| hd |

NRC Publications Archive
Archives des publications du CNRC

Interpreting SWRL Rules in RDF Graphs
Mei, J.; Boley, Harold

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. /
La version de cette publication peut étre I'une des suivantes : la version prépublication de I'auteur, la version
acceptée du manuscrit ou la version de I'éditeur.

Publisher’s version / Version de I'éditeur:

Proceedings of the International Workshop on Web languages and Formal
Methods (WLFM 2005), 2006, 151, 2, 2006

NRC Publications Archive Record / Notice des Archives des publications du CNRC :
https://nrc-publications.canada.ca/eng/view/object/?id=c64e150b-a77{-4331-bd01-b497464e2e87
https://publications-cnrc.canada.ca/fra/voir/objet/?id=c64e150b-a77{-4331-bd01-b497464e2e87

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at
https://nrc-publications.canada.ca/eng/copyright
READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

L’accés a ce site Web et I'utilisation de son contenu sont assujettis aux conditions présentées dans le site
https://publications-cnrc.canada.ca/fra/droits
LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Questions? Contact the NRC Publications Archive team at
PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the
first page of the publication for their contact information.

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la
premiére page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez
pas a les repérer, communiquez avec nous a PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

 Ld

National Research Conseil national de
Council Canada recherches Canada Canada

I o I National Research Conseil national
Council Canada de recherches Canada

Institute for Institut de technologie
Information Technology de l'information

NC-CN3C

Interpreting SWRL Rules in RDF Graphs *

Mei, J., and Boley, H.
2006

* Proceedings of the International Workshop on Web languages and
Formal Methods (WLFM 2005). Electronic Notes in Theoretical Computer
Sciencee (ENTCS). Volume 151. Issue 2. pp. 53-69. 2006. NRC 49313.

Copyright 2006 by
National Research Council of Canada

Permission is granted to quote short excerpts and to reproduce figures and tables
from this report, provided that the source of such material is fully acknowledged.

i+l

Canada

WLFM 2005 Preliminary Version

Interpreting SWRL Rules in RDF Graphs !

Jing Mei 2

Department of Information Science
Peking University
Beijing 100871, China

Harold Boley ?

Institute for Information Technology - e-Business
National Research Council of Canada
Fredericton, NB, ESB 9W/4, Canada

Abstract

An unresolved issue in SWRL (the Semantic Web Rule Language) is whether the
intended semantics of its RDF representation can be described as an extension of
the W3C RDF semantics. In this paper we propose to make the model-theoretic
semantics of SWRL compatible with RDF by interpreting SWRL rules in RDF
graphs. For dealing with SWRL/RDF rules, we regard ‘Implies’ as an OWL class,
and extract all ‘Implies’ rules from an RDF database that represents a SWRL
knowledge base. Each ‘Implies’ rule is grounded through mappings built into the
semantic conditions of the model theory. Based on the fixpoint semantics, a bottom-
up strategy is employed to compute the least Herbrand models.

Key words: SWRL rules, RDF graphs,
model theory, fixpoint semantics, bottom-up strategy.

1 Introduction

The Semantic Web Rule Language (SWRL) is based on a combination of
the Web Ontology Language [19] with the Rule Markup Language [4]. The
SWRL issues dealt with in the current paper are in part responding to the

1 The first author wishes to thank Robert Tolksdorf and his Networked Information Systems
Group, Freie Universitat Berlin, for providing an exciting environment for conducting this
research. The second author is grateful to Mike Dean and the Joint Committee for enabling
many discussions on topics related to this paper.
2 Email: mayyam AT is.pku.edu.cn
3 Email: Harold.Boley AT nrc.gc.ca

This is a preliminary version. The final version will be published in

Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs

JING MEI, HAROLD BOLEY

W3C team comment on the SWRL submission [16], which emphasized: “We
greatly hope the path forward for SWRL includes an RDF encoding with full
and correct RDF semantics, and an eye towards real user applications”. Since
universal variables in SWRL rules go beyond the RDF semantics [9], it has
been questioned in [12] whether the intended semantics of the resultant RDF
graphs can be described as a semantic extension of RDF.

In this paper we propose an RDF-compatible model-theoretic semantics
of SWRL, interpreting SWRL rules in the framework of RDF graphs. This
differs from the direct model-theoretic semantics of SWRL [19], whose basic
idea is the definition of bindings as extensions of OWL interpretations that
map variables to elements of the domain: while the mapping in [19] is s.t. a
given variable appearing in different rules would assume the same value for an
entire SWRL ontology, our mapping introduces rule names to permit different
values for the same variable in different rules. To keep the RDF semantics
of non-rule SWRL parts unchanged, we make use of an RDF resource for
interpreting a variable, which will be mapped to a constant (i.e., an OWL
individual or a literal value).

Moreover, since the RDF semantics permits variables as predicates, our
SWRL interpretation comes in two variants, namely SWRL Full and SWRL
non-Full. The former one conforms to OWL Full, while the latter one empha-
sizes a separation of the domain of discourse into disjoint parts (in particular,
into classes, properties, individuals and variables), which makes sure that the
SWRL portion, uniting OWL-DL and Datalog, preserves the standard first-
order semantics. Also, a correspondence between SWRL non-Full triples and
certain abstract syntax SWRL ontology “directives” (here, axioms or facts)
is established. On top of that, SWRL DL-safe rules can also be achieved by
restricting the universe of variables to explicitly named resources, which has
been proved to be a decidable combination of OWL-DL and rules [18].

