 22.0 between agent2 (chevron-

shaped) and the traffic light (currently red). Now, assuming agent1 is just far enough

away from the traffic light so that it does not, within its parametrized conflict detection

horizon, see any conflict between itself and the traffic light, then, if agent1 is

configured with ConflictResolutionDepth = 1, it will predict the impending conflict

between agent2 and the traffic light, as well as the likely event of agent2 altering its

intention to stop-at-light so that it will come to a halt at or around T = 22.0. If, on

the other hand, agent1 is configured with ConflictResolutionDepth = 2, not only will

it predict the same conflict between agent2 and the traffic light and the resolution to be

realized by this entity, but it will also, upon hypothesizing about the world state after this

conflict resolution is realized, predict another impending conflict, this second one

involving itself and the soon to be stationary agent2.

The observable effects of this parameter difference are quite remarkable. When

agent1 is configured with ConflictResolutionDepth = 1, it will not detect this second

conflict — the one between itself and agent2 — until one clock cycle later; that is, at

time T = 18.0 instead of at T = 17.5. Due to the proximity of the two agents, the relatively

high speed of agent1, and the inevitable delay associated with any change in intention

or momentum, this 0.5 second delay proves to be sufficiently large to make agent1 realize

too late that agent2 is going to stop; an inevitable rear-end collision therefore occurs at

T = 22.0 (Fig. 4, lower left-hand frame).5 Configured with ConflictResolutionDepth =

2 (Fig. 4, lower right-hand frame), agent1 ends up having enough time — an extra 0.5

seconds — to adopt and realize the appropriate intention stop-behind-agent,

thereby avoiding the collision that would otherwise have occurred.

Having the flexibility to reason about the interactions between other world entities

(for example, between agent2 and the traffic light) and to take into account the likely

future intentions of these entities (for example, stop-at-light) can enable

TouringMachines like agent1 to make timely and effective predictions about the

changes that are taking place or that are likely to take place in the world. In general,

however, knowing how deeply agents should model one another is not so clear: since the

number of layer M resources required to model world entities is proportional to both the

number of entities modelled and the (counterfactual reasoning) depth to which they are

4. All agents possess the homeostatic goal obey-regulations which, in this particular

example, will trigger a goal conflict if the agent in question (agent2) is expected to run through

the red traffic light.

5. In fact, this collision need not be “inevitable”: in this scenario both agent1 and agent2

have been configured with fairly insensitive (not very robust) layer R reactions, primarily to

emphasize the different behaviours that could result from different parametrizations of agents'

modelling capabilities.



Fig. 4. Altering the value of an agent’s ConflictResolutionDepth parameter can affect the

timeliness and effectiveness of any predictions it might make.



to carry out timely and effective intention changes (for example, from drive-along-

path to stop-behind-agent).

This in itself, of course, does not suggest that agents should always be configured

with tight speed bounds. Sensitivity or robustness to environmental change can come at

a price in terms of increased resource consumption: each time an agent detects a model

discrepancy it is forced by design to try to explain the discrepancy through a (relatively

expensive) process of abductive intention ascription.3 Often, however, small changes in

the physical configuration of a modelled entity need not be the result of the entity having

changed intentions. In the scenario of Fig. 3, for example, agent2's speed changes are

due entirely to actions effected by the testbed user. Ignorant of this, however, agent1

configured with ModelSpeedBounds = +/-0.5 ms-1 will continually attempt to re-

explain agent2's changing behavior — despite the fact that this reasoning process will

always, except in the case when agent2 stops at the junction, return the same

explanation of drive-along-path. Also, although not elaborated on in this paper, it

is also important to note that a TouringMachine may only monitor the state of its own

layer M goals when there are exactly zero discrepancies to attend to in its current set of

modelled (external) agents. A less environmentally sensitive agent, therefore, might well

end up with more opportunities to monitor its own progress and so, potentially, achieve

its goals more effectively.

4.3 Counterfactual Reasoning: why Modelling other Agents’ Intentions can be

Useful

In constructing and projecting models of other world entities, a TouringMachine must

constrain its modelling activities along a number of dimensions. Implemented as user-

definable parameters, these layer M constraints can be used to define such things as the

tolerable deviations between the agent’s actual and desired headings, the length of time

into the future over which the agent’s conflict detection predictions will apply, the rate

at which the agent updates its models, and the total number of per-clock-cycle resources

available for constructing models. One other layer M parameter which is of particular

interest here is ConflictResolutionDepth — the parameter which fixes the number of

levels of counterfactual reasoning the agent should undertake when projecting entities'

models to discover possible future goal conflicts. In general, when constructing model

projections at counterfactual reasoning level N, an agent will take into account any

conflicts plus any actions resulting from the anticipated resolutions to these conflicts

which it had previously detected at level N-1. Values of ConflictResolutionDepth

which are greater than 1, then, give agents the flexibility to take into account — up to

some fixed number of nested levels of modelling — any agent's responses to any other

agent's responses to any predicted conflicts.

In the scenario of Fig. 4, two TouringMachine agents can be seen following

3. The process is expensive in the sense that since the agent has only enough computational

resources to focus on a subset of entities in the world at any given time, misplaced sensitivity can

result in the agent making poor use of its limited resources and potentially missing what might oth-

erwise have been critical events.



Fig. 3. Varying the value of an agent’s ModelSpeedBounds parameter can affect the agent’s

level of sensitivity to environmental change.



TouringWorld “knobs” (for example, world clock timeslice size, total per-timeslice

resources available to each agent, agent size, agent speed and acceleration/deceleration

rate limits, agent sensing algorithm, initial attention focussing heuristics, reactive rule

thresholds, plan schema and model template library entries) have been set to provide

“baseline” environments which are dynamic, somewhat unpredictable, and moderately

paced. In such environments, a competent (suitably configured) agent should be able to

complete all of its goals, more or less according to schedule; however, under certain

environmental conditions and/or agent parametrizations — a number of which will be

analyzed below — this will not always be the case. In order to simplify the analysis of

agents' behaviors in multi-agent settings, TouringMachine configurations — both mental

and physical — should be presumed identical unless otherwise stated.

4.2 Monitoring the Environment: Sensitivity versus Efficiency

TouringMachines continuously monitor their surroundings for activity or change. In

monitoring the state of another agent, and in particular, in determining whether the model

it maintains of an agent's current physical configuration (its location, speed, orientation,

etc.) is as it should be — that is, satisfies the expectations which were computed when it

last projected the agent's model in space-time — a TouringMachine makes use of various

tolerance bounds to decide whether any discrepancies in fact exist. As with any

discrepancies detected in the agent's self model, identification of a discrepancy in the

model of another entity typically requires further investigation to determine its cause.

Often this reasoning process results in having to re-explain the entity's current behavior

by ascribing it a new intention. For example, a discrepancy between the modelled entity's

current and expected speeds might be indicative of the entity's change of intention from,

say, drive-along-path to stop-at-junction.

In Fig. 3 (upper two frames) we can see, at two different time points, T = 12.5

seconds and T = 15.5 seconds, several agents in pursuit of their respective goals:

agent1 (round), agent2 (chevron-shaped), and agent3 (triangular, top-most).

Furthermore, we can see the effect on agent1's behavior — that is, on its ability to carry

out its pre-defined homeostatic goal avoid-collisions — of modifying the value

of ModelSpeedBounds, an internal agent parameter which, when modelling another

entity, is used to constrain the “allowable” deviations between this entity's currently

observed speed and the speed it was predicted to have had when the entity was last

observed. In this scenario, agent1 has to contend with the numerous and unexpected

speed changes effected by agent2, a testbed user-driven agent. With fairly tights

bounds (for example ModelSpeedBounds = +/- 0.5 ms-1), agent1 detects any speed

discrepancies in agent2 which are greater than or equal to 0.5 ms-1. Among such

discrepancies detected by agent1 are those which result from agent2's deceleration

just prior to its coming to a halt at a junction at time T = 20.0 (Fig. 3, lower left-hand

frame). As a result, and compared to the situation when agent1 is configured with