However, it should be pointed out that there is as of yet no known practical
complete algorithm for reasoning in OWL-DL or OWL-Full (only OWL-Lite is
more practical in this regard). Hence, our prototype system focuses on SWRL
rules over RDF triples, extracting desired ground instantiations from a rela-
tional database, and computing their least Herbrand model via a bottom-up
Datalog evaluation strategy. Our SWRL engine is thus available for inheri-
tance reasoning on RDF Schema taxonomies, and we keep open an extension
path towards OWL reasoning beyond RDF Schema inheritance.

Next, our motivation is presented in section 2, and the mappings to RDF
graphs are elaborated in section 3. In section 4, a SWRL interpretation is
introduced including the extra semantic conditions for rules, followed by the
SWRL Full and non-Full interpretations plus abstract syntax correspondence.
Then, SWRL DL-safe rules impose some restrictions in section 5. In section 6,
we describe our implementation and apply it to ‘family’ rules. Related work
is discussed in section 7. Finally, section 8 gives our conclusions.

JING MEI, HAROLD BOLEY

2 Motivation

A rule like Def-hasUncle: “hasUncle(x,z)«— hasParent(x,y), hasBrother(y,z)”
is easily expressed in Datalog and corresponding decidable subsets of rule-
based languages and Logic Programming (LP) [2]. However, such role chains
have been proved [11] to push Description Logic (DL) into undecidable realms
of First-Order Languages (FOL). For such rules it is straightforward to provide
RDF graphs, e.g. Fig. 2 for the above example, but their concrete syntax can
become verbose, e.g. as shown below.

s p o

foo:r ruleml:body _:b

foo:r ruleml:head _h
_b rdf:first _:ap
_b rdfirest ~l
=l rdf:first _:ab
~l rdfirest rdf:nil

_:ap swrl:propertyPredicate foo:hasParent

_:ap swrl:argument1 foo:x

_:ap swrl:argument2 foo:y

_:ab swrl:propertyPredicate foo:hasBrother.

_:ab swrl:argument1 foo:y
_:ab swrl:argument2 foo:z
_h rdf:first _:au ffimt _ f odfrest T rdfail .
_h rdf:rest rdfnil
swil: propert yF redicats P swrl:argument] 1 swil:argument? 2
_rau swrl:propertyPredicate foo:hasUncle — — —
_au swrl:argument1 foo:x Figure 2: RDF Graph for Def-hasUncle
_rau swrl:argument2 foo:z

SWRL’s RDF syntax, unlike its XML syntax, encountered the following
problem: How to deal with rule variables, understood to be universally quanti-
fied outside each rule, which also means that occurrences of the same variable
in different rules of the same document refer to different objects (such as when
extending Fig. 2 by a ‘Def-hasNiece’ rule also using the variable foo:x)?? In-
discriminate ‘grounding’ of facts and rules (clauses) is no general solution
either: In LP, a clause is called ground if it does not contain (universal) vari-
ables. By replacing every variable in a program P (namely, a finite set of
clauses) with every possible value of its Herbrand universe, a grounded ver-
sion of P is obtained. Generally, a clause can be viewed as a shorthand for the
set of all its ground instantiations. However, in Horn logic, grounding a clause
with variables can result in an infinite clause set, hence cannot be processed
as a ground RDF graph. Even in Datalog, the resulting finite ground RDF
graph can become too big for practical processing.

We thus focus on the interpretation of clauses with universal variables.

4 While in RDF certain existential variables nicely correspond to blank nodes, there is no
agreed-upon way to represent universal variables.

3

JING MEI, HAROLD BOLEY

However, instead of the bindings in interpretations as defined for the SWRL
semantics [12], our proposal maps a clause ID (such as “foo:r” above) together
with a variable ID (such as “foo:x” above) to the variable value. This mapping
can be used to ground a Datalog rule base: for each clause ID, we obtain an
assignment of the clause’s variables for its grounding. The resulting rules can
also be required to satisfy the well-known semantic conditions of “Implies”.
Our approach corresponds to OWL’s RDF-compatible semantics, except for
the newly-introduced mapping dealing with rules.

On the other hand, using XSLT (XSL Transformations), the rule part of
SWRL can be translated into LP and processed by a Datalog engine. However,
as pointed out in [18], it is incorrect to compute all consequences of the OWL
component first and then apply the rules to these consequences. Suppose a
SWRL document consists, for example, of two rules A(z) «— B(z), A(x) <
C(z), and an OWL assertion BLUC(a). From OWL, a is in B or C, and either
way, A(a) is true through the rules. But this would no longer be derived after
separating OWL and rules, since neither B(a) nor C(a) is a consequence of
OWL. Therefore, a unified interpretation of SWRL is necessary, permitting a
common universe and model for both components.

Moreover, it is still a challenge to access scalable Semantic Web ontologies
from applications such as in bioinformatics and e-business, since it is not
clear if DL reasoners will be able to cope with realistic sets of instance data.
At the other extreme, databases have been accepted as a highly effective
technique to deal with mass data, and it has been pointed out in [21] that SQL
provides operational constructs where assertions operationalize a notion of
constraint rules, views operationalize a notion of derivation rules, and triggers
operationalize a notion of reaction rules. In our SWRL interpreter, Sesame ®
— an open source RDF database with support for RDF Schema inferencing
and querying — is used as a database of ground triples, which also act as the
initial ground facts for a Herbrand model generated from Datalog rules by a
fixpoint operator implemented in Java as a bottom-up engine. The derived
ground facts of the model can be (filtered via constraints and) cached back
into the RDF store.