ModelSpeedBounds = +/-2.0 ms-1, and therefore, in this particular scenario, unable to

detect or respond fast enough to agent2's actions at T = 20.0 (Fig. 3, right-hand frame),

the configuration with tighter speed bounds is more robust, more able to detect

“important” events (for example, the agent in front coming to a halt) and also more able



capabilities and behaviors which TouringMachines will require if they are to complete

their tasks in a competent and effective manner — for example, reacting to unexpected

events, effecting of goal-directed actions, reflective and predictive goal monitoring,

spatio-temporal reasoning, plan repair, coping with limited computational and

informational resources, as well as dealing with real-time environmental change. The

scenarios can be considered interesting because they succinctly exercise agents' abilities

to carry out time-constrained tasks in complex — partially-structured, dynamic, real-

time, multi-agent — environments. Although the chosen scenarios are simplified to deal

only with mentally and structurally homogeneous agents possessing noiseless sensors,

perfect actuators, and approximately similar non-shared relocation tasks these still

present a number of non-trivial challenges to TouringMachine agents.

It is not the aim of the present evaluation to show that the TouringMachine

architecture is in any sense “optimal”. As argued elsewhere [7], optimal rational behavior

will in general be impossible if the agent is resource-bounded, has several goals, and is

to operate in a real-time multi-agent environment in which events are able to take place

at several levels of space-time granularity. As such, one should more realistically expect

a TouringMachine to behave satisficingly, but at times — for example, when under

extreme real-time pressure — to fail to satisfy every one of its outstanding goals. What

is really of interest here is understanding how the different configurations of agents and

the different environmental characteristics to which such configurations are subjected

affect, positively or negatively, the ability of agents to satisfy their goals.

It is also not the aim of the present evaluation to show that TouringMachines are

“better”' than other integrated agent architectures at performing their various tasks.

Rarely is it the case that the actual and/or intended task domains of different agent

architectures are described in sufficient detail so as to permit direct comparisons of agent

performance. The lack, at present, of any common benchmark tasks or of any universally

agreed upon criteria for assessing agent performance — previous evaluations have relied

either on a single performance criterion (for example, the total point score earned for

filling holes in specific single-agent Tileworld environments [16,19]), or on a small

number of performance criteria which can only be interpreted with respect to the

particular architecture being measured (for example, the total number of behaviors

communicated between agents in selected MICE environments [17]) — combine to

make detailed quantitative comparisons with other architectures extremely difficult if not

altogether impossible.

Due to the relatively large number of parameters which the TouringWorld testbed

provides for specifying different agent configurations, performance evaluation criteria

(for example, task completion time, resource utilization), and agent task and

environmental characteristics, the present evaluation will necessarily be partial, the main

focus being placed on studying selected qualitative aspects of TouringMachine

behavioral ecology — namely, some of the effects on agent behavior which, in a given

task environment, can occur through varying individual agent configuration parameters;

and the effects on agent behavior which, for a given agent configuration, can occur

through varying certain aspects of the agent's environment. Like with the Tileworld

experiments described by Pollack and Ringuette [16, page 187], a number of



by the TouringMachine agent design — and, more specifically, for identifying the

conditions under which one configuration of the architecture performs better than

another — is to vary the environment in which it operates. The simplest approach to this

issue, Langley [14] argues, involves designing a set of benchmark problems, of which

some, for the purposes of scientific comparison (that is, for the purposes of enabling

independent variation of different task environment attributes), should involve artificial

domains. The TouringWorld environment is one such domain (other examples include

the Phoenix environment [15], the Tileworld [16], and MICE [17]).

The power of the TouringWorld testbed domain, and of artificial domains in general,

arises from the insights it can provide toward the improved understanding of agent — in

this case, TouringMachine — behavioral ecology: in other words, the understanding of

the functional relationships that exist between the designs of agents (their internal

structures and processes), their behaviors (the tasks they solve and the ways in which

they solve these tasks), and the environments in which they are ultimately intended to

operate [15].

The characterization of TouringMachines as a study of agent behavioral ecology

exemplifies a research methodology which emphasizes complete, autonomous agents

and complex, dynamic task environments. Within this methodological context, the focus

of the present evaluation has been centered on two particular research tasks. Cohen et al.

[15] refer to these as environmental analysis, in other words, understanding what

characteristics of the environment most significantly constrain agent design; and the

design task, in other words, understanding which agent design or configuration produces

the desired behaviors under the expected range of environmental conditions.