3 RDF Triples from Abstract Syntax

The abstract syntax of the SWRL submission has been introduced in [12].
For example, the concrete syntax rule Def-hasUncle of section 2 becomes Abs-
hasUncle in the abstract syntax:

Implies(foo:r

Antecedent (foo:hasParent (I-variable(foo:x) I-variable(foo:y))
foo:hasBrother(I-variable(foo:y) I-variable(foo:z)))

Consequent (foo:hasUncle (I-variable(foo:x) I-variable(foo:z))))

5 http://www.openrdf.org

JING MEI, HAROLD BOLEY

While the SWRL submission only gave examples, we provide here a general
mapping from SWRL rules to RDF triples®. To extend the transformer T
in Chapter 4 of the OWL semantics [19], a transformer 7* for handling rules
is introduced, which will also be key to a proof that the direct and RDFS-
compatible semantics are closely related (cf. section 4.3).

The unary 7%(S) returns S itself for S = individualID | dataliteral | buil-
tinlD .

The unary 7%(S) returns URlIreference for S = I-variable(URlIreference) |
D-variable(URlIreference).

T*(I-variable(URIreference)) — URIreference rdf:type swrl:Variable .
T*(D-variable(URIreference)) — URlIreference rdf:type swrl:Variable .

The binary T*(uri, S) recursively transforms a piece of abstract rules syn-
tax S into triples, starting at node uri (which can be a “_”-generated blank
node), and returns the uri. A top-level call T*(URlIreference, S), with a fixed
uri = URIreference, can be used to transform a rule S into triples rooted in
URlreference. E.g., T*(foo:r, Abs-hasUncle) returns foo:r and generates Fig.

2 in the triple store.

An empty SEQ just returns rdf:nil (possible for swrl: AtomList but not for
rdf:List used in swrl:BuiltinAtom as the first occurrence).

A non-empty SEQ of 1, 2, ... elements processes its sequence right-recursively.
The complete definition of the binary 7™ is as follows:

T*(uri, Implies([uri] Antecedent(antecedent) Consequent(consequent))) —
uri rdf:type ruleml:Implies .
uri ruleml:body T™*(_:b, antecedent) .
uri ruleml:head 77(_:h, consequent) .
T*(uri, SEQ atom; atoms ... atom,,) —
uri rdf:type swrl:AtomList .
uri rdf:first 77%(_, atom,) .
uri rdfirest 77(_, SEQ atoms ... atom,,) .
T*(uri, description(iobject)) —
uri rdf:type swrl:ClassAtom .
uri swrl:classPredicate T'(description) .
uri swrl:argument1 T*(iobject) .
T*(uri, dataRange(dobject)) —
uri rdf:type swrl:DataRangeAtom .
uri swrl:dataRange T'(dataRange) .
uri swrl:argument1 7*(dobject) .
T*(uri, individualvaluedPropertylD(iobject jobject)) —
uri rdf:type swrl:IndividualProperty Atom .
uri swrl:propertyPredicate T'(individualvaluedPropertylD) .

6 An RDF triple (subject, predicate, object) will be written as “subject predicate object.”,
using spaces as separators and a period as terminator.

bt

JING MEI, HAROLD BOLEY

uri swrl:argument1 7™ (iobject) .
uri swrl:argument2 7™ (jobject) .
T*(uri, datavaluedPropertylD(iobject dobject)) —
uri rdf:type swrl:DatavaluedProperty Atom .
uri swrl:propertyPredicate T'(datavaluedPropertylD) .
uri swrl:argument1 7*(iobject) .
uri swrl:argument2 7*(dobject) .
T*(uri, sameAs(iobject jobject)) —
uri rdf:type swrl:SamelndividualAtom .
uri swrl:argument1 7™ (iobject) .
uri swrl:argument2 7% (jobject) .
T*(uri, differentFrom(iobject jobject)) —
uri rdf:type swrl:DifferentIndividualsAtom .
uri swrl:argument1 7*(iobject) .
uri swrl:argument2 7™ (jobject) .
T*(uri, builtIn(builtinID dobject; ... dobject;)) —
uri rdf:type swrl:BuiltinAtom .
uri swrl:buitin builtinID .
uri swrl:arguments 7%(_, SEQ dobject; ... dobject;) .
builtinID rdf:type swrl:Builtin .
T*(uri, SEQ dobject; dobjects ... dobject;) —
uri rdf:type rdf:List .
uri rdf:first 7*(dobjecty) .
uri rdfirest 7*(_, SEQ dobjecty ... dobject;) .

A full presentation of the inductive correctness proof for the transformer
T* is beyond the scope of this paper, but we direct the interested reader to

the proof elsewhere 7.

4 RDF-Compatible Model-Theoretic Semantics

In the following, a SWRL semantics is defined, which corresponds to Chapter
5 of the OWL semantics [19] with semantic conditions added to rules.

4.1 An Eztended SWRL Semantics

Definition 4.1 A SWRL interpretation, I=< R;, P;, EXTy, Sy, Ly, LV > of
a vocabulary V, where V includes the RDF, RDFS and SWRL vocabularies,
is an OWL interpretation of V that satisfies all of the following semantic

conditions.

Firstly, Table-1 presents the SWRL universe and syntactic categories,
where IRR is defined as the set of SWRL rules, IRV as variables, IRA as atoms,
while IL has been defined as the set of RDF lists and IL=CEXT (S, (rdf:List)).

" http://www.inf.fu-berlin.de/inst /ag-nbi/research /swrlengine /swrlmapping.pdf

6

JING MEI, HAROLD BOLEY

There are SWRL built-in syntactic classes and properties:
ruleml:Implies), I(swrl:Variable), I(swrl:AtomList), I(swrl:Builtin),
swrl:Atom), I(swrl:ClassAtom), I(swrl:DataRangeAtom),
swrl:IndividualPropertyAtom), I(swrl:DatavaluedProperty Atom),
swrl:SamelndividualAtom), I(swrl:DifferentIndividualsAtom),
swrl:BuiltinAtom) are all in IOC, where IOC=CEXT/(S;(owl:Class)).
ruleml:head), I(ruleml:body), I(swrl:classPredicate), I(swrl:dataRange),
I(swrl:propertyPredicate), I(swrl:builtin) are all in IOOP,
where IOOP=CEXT/(S;(owl:ObjectProperty)).

[(swrl:argumentl), [(swrl:argument2), I(swrl:arguments) are all in Py.

I(
I(
I(
I(
I(
I(

CEXT/ (S (ruleml:Implies)) =IRR CEXT;(S;(swrl:Variable)) = IRV

CEXT(Sy(swrl:Atom) =IRA CEXT(S;(swrl:Builtin)) = IRB

CEXT(Sy(swrl:AtomList)) CIL CEXT[(S;(swrl:IndividualProperty Atom)) C IRA

CEXT/(Sy(swrl:ClassAtom) CIRA CEXT[(Sy(swrl:DatavaluedPropertyAtom)) C IRA

CEXT/(S;(swrl:DataRangeAtom) C IRA CEXT;(S;(swrl:SamelndividualAtom)) C IRA

CEXT/(S;(swrl:BuiltinAtom)) CIRA CEXT(Sr(swrl:DifferentIndividualsAtom)) C IRA
Table 1

SWRL universe and categories

Secondly, the characteristics of SWRL atoms and variables are presented
in Table-2. With a technical trick, the well-known “syntactic sugar”, i.e.,
(in)equality atoms of SWRL, are re-directed to the general property atoms,
while specified procedures are expected for reasoning implementation. Be-
sides, D is a datatype map [9], interpreting the built-in relations permissively,
and IOT=CEXT;(S;(owl:Thing)), LV,;=CEXT,(S(rdfs:Literal)),
IDC=CEXT/(S;(rdfs:Datatype)), IODP=CEXT(S;(owl:DatatypeProperty)).

Thirdly, a new mapping is introduced, incorporating the semantic condi-
tions for SWRL rules.

M: IRR x {IRVULV;UIOT} — LV;UIOT

with M(r,v) mapping a variable v €IRV of a rule r €IRR to its value e €
LV;UIOT, i.e., M(r,v) = e; or, M(r, ¢) mapping a constant ¢ €LV;UIOT of a
rule r €IRR to itself, i.e., M(r,¢) = c.

If < r,h >€EXT(S;(ruleml:head)), and < r,b >€EXT(S;(ruleml:body)),
then r €IRR, h is not empty,
and h is a sequence of hy, ..., h, over IRA,
and b is a sequence of by, ..., b,, over IRA,
s.t. whenever b is empty or b;(1 < j < m) is true, h;(1 <i < n) is true.

Definition 4.2 An atom a €IRA appearing in a rule » €IRR is true iff
(1) < a,p >€EXT(S;(swrl:classPredicate)) and

< a,i >€EXT(S;(swrl:argument1)) and M(r,i) eCEXT;(p),

(2) < a,p >€EXT/(S;(swrl:dataRange)) and

< a,d >eEXT(S;(swrl:argumentl)) and M(r, d) eCEXT(p),

(3) < a,p >€EXT (S, (swrl:propertyPredicate)) and

7

JING MEI, HAROLD BOLEY

if then
< a,p >€EXT(S(swrl:classPredicate)) a €CEXT/(Sy(swrl:ClassAtom))CIRA
< a,i >€EXT(Sr(swrl:argumentl)) p €10C, ¢ eIOTUIRV
< a,p >€EXT(S(swrl:dataRange)) a €CEXT/(Sy(swrl:DataRangeAtom))CIRA
< a,d >€EXT(S;(swrl:argument1)) p €IDC, d €LV UIRV
< a,p >€EXT(S(swrl:propertyPredicate)) a €CEXT(Sy(swrl:IndividualProperty Atom))CIRA
< a,u >EEXT[(Sy(swrl:argument1)) p €IO0P, u €IOTUIRV, v eIOTUIRV; OR
< a,v >€EXT(Sr(swrl:argument2)) a €CEXT (S (swrl:DatavaluedPropertyAtom)) CIRA
p €I0DP, u eIOTUIRV, v €LV jUIRV
< a,b >cEXT(S(swrl:builtin)) a €CEXT/(Sy(swrl:BuiltinAtom))CIRA
< a,v >€EXT(S(swrl:arguments)) v is a sequence of vy, ..., v; over LV UIRV
b €IRB, < v1,...,v; >€D(b)
a €eCEXT (S (swrl:SamelndividualAtom)) < a,S1(owl:sameAs)>€
EXT/(Sr(swrl:propertyPredicate))
a €eCEXT/(Sy(swrl:DifferentIndividualsAtom)) < a,S;(owl:differentFrom)>e€
EXT/(Sr(swrl:propertyPredicate))

Table 2
SWRL atoms and variables

< a,u >€EXT(S;(swrl:argumentl)) and < a,v >€EXT(S;(swrl:argument2))
and <M(r,u), M(r,v) >€EXT;(p)).

Given a rule r, the maximum number of bindings is N where N =
|ILV;UIOT]| is the number of constants and M = |IRV]| is the number of vari-
ables, hence the computational complexity of SWRL rule interpretations is
O(c - NM) where ¢ = |IRR] is the number of rules.