These two tasks, in fact, are the first two stages of a more complete research

methodology which Cohen [18] refers to as the MAD methodology, for modelling,

analysis, and design.2 This methodology aims to justify system design (and re-design)

decisions with the use of predictive models of a system's behaviors and of the

environmental factors that affect these system behaviors. Like IRMA agents in the

Tileworld domain [16], TouringMachine agents can be viewed as having been developed

via an incremental version of MAD, in which the (causal) model of TouringMachine

behavior is developed incrementally, at the same time as the agent design. In other words,

the agent design (or some part of its design) is implemented as early as possible, in order

to provide empirical data (or feedback) which flesh out the model, which then become

the basis for subsequent redesign [18]. The implications of adopting such a design

method, as well as the roles played in this method by the environmental and behavioral

analyses referred to above, are discussed in detail elsewhere [7].

The present evaluation of TouringMachines is realized through a series of interesting

task scenarios involving one or more agents and/or zero or more obstacles or traffic

lights. The scenarios have been selected with the aim of evaluating some of the different

2. The remaining design activities — predicting how the system (agent) will behave in partic-

ular situations, explaining why the agent behaves as it does, and generalising agent designs to dif-

ferent classes of systems, environments, and behaviours — are beyond the scope of this work. See

Cohen [18, pages 29—32] for details.



example, an agent’s own internal goals) that may constrain the possible actions that the

agent can take [7].

4 Experimenting with TouringMachines

The research presented here adopts a fairly pragmatic approach toward understanding

how complex environments might constrain the design of agents, and, conversely, how

different task constraints and functional capabilities within agents might combine to

produce different behaviors. In order to evaluate TouringMachines, a highly

instrumented, parametrized, multi-agent simulation testbed has been implemented in

conjunction with the TouringMachine control architecture. The testbed provides the user

with a 2-dimensional world — the TouringWorld — which is occupied by, among other

things, multiple TouringMachines, obstacles, walls, paths, and assorted information

signs. World dynamics are realized by a discrete event simulator which incorporates a

plausible world updater for enforcing “realistic” notions of time and motion, and which

creates the illusion of concurrent world activity through appropriate action scheduling.

Other processes handled by the simulator include a facility for tracing agent and

environmental parameters, a statistics gathering package for agent performance analysis,

a mechanism enabling the testbed user to control the motion of a chosen agent, a

declarative specification language for defining the agents to be observed, and several text

and graphics windows for displaying output. By enabling the user to specify, visualize,

measure, and analyze any number of user-customized agents in a variety of single- and

multi-agent settings, the testbed provides a powerful platform for the empirical study of

autonomous agent behavior.

A number of experiments have been carried out on TouringMachines which

illustrate, in particular, that the balance between goal-orientedness (effectiveness) and

reactivity (robustness) in agents can be affected by a number of factors including, among

other things, the level of detail involved in the predictions agents make about each other,

the degree of sensitivity they demonstrate toward unexpected events, and the proportion

of total agent resources that are made available for constructing plans or building mental

models of other agents. Other experiments point toward a trade off between the reliability

and the efficiency of the predictions an agent can make about the future (this turns out to

be an instance of the well-known extended prediction problem [13]). Yet other

experiments have been carried out which suggest that predicting future world states

through causal modelling of agents’ mental states, can, in certain situations, prove useful

for promoting effective coordination between agents with conflicting goals. To illustrate

some of the diverse opportunities for analysis which are afforded by the TouringMachine

testbed, two particular experiments that illustrate the role of causal modelling of agent

behavior will be described in some detail. Before this, however, a few comments on the

adopted experimental methodology are worth giving.

4.1  Some Methodological Issues

One useful approach toward understanding the reasons for the behaviors exhibited



deadline or the agent’s layer R effects an action which alters the agent’s trajectory) or in

relation to another agent (for example, the agent’s trajectory intersects that of another

agent). Associated with the different goal conflicts that are known to the agent are a set

of conflict-resolution strategies which, once adopted, typically result in the agent taking

some action or adopting some new intention.