Since SWRL currently has no disjunctions or negations of atoms [17],
three well-defined semantics are equivalent, that is, (1) Model Theory which
is adopted by RDF semantics, (2) Proof Theory which is well-known for using
SLD-resolution, (3) Fixpoint Semantics which is helpful to get the least model
of a program. For SLD resolution, a series of semantic mappings serves to ap-
ply the following ground substitution, associating variables with constants,
which results in grounded rules:

o ={v—c|r€lRR, v €IRV, ¢ =M(r,v) €LV;UIOT}

Thus, our semantics handles a substitution (a set of variable bindings) in a
disciplined manner directly in the model theory — rather than only in the
proof theory — by building mappings for the grounding of rules into the se-
mantic conditions: applied to an arbitrary rule, the mappings produce its
ground instances under the current substitution. On the other hand, for its
implementation, we use the fixpoint semantics for the (function-free) Horn-
like top-level of rules, computing their least Herbrand model, which applies
all rules in the SWRL document to all initial triple facts, to their conclusion
facts, etc., until no further facts can be derived.

The following figure illustrates our method, where the resources delegating

8

JING MEI, HAROLD BOLEY

variables are independent of those constants, and their associated relationships
are established only when a rule is checked and can be reestablished for other
rules.

Rules:

Def-hasUncle: hasUncle(x,z) € hasParent(x,y), hasBrother(y,z)
Def-hasNiece: hasNiece(y,z) < hasSibling(y,x), hasDaughter(x,z)

Facts:
<mj hasParent mdg> <mdg JrasBrother mdq>
<mdq kasSibiing mdg> <mdg hasDaughter mj>
Interpretation
Rule Variable Constant

ru=Sy(Def-hasUncle) eIRR | vx=S{x) €IRV | 0j=S{(mj) €IOT
rn=S(Def-hasNiece) eIRR | vy=S{(y) €IRV | 0g=8;(mdg) €1OT
vz=5,(z) IRV |0g=5{mdq) €IOT

with mapping
M VX vy vz
m 0j og o
m 0g 0 0

4.2 SWRL Full and non-Full Interpretation

Making the SWRL universe compatible with its RDF counterparts, we intro-
duce an extended version called SWRL Full. In SWRL Full, as in OWL Full
or RDF, an element of the universe can be an individual, a class, a property,
or a variable. It is well-known that OWL Full is undecidable mainly because
it allows transitive properties to occur in number restrictions, which has been
strictly prohibited at the OWL-DL syntactic level. However, it has also been
investigated, in [14], even ALC Full, the basic ALC Description Logic extended
with metamodeling features of RDF semantics, is undecidable.

Given that our definitions are based on IOC, IOOP and P;, SWRL Full
adopts the same specifications as OWL Full.

Definition 4.3 A SWRL Full interpretation of a vocabulary V is a SWRL
interpretation that satisfies: IOT=R;, 100P=Py, 10C=Cy,
where C;={x€R; | <x,S;(rdfs:Class)>cEXT(S;(rdf:type))}.

On the other hand, with a separation of the domain of discourse into
several disjoint parts, SWRL non-Full remains standard first-order, viewed as
OWL-DL plus Datalog.

Definition 4.4 A SWRL non-Full interpretation of a vocabulary V is a SWRL
interpretation that satisfies: LV, IOT, IOC, IDC, IOOP, IODP, IOAP, IOXP,
IL, IX, IRR, IRV, IRA and IRB are all pairwise disjoint.

The former ten elements are borrowed from an OWL-DL interpretation,
while the latter four ones are newly-built for a SWRL interpretation.

JING MEI, HAROLD BOLEY

Let us give a few examples to illustrate the distinction of SWRL “Full”
and “non-Full”. With SWRL Full, it is easy to describe the OWL primitive
semantic conditions such that instances of OWL classes are OWL individuals.
foo:rule <foo:x rdfs:subClassOf owl: Thing>«—<foo:x rdf:type owl:Class>
That is, given a rule r = Sy(foo:rule), the body is typed as swrl:ClassAtom,
where swrl:classPredicate is owl:Class and swrl:argument1 is foo:x, while the
head is typed as swrl:IndividualProperty Atom, where swrl:propertyPredicate
is rdfs:subClassOf, swrl:argument1 is foo:x, and swrl:argument2 is owl:Thing.
Here, one argument is a variable S;(foo:x)€IRV whose binding is vp=M(r,
S1(foo:x))€IOT, while the other argument is a constant whose binding is cg =
M(r, Sy(owl:Thing)) = S;(owl:Thing)€IOT. Thus, for every possible binding,
if vg €CEXT/(S;(owl:Class))=I10C, then (vg, cg) €EXT(S;(rdfs:subClassOf)),
i.e., CEXTI(UB) QCEXT[<CB):CEXT](S[(OW1Thlng)):IOT

We observe that in SWRL non-Full, IOT and IOC are disjoint, hence it is
impossible that vg €10T, vg €l0OC and even CEXT(vg) CIOT, while SWRL
Full permits second-order syntax allowing a variable to be bound not only to
individuals but also to predicate symbols (note that IOC is the set of OWL
classes, i.e., unary predicate symbols in FOL). Actually, RDF triple stores do
not distinguish “Full” and “non-Full”, adopting the same abstract syntax for
both; however, on the semantic level the so-called “non-Full” version realizes
a more restrictive style that conforms to the standard first-order semantics.

4.8 Correspondence between Abstract SWRL and SWRL non-Full

Satisfying an abstract ontology is just satisfying its directives, and satisfying
the translation result of an abstract-syntax ontology to an RDF graph is just
satisfying all the triples [19]. Since a SWRL ontology in the abstract syntax
extends an OWL ontology with rule axioms, we present the “Implies” case
here, and for the space limitation, we direct the interested reader to a complete
presentation elsewhere®.

Based on the OWL proofs [19], let V' = VO + VC + VD + VI + VOP
+ VDP + VAP + VXP + VR + VV + VA + VBin be a separated SWRL
vocabulary, and V= VO U VC U VD U VIU VOP U VDP U VAP U VXP U
VR U VV U VA U VBin U VB, where VR, VV, VA, VBin are vocabularies for
SWRL rules, variables, atoms, and built-ins respectively, while the remaining
vocabularies are borrowed from OWL. Let I' = <R, EC, ER, L, S, LV> be a
direct interpretation of V' (cf. the SWRL submission [12]). Let I = <Ry, Py,
EXTy, Sy, Ly, LV; > be a SWRL non-Full interpretation of V that satisfies
the triples for V', with LV; = LV.

Proposition:
Assuming F' = Implies(URIreference Antecedent(A) Consequent(C)) is a SWRL
directive over V', it holds that I satisfies 7*(URlIreference, F) iff I satisfies F.

8 http://www.inf.fu-berlin.de/inst /ag-nbi /research /swrlengine /swrlproof.pdf
10

JING MEI, HAROLD BOLEY

Proof:

< If I satisfies F then, for every binding B such that B(I’) satisfies the an-
tecedent A, B(I') also satisfies the consequent C. Satisfying an antecedent
A means, A is empty or B(I") satisfies every atom in A. Satisfying a conse-
quent C means, C is not empty and B(I") satisfies every atom in C. (1) A is
empty, s.t., it turns out to be an empty SEQ for T*(_:b, A), (2) B(I’) satisfies
every atom in A, s.t., each transformed atom in 7*(_:b, A) is true. Accord-
ing to the Interpretation Conditions Table of the SWRL submission, in any
case of (1) or (2), a non-empty C results in a non-empty SEQ for 7%(_:h, C),
making each transformed atom in 7%(_:h, C) true, for every possible bind-
ing M(S;(T*(URIreference)), S;(T*(v)))=S(v) where v is the variable URI
reference occurring in F. Therefore, I satisfies 7*(URIreference, F).

= If I satisfies T*(URIreference, F') then, 7*(_:h, C) is not empty, i.e., C is not
empty, and for every possible binding M(S;(T*(URlIreference)), S;(T*(v))),
where v is the variable URI reference occurring in F, (1) the SEQ for T™*(_:b,
A) is empty, s.t., A is empty, (2) each transformed atom in T*(_:b, A) is
true. For either case, (1) or (2), it holds that, each transformed atom in
T*(_:h, C) is true. That is, for the corresponding binding B(I') where S(v) =
M(S;(T*(URIreference)), S;(T*(v))), B(I’) satisfies the antecedent A, B(I)
also satisfies the consequent C. Thus, I’ satisfies the rule F.

5 SWRL DL-Safe Rules

Early on, in the first version of SWRL [11], it has been pointed out that an
OWL ontology extended with rules is undecidable, although both OWL-DL
and Datalog are decidable. Recently, by restricting rules to the so-called DL-
safe ones, a decidable combination of OWL-DL (i.e., the syntactic variant of
the SHOZN (D) description logic) with rules is presented in [18], in addition
to practical algorithms for query answering in SHZQ(D) extended with DL-
safe rules.

In our case, only a trivial change to the mapping of M will make all SWRL
rules DL-safe. We proceed with the introduction of DL-safe rules, followed by
our safeness approach.

Definition 5.1 Let KB be a Description Logics (DL) knowledge base, where
N¢ is a set of DL concept names and Ny is a set of DL role names, and let
Np be a set of predicate symbols such that No U Ng C Np. A DL-atom is an
atom of the form A(s) where A € N, or of the form R(s,t) where R € Ng.
A rule r is called DL-safe if each variable in r occurs in a non-DL-atom in the
rule body.

Given an ordinary rule r of the form as: Ay «— Ay, ..., A, (*)
where A; € Np, can be made DL-safe by adding special non-DL-atoms O(z)
to the body of rule r for any variable x occurring in r, and by adding a fact
O(a) to the KB for each explicitly named individual a in KB. That is,

11

JING MEI, HAROLD BOLEY

Ag — Ay, ooy A, O(21), .., O(2y) (**)
where z; (1 < i < n) is any variable appearing in (*), in addition to the
enumeration of all KB individuals as O(a).

In our proposal, a new set CR, being a snapshot of the closed resources
from Ry, permits making all rules DL-safe, s.t. M: IRR x {IRVULV,;UIOT}
— (LV;UIOT)NCR, where CR={a | O(a)}. For each variable v €IRV in a
rule r €IRR of form (*), the conversion from (*) to (**) is realized implicitly,
because M(r,v) €CR and CEXT/(S;(0))=CR, such that the atom O(v) is
true according to the above definition, i.e., M(r,v) eCEXT;(S;(O)).

However, it should be pointed out that rules in the DL community are inter-
preted somewhat differently. Hybrid systems integrating rules and DL usually
introduce a hybrid rule being of the form H <« By A ... A By, AQ1 A ... AN Qn,
where H, B; are ordinary N-ary predicate symbols, and (); are DL queries. In
a restricted version such as AL-log [5] the DL queries act as typing constraints
on the variables: (1) A backward chaining reasoner is used for the construc-
tion of a derivation of H from the B; conjunction, while (2) leaving the Q;
conjunction to a DL reasoner for satisfiability checking. Another well-known
family is CARIN [15], combining Datalog with any subset of ALCNR: It
adopts forward chaining so that the rule component is augmented by the set
of DL-assertions determined by a clash-free completion of the DL, component,
where the DL tableaux algorithm works on such a completion to test entail-
ment. Finally, taking negation into account, dl-programs are proposed in [6]
to compute models by finite fixpoint iterations, employing a DL reasoner and
an answer set engine at the same time.