The structures used by an agent to model an entity’s behavior are time indexed 4-

tuples of the form 〈C, B, D, I〉 , where C is the entity’s Configuration, namely (x,y)-

location, speed, acceleration, orientation, and signalled communications; B is the set of

Beliefs ascribed to the entity; D is its ascribed list of prioritized goals or Desires; and I is

its ascribed plan or Intention structure. Plan ascription or recognition has been realized

in TouringMachines as a process of scientific theory formation which employs an

abductive reasoning methodology similar to that of the Theorist default/diagnostic

reasoning system [11].

The mental models used by an agent are, in fact, filled-in templates which the agent

obtains from an internal model library. While all templates have the same basic 4-way

structure, they can be made to differ in such aspects as the depth of information that can

be represented or reasoned about (for example, a particular template’s B component

might dictate that modelled beliefs are to be treated as defeasible), initial default values

provided, and computational resource cost. The last of these will subsequently be taken

into account each time the agent makes an inference from the chosen model.

Reasoning from a model of an entity essentially involves looking for the “interaction

of observation and prediction” [12]; that is, for any discrepancies between the agent’s

actual behavior and that predicted by its model or, in the case of a self-model, between

the agent’s actual behavior and that desired by the agent. Model-based reasoning in

TouringMachines specifically comprises two phases: explanation and prediction. During

the explanation phase, the agent attempts to generate plausible or inferred explanations

about any entity (object/agent) behaviors which have recently been observed.

Explanations (models) are then used in detecting discrepancies between these entities’

current behaviors and those which had been anticipated from previous encounters. If any

such behavioral discrepancies are detected, the agent will then strive to infer, via

intention ascription, plausible explanations for their occurrence.

 Once all model discrepancies have been identified and their causes inferred,

predictions are formed by temporally projecting those parameters that make up the

modelled entity’s configuration vector C in the context of the current world situation and

the entity’s ascribed intention. The space-time projections (in effect, knowledge-level

simulations) thus created are used by the agent to detect any potential interference or goal

conflicts among the modelled entities’ anticipated/desired actions. Should any conflicts

— intra- or inter-agent — be identified, the agent will then have to determine how such

conflicts might best be resolved, and also which entities will be responsible for carrying

out these resolutions. Determining such resolutions, particularly where multiple goal

conflicts are involved, will require consideration of a number of issues, including the

priorities of the different goals affected, the space-time urgency of each conflict, rights-

of-way protocols in operation, as well as any environmental and physical situational

constraints (for example, the presence of other entities) or motivational forces (for



3 Modelling Agent Behavior

Like most real-world domains, a TouringMachine’s world is populated by multiple

autonomous entities and so will often involve dynamic processes which are beyond the

control of any one particular agent. For a planner — and, more generally, for an agent —

to be useful in such domains, a number of special skills are likely to be required. Among

these are the ability to monitor the execution of one’s own actions, the ability to reason

about actions that are outside one’s own sphere of control, the ability to deal with actions

which might (negatively) “interfere” with one another or with one’s own goals, and the

ability to form contingency plans to overcome such interference. Georgeff [9] argues

further that one will require an agent to be capable of coordinating plans of action and of

reasoning about the mental state — the beliefs, goals, and intentions — of other entities

in the world; where knowledge of other entities’ motivations is limited or where

communication among entities is in some way restricted, an agent will often have to be

able to infer such mental state from its observations of entity behavior. Kirsh, in addition,

argues that for survival in real-world, human style environments, agents will require the

ability to frame and test hypotheses about the future and about other agents’ behaviors

[10].

The potential gain from incorporating causal mental modelling capabilities in an

autonomous agent is that by making successful predictions about entities’ activities the

agent should be able to detect potential goal conflicts earlier on. This would then enable

it to make changes to its own plans in a more effective manner than if it were to wait for

these conflicts to materialize. Goal conflicts can occur within the agent itself (for

example, the agent’s projected time of arrival at its destination exceeds its original

censor-rule-1:

if entity(obstacle-6) ∈  Perception-Buffer
then

remove-sensory-record(layer-R , entity(obstacle-6))

suppressor-rule-3:

if action-command(layer-R-rule-6*,

change-orientation(_))† ∈  Action-Buffer
and

current-intention(start-overtake)

then

remove-action-command(layer-R , change-orientation(_))

and

remove-action-command(layer-M, _)

* layer-R-rule-6 is the reactive (layer R) rule which is invoked in order to avoid

crossing a path lane marking.
† “_” simply denotes a don’t-care or anonymous variable.