6 Implementation

Our initial Java implementation® imports a SWRL document to Sesame (an
RDF database), where all elements are decomposed into RDF triples of the
form <ruleml:Implies rdf:type rdfs:Class>. As a result, a table of all ‘Implies’
rules is extracted from the RDF database that represents a SWRL knowledge
base.

We avoid depending on an external prover and translating into it, although
such a translation approach can in principle deal with SWRL rules in a first
order framework, as in Hoolet . For every rule, our SWRL engine imple-
ments the variable assignment of our semantics as a 1-dimensional array. The
bindings represented by this vector provide ground instantiations for atoms,
where each argument is indexed by ‘0’ (for constants) or corresponding to its
position in the vector (for variables). Subsequently, every ‘Implies’ rule should
be satisfied through mappings built into the semantic conditions of the model
theory; also the “sameAs” and “differentFrom” predicates in the rule body

9 http://www.inf.fu-berlin.de/inst /ag-nbi/research /swrlengine/
O http://owl.man.ac.uk /hoolet /

12

JING MEI, HAROLD BOLEY

are reduced to the (in)equality atoms.

On the other hand, to compute the least Herbrand model of all SWRL
rules (which may be recursive), a bottom-up Datalog evaluation strategy is
applied [10]. In this way we extend the relational database that Sesame cur-
rently deploys to a deductive database. By simulating a bottom-up SLD triple
engine, it settles on a fixpoint after a finite number of iterations. However, a
reasoning support combining the OWL and Datalog components in a complete
manner, without resorting to an (almost) FOL prover, is an issue still being
explored.

As an initial use case, a SWRL document describing certain ‘family’ rela-
tionships [7] was imported to Sesame, including 15 rules and 20 individuals.
Having 12 assertions of “hasChild” as its primitive ones, our program de-
rived all underlying conclusions such as 24 assertions of “hasParent”, 4 of
“hasUncle”, 6 of “hasNiece”, and so on. It was also able to infer 54 results of
“hasDescendent” based on the following recursive rules:
hasDescendent(x,y)«hasParent(y,x)
hasDescendent(y,z)«hasParent(x,y), hasDescendent(x,z)

7 Related Work

A reduction algorithm to disjunctive Datalog programs has been developed
for SHZQ(D) [14], a close relative of the SHOZN (D) description logic, of
which OWL-DL is a syntactic variant. So-called DL-safe rules have been
combined with disjunctive programs to increase the expressivity of the logic,
without affecting decidability. On top of that, KAON2 ! has been developed
to manage OWL-DL and SWRL ontologies.

Meanwhile, since both OWL-DL and Datalog rules are decidable fragments
of FOL, another optional solution is to depend on a FOL prover, translating
both into a collection of formulas. Hoolet, an OWL-DL reasoner that uses the
first-order prover Vampire [20], is a representative, as it has been extended to
cover SWRL rules.

Alternatively, a loose coupling of the two components is attractive, i.e.,
running a rule engine and a DL reasoner concurrently and interchanging their
conclusions by means of an interface translator, e.g. in XSLT. This entails,
however, the risk of incompleteness, i.e. of not obtaining all logical conclusions.
One such hybrid approach combines the Protg OWL plugin, Racer and Jess,
where Racer processes OWL-DL and Jess executes production rules [7].

However, our work here intends to demonstrate that the resultant RDF
graphs of SWRL can be the basis for a semantic extension of RDF. Our pro-
totype implementation performs a mapping of RDF triples extracted from an
RDF database such as Sesame. Instead of employing the customizable infer-
encer provided by Sesame, which processes rules defined—in their own syntax—

1 http://kaon2.semanticweb.org/
13

JING MEI, HAROLD BOLEY

via an external document, our engine parses SWRL rules from a SWRL/RDF
document, sharing a common universe of individuals with the OWL counter-
parts of that document.

Our approach is amenable to adding support for OWL reasoning and flex-
ible w.r.t. further refinements such as data filtering and updating due to
Sesame’s database advantages. The effect of our current implementation is
similar to running a suitable translator over a SWRL document as a whole,
which, however, might make OWL reasoning incomplete. As a prototype of
such a translator, OWLTrans !> provides all entailment rules of the RDF &
OWL semantics, based on an encoding of RDF triples as Statement(predicate,
subject, object), with Statement as the only relation; all of ‘individual ID’,
‘class ID” and ‘property ID’ are encoded as constant symbols in the corre-
sponding argument positions of Statement/3. Also, it is easy to incorporate
SWRL rules in OWLTrans, where ‘variable ID’ becomes the variable symbol
while ‘classPredicate’ (resp., ‘propertyPredicate’) is encoded as the symbol of
‘class ID’ (resp., ‘property ID’), whose semantics is embodied in the above pre-
defined entailment rules. The resulting rule base is quite general, including
user-defined rules transformed from SWRL rules, system-defined rules em-
ployed to realize OWL entailments, and a large amount of facts dealing with
the resources. Note that SWRL Full, as shown above, can only express the
fragment of OWL semantics contained in Datalog, e.g. not including exis-
tential quantifiers in a rule head. FOL RuleML [3] has been employed as
the target of a translator for the entire OWL semantics, where Statement/3
reduces second-order syntax to first-order syntax, making it easy to bind vari-
ables to what initially were predicate symbols.

8 Conclusions

In summary, a mapping from the abstract syntax of SWRL to an RDF concrete
syntax is given, on top of which the intended semantics of the resultant RDF
graphs is described as a semantic extension of RDF. Apart from specifying an
RDF-compatible semantics of OWL [19], we introduce a mapping to deal with
the grounding of rules, where an RDF resource corresponding to a variable
in a rule will be associated with an RDF resource standing for a constant.
Focusing grounded rules, we use the well-known “if-then” semantic condition,
preserving the usual OWL semantics for all other directives.

For SWRL non-Full, interpretations are based on a strict separation of the
domain of discourse into disjoint parts, whose correspondence to the abstract
SWRL interpretation [12] has also been presented. On the other hand, SWRL
Full is a more general language, providing support for metamodeling, as OWL
Full does. Aiming at SWRL non-Full (i.e., OWL-DL+Datalog), SWRL DL-
safe rules are considered, where, by restricting the range of our mapping, all

12 http: //www.inf.fu-berlin.de/inst /ag-nbi/research /owltrans/
14

JING MEI, HAROLD BOLEY

SWRL rules can be made DL-safe.

On the assumption that existing RDF database systems (such as Sesame)
can effectively manage SWRL knowledge by decomposing a SWRL document
into an RDF graph, we implemented a prototype system to compute the least
Herbrand model for SWRL rules that are in the form of RDF triples. However,
the issue of a full implementation of OWL reasoning is still open (a tableaux
decision procedure for SHOZQ — the DL underlying OWL-DL — has been
recently published in [13]); similarly, as to the issue of efficient ontology-rule
integrations for the Semantic Web (although there has been recent progress

[1])-

References

[1] Antoniou, G. and H. Boley, “Preface: Special Issue on Rules for the Semantic
Web,” Elsevier Web Semantics Journal, 2005.

[2] Baral, C. and M. Gelfond, Logic programming and knowledge representation,
Journal of Logic Programming (1994).

[3] Boley, H., M. Dean, B. Grosof, M. Sintek, B. Spencer, S. Tabet and
G. Wagner, FOL RuleML: The first-order logic web language (2005), available
at http://www.w3.org/Submission/2005/SUBM-FOL-RuleML-20050411/ and
http://www.ruleml.org/fol/.

[4] Boley, H., S. Tabet and G. Wagner, Design Rationale of RuleML: A Markup
Language for Semantic Web Rules, in: Proc. Semantic Web Working Symposium
(SWWS’01) (2001), pp. 381-401.

[5] Donini, F. M., M. Lenzerini, D. Nardi and A. Schaerf, AL-log: Integrating
Datalog and Description Logics, Journal of Intelligent Information Systems
(JTIS) 10 (1998), pp. 227-252.

[6] Eiter, T., T. Lukasiewicz, R. Schindlauer and H. Tompits, Combining Answer
Set Programming with Description Logics for the Semantic Web, in: KR, 2004,
pp. 141-151.

[7] Golbreich, C., Combining rule and ontology reasoners for the semantic web, in:
Third International Workshop, Rule ML 2004, Hiroshima, Japan, November 8,
2004. Proceedings (2004), pp. 155-169.

[8] Grosof, B. N., I. Horrocks, R. Volz and S. Decker, Description Logic Programs:
Combining Logic Programs with Description Logic, in: Proc. of the Twelfth
International World Wide Web Conference (WWW 2003) (2003), pp. 48-57.

[9] Hayes, P. and B. McBride, RDF semantics (2004), available at
http://www.w3.org/TR/rdf-mt/.

[10] Hinz, Y. K., Datalog bottom-up is the trend, Technical Report INSS 690,
University of Maryland (2002).

15

JING MEI, HAROLD BOLEY

[11] Horrocks, I. and P. F. Patel-Schneider, A proposal for an OWL rules language,
in: Proc. of the Thirteenth International World Wide Web Conference (WWW
2004) (2004), pp. 723-731.

[12] Horrocks, I., P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof and
M. Dean, Semantic Web Rule Language (SWRL) (2004), available at
http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/.

[13] Horrocks, I. and U. Sattler, A Tableauz Decision Procedure for SHOIQ), in: Proc.
of the 19th Int. Joint Conf. on Artificial Intelligence (IJCAI-2005), July 31 -
August 5, Edinburgh, Scotland, UK, 2005.

[14] Hustadt, U., B. Motik and U. Sattler, Reasoning for description logics around
SHIQ in a resolution framework, Technical Report 3-8-04/04, FZI, Karlsruhe
University (2004).

[15] Levy, A. Y. and M.-C. Rousset, CARIN: A Representation Language Combining
Horn Rules and Description Logics , in: Proc. of the Twelfth Furopean
Conference on Artificial Intelligence (ECAI-96), Budapest, Hungary, 1996.

[16] Marchiori, M. and S. Hawke, Team comment on the SWRL submission (2004),
available at http://www.w3.org/Submission/2004/03/Comment.

[17] Mei, J., S. Liu, A. Yue and Z. Lin, An extension to OWL with general rules, in:
Third International Workshop, Rule ML 2004, Hiroshima, Japan, November 8,
2004. Proceedings (2004), pp. 155-169.

[18] Motik, B., U. Sattler and R. Studer, Query answering for OWL-DL with rules,
in: Proc. of the 3rd International Semantic Web Conference (2004), pp. 549
563.

[19] Patel-Schneider, P. F., P. Hayes and 1. Horrocks, OWL web ontology language
semantics and abstract syntaxr, Available at http://www.w3.org/TR/owl-
absyn/ (2004).

[20] Tsarkov, D., A. Riazanov, S. Bechhofer and I. Horrocks, Using Vampire to
reason with OWL, in: Proc. of the 2004 International Semantic Web Conference
(ISWC 2004) (2004), pp. 471-485.

[21] Wagner, G., G. Antoniou, S. Tabet and H. Boley, The abstract syntazx of Rule ML
- towards a general web rule language framework, in: Web Intelligence, 2004,
pp. 628-631.

16