Fig. 2. Two example control rules: censor-rule-1 and suppressor-rule-3.



front of it (more on this shortly).

Inputs to and outputs from layers are generated in a synchronous fashion, with the

context-activated control rules being applied to these inputs and outputs at each

synchronization point. The rules, thus, act as filters between the agent’s sensors and its

internal layers (suppressors), and between its layers and its action effectors (censors) —

in a manner very similar to Minsky’s suppressor- and censor-agents [8]. Both types of

rules are of the if-then condition-action type. In the case of censor rules, the conditional

parts are conjunctions of statements that test for the presence of particular sensory objects

recently stored in the agent’s Perception Subsystem (see Fig. 1). Censor rules’ action

parts consist of operations to prevent particular sensory objects from being fed as input

to selected control layers. In Fig. 2, for example, the censor rule censor-rule-1 is

used to prevent layer R from perceiving (and therefore, from reacting to) a particular

obstacle which, for instance, layer M might have been better programmed to deal with.

In the case of suppressor control rules, conditional parts are conjunctions of statements

which, besides testing for the presence of particular outgoing action commands in the

agent’s Action Subsystem, can also test the truth values of various items of the agent’s

current internal state — in particular, its current beliefs, desires, and intentions (more on

these in the next section). Suppressor rules’ action parts consist of operations to prevent

particular action commands from being fed through to the agent’s effectors. In Fig. 2, for

example, the suppressor control rule suppressor-rule-3 is used to prevent layer R

from reacting to (steering away from) a lane marking object whenever the agent’s current

intention is to overtake some other agent that is in front of it. Any number of censor

control rules can fire (and remove selected control layer input) when these are applied at

the beginning of a synchronization timeslice. Suppressor control rules, on the other hand,

are assumed to have been crafted by the agent’s programmer in such a way that (i) at most

one will fire in any given situational context (an agent’s situational context is taken to be

the combination of its perceptual input set and its current internal state); and (ii) at most

one action command will remain in the Action Subsystem after the suppressor control

rule’s action part has been executed. By crafting suppressor control rules in this way, a

TouringMachine’s effectors can be guaranteed to receive no more than one action

command to execute during any given timeslice.

Mediation remains active at all times and is largely “transparent” to the layers: each

layer acts as if it alone were controlling the agent, remaining largely unaware of any

“interference” — either by other layers or by the rules of the control framework — with

its own inputs and outputs. The overall control framework thus embodies a real-time

opportunistic scheduling regime which, while striving to service the agent’s high-level

tasks (e.g. planning, causal modelling, counterfactual reasoning) is sensitive also to its

low-level, high-priority behaviors such as avoiding collisions with other agents or

obstacles.



destination); and a reflective-predictive or modelling layer M for constructing behavioral

models of world entities, including the agent itself, which can be used as a platform for

explaining observed behaviors and making predictions about possible future behaviors

(more on this below).

Each control layer is designed to model the agent’s world at a different level of

abstraction and each is endowed with different task-oriented capabilities. Also, because

each layer directly connects perception to action and can independently decide if it

should or should not act in a given world state, frequently one layer’s proposed actions

will conflict with those of another; in other words, each layer is an approximate machine

and thus its abstracted world model is necessarily incomplete. As a result, layers are

mediated by an enveloping control framework so that the agent, as a single whole, may

behave appropriately in each different world situation.

Implemented as a combination of inter-layer message-passing and context-

activated, domain-specific control rules (see Fig. 1), the control framework’s mediation

enables each layer to examine data from other layers, inject new data into them, or even

remove data from the layers. (The term data here covers sensed input to and action output

from layers, the contents of inter-layer messages, as well as certain rules or plans residing

within layers.) This has the effect of altering, when required, the normal flow of data in

the affected layer(s). So, in the road driving domain for example, the reactive rule in layer

R to prevent an agent from straying over lane markings can, with the appropriate control

rule present, be overridden should the agent embark on a plan to overtake the agent in

Fig. 1. A TouringMachine’s mediating control framework.
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computational resource bounds, and the impact agents’ shorter term actions might have

on their own or other agents’ longer term goals. Also, because agents are likely to have

incomplete knowledge about the world and will compete for limited and shared

resources, it is inevitable that, over time, some of their goals will conflict. Any attempt

to construct a complex, large-scale system in which all envisaged conflicts are foreseen

and catered for in advance is likely to be too expensive, too complex, or perhaps even

impossible to undertake given the effort and uncertainty that would be involved in

accounting for all of one’s possible future equipment, design, management, and

operational changes.

Now, while intelligent agents must undoubtedly remain reactive in order to survive,

some amount of strategic or predictive decision-making will also be required if agents

are to handle complex goals while keeping their long-term options open. On the other

hand, agents cannot be expected to model their surroundings in every detail as there will

simply be too many events to consider, a large number of which will be of little or no

relevance anyway. Not surprisingly, it is becoming widely accepted that neither purely

reactive [1,2] nor purely deliberative [3,4] control techniques are capable of producing

the range of robust, flexible behaviors desired of future intelligent agents. What is

required, in effect, is an architecture that can cope with uncertainty, react to unforeseen

incidents, and recover dynamically from poor decisions. All of this, of course, on top of

accomplishing whatever tasks it was originally assigned to do.

This paper is concerned with the design and implementation of a novel integrated

agent control architecture, the TouringMachine architecture [5—7], suitable for

controlling and coordinating the actions of autonomous rational agents embedded in a

partially-structured, dynamic, multi-agent world. Upon carrying out an analysis of the

intended TouringMachine task domain — that is, upon characterizing those aspects of

the intended real-time road navigation domain that would most significantly constrain

the TouringMachine agent design — and after due consideration of the requirements for

producing autonomous, effective, robust, and flexible behaviors in such a domain, the

TouringMachine architecture has been designed through integrating a number of reactive

and suitably designed deliberative control functions.

2 TouringMachines

Implemented as a number of concurrently-operating, latency-bounded, task-achieving

control layers, the resulting TouringMachine architecture is able to produce a number of

reactive, goal-directed, reflective, and predictive behaviors — as and when dictated by

the agent’s internal state and environmental context. In particular, TouringMachines (see

Fig. 1) comprise three such independently motivated layers: a reactive layer R for

providing the agent with fast, reactive capabilities for coping with events its higher layers

have not previously planned for or modelled (a typical event, for example, would be the

sudden appearance of some hitherto unseen agent or obstacle); a planning layer P for

generating, executing, and dynamically repairing hierarchical partial plans (which are

used by the agent, for example, when constructing navigational routes to some target
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Abstract. This paper presents a new architecture for controlling autonomous

agents in dynamic multi-agent worlds, building on previous work addressing

reactive and deliberative control methods. The proposed multi-layered architecture

allows a rationally bounded, goal-directed agent to reason predictively about

potential conflicts by constructing causal theories which explain other agents’

observed behaviors and hypothesize their intentions; at the same time it enables the

agent to operate autonomously and to react promptly to changes in its real-time

environment. A principal aim of this research is to understand the role different

functional capabilities play in constraining an agent’s behavior under varying

environmental conditions. To this end, an experimental testbed has been

constructed comprising a simulated multi-agent world in which a variety of agent

configurations and behaviors have been investigated. A number of experimental

findings are reported.

1 Introduction

The computer-controlled operating environments at such facilities as automated

factories, nuclear power plants, telecommunications installations, and information

processing centers are continually becoming more complex. As this complexity grows,

it will be increasingly difficult to control such environments with centralized

management and scheduling policies that are both robust in the face of unexpected events

and flexible at dealing with operational and environmental changes that might occur over

time. One solution to this problem which has growing appeal is to distribute, along such

dimensions as space and function, the control of such operations to a number of

intelligent, task-achieving robotic or computational agents.

Most of today’s computational agents are limited to performing a relatively small

range of well-defined, pre-programmed, or human-assisted tasks. Operating in real world

domains means having to deal with unexpected events at several levels of granularity —

both in time and space, most likely in the presence of other independent agents. In such

domains agents will typically perform a number of complex simultaneous tasks requiring

some degree of attention to be paid to environmental change, temporal constraints,
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