
Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez
pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the
first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

The 2009 13th IEEE International Conference on Computer Supported
Cooperative Work in Design [Proceedings], pp. 1-6, 2009-04-22

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :
https://nrc-publications.canada.ca/eng/view/object/?id=c156d796-f1ef-4819-8aeb-f72bde317278

https://publications-cnrc.canada.ca/fra/voir/objet/?id=c156d796-f1ef-4819-8aeb-f72bde317278

NRC Publications Archive
Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. /
La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version
acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Service-oriented coordinated intelligent rational agent model for

distributed information systems
Wang, Y. D.; Ghenniwa, H.; Shen, W.

http://irc.nrc-cnrc.gc.ca

Service-oriented coordinated intelligent

rat ional agent model for distributed

information systems

 N R C C - 5 1 1 4 0

W a n g , Y . D . ; G h e n n i w a , H . ; S h e n , W .

A p r i l 2 0 0 9

A version of this document is published in / Une version de ce document se trouve dans:

The 2009 13th IEEE International Conference on Computer Supported

Cooperative Work in Design, Santiago, Chile, April 22-24, 2009, pp.1-6

The material in this document is covered by the provisions of the Copyright Act, by Canadian laws, policies, regulations and international
agreements. Such provisions serve to identify the information source and, in specific instances, to prohibit reproduction of materials without
written permission. For more information visit http://laws.justice.gc.ca/en/showtdm/cs/C-42

Les renseignements dans ce document sont protégés par la Loi sur le droit d'auteur, par les lois, les politiques et les règlements du Canada et
des accords internationaux. Ces dispositions permettent d'identifier la source de l'information et, dans certains cas, d'interdire la copie de
documents sans permission écrite. Pour obtenir de plus amples renseignements : http://lois.justice.gc.ca/fr/showtdm/cs/C-42

http://irc.nrc-cnrc.gc.ca/
http://laws.justice.gc.ca/en/C-42/index.html
http://lois.justice.gc.ca/fr/showtdm/cs/C-42

Service-Oriented Coordinated Intelligent Rational Agent Model for

Distributed Information Systems

Ying Daisy Wang
1
, Hamada Ghenniwa

2
, Weiming Shen

3
, Yunjiao Xue

2

1
School of Economic Information Engineering, Southwestern University of Finance and

Economics, Chengdu, China

ying.daisy.wang@gmail.com
2
Dept. of Electrical and Computer Engineering, University of Western Ontario, Canada

{hghenniwa,yxue24}@eng.uwo.ca
3
Institute of Research in Construction, National Research Council Canada

weiming.shen@nrc.gc.ca

Abstract

This paper presents a Service-Oriented Coordinated

Intelligent Rational Agent (SO-CIR-Agent) model to

address three design issues of open Cooperative

Distributed Systems (CDS): autonomy, distribution, and

heterogeneity. This work incorporates the service-

oriented design paradigm, agent-oriented design

paradigm, and Web service technology as supporting

pillars by extending the CIR-Agent model so that agents

can survive not only in agent-oriented environments but

also in service-oriented environments. The

implementation issues of the proposed agent model are

discussed at the end.

Keywords: Agent, Service-Oriented, Distributed

Systems.

1. Introduction

An open CDS can be constructed from distributed

entities that have limited knowledge and are able to

perform some functions independently and exercise

some degree of authority in sharing their capabilities.

These entities are able to work together to achieve

individual and/or global goals in some domain. The

characteristics and the major design issues of open CDS

are autonomy in terms of control, distribution /

transparency in terms of information location and

working environment, and heterogeneity in terms of

information content and implementation technology.

Although researches in distributed systems and

artificial intelligence attempted to solve these design

issues, the solutions such as Service-Oriented

Architecture (SOA) are limited in autonomy while

cooperative multi-agent systems (MAS) are limited by

the assumption that entities in the environment are

wrapped as agents and run on agent platforms.

As a software design paradigm, SOA helps to

organize and utilize the distributed capabilities in an

open CDS and simplifies the communication between

entities by adopting well-defined and highly

interoperable communication mechanisms. Therefore,

services can be found on heterogeneous distributed

platforms while still being accessible across the

networks. Thus, SOA solves both the distributed and

heterogeneous design issues.

On the other hand, Agent-Oriented (AO) architecture

[3] empowers agents with the property of autonomy

which means that agents are able to perform tasks

without direct intervention from other agents including

human agents and they have control of their own

internal states and actions. This property addresses the

open CDS design issue of autonomy.

At present, although SOA claims to include

autonomy as one of its properties, autonomy is still its

desirable feature. On the other hand, MAS claims

architecture to have a distribution property and the AO

architecture to have the capability to solve

heterogeneous issues. However, this distribution

property is based on the assumption that these

distributed entities are all implemented as agents and

running on the same type (e.g. FIPA-based) of agent

platforms. This assumption is not always true in reality

and limits the heterogeneous nature of open CDS.

Based on the above insight, the SO-CIR-Agent has been

proposed as a service-oriented agent model [9] by

extending the CIR-Agent model [1], so that agents can

survive not only in agent-oriented environments, but

also in service-oriented environments and all three

design issues are solved. The integration of SOA and

AO technology opens up agent technology towards a

service-oriented environment. Therefore, agent

technology is proposed to a larger set of possible users

and the interesting and advanced work carried out by

the agent community can be fruitfully exploited in the

area of service-oriented computing, e.g. coordination

and collaboration.

The rest of this paper is organized as follows:

Section 2 provides a brief literature review; Section 3

introduces the SO-CIR-Agent; Section 4 discusses

1

implementation issues of SO-CIR-Agent; and Section 5

concludes the paper with some perspectives.

2. Literature review

As discussed above, AO architecture is strong in

solving the autonomy issue. We take an in-depth review

and compare different AO models. An approach in AO

systems design views the system as a rational agent

having certain mental attitudes of Belief, Desire and

Intention (BDI), representing the information,

motivational, and deliberative states of the agent [7]

respectively. The CIR-Agent model previously

developed within our group [1] is a design paradigm for

cooperative distributed systems. This work extends the

CIR-Agent model with SO capability.

A multi-agent system (MAS) is designed not only

for achieving autonomy but also for overcoming the

distribution and heterogeneity caused by the open

nature of CDS [5,8]. The way MAS deals with

distribution is based on adoption of Agent

Communication Languages (ACL) such as FIPA ACL,

and/or agent platforms such as JADE. It effectively

resolves these two major design issues while suggests

two major implications: (1) agents communicate in the

same language, and (2) agents must reside on agent

platforms. In other words, agents are not equipped with

the capability to communicate with heterogeneous

counterparts and they are not survivable in

heterogeneous environments. Thus, distribution and

heterogeneity are solved to a certain degree by MAS

while new concerns are arising right from there.

As mentioned above, SOA helps to organize and

utilize the distributed capabilities in an open CDS as

well as simplifies the communication by adopting a

well-defined and highly interoperable communication

mechanism so that services can be discovered on

heterogeneous distributed platforms. Web service is an

implementation of SOA and is designed to support

interoperable machine-to-machine interaction over a

network. Its major advantages are the adoption of: (1)

XML-based highly interoperable communication /

interaction languages, and (2) widely accessible Web

technology as the communication backbone which is

based on HTTP – a text-based protocol.

Researchers have proposed different approaches to

benefit from both sides of the SOA and AO architecture.

Some of them investigated the Web services-oriented

agent [4] at the implementation level while some others

focus on extending the agent platform with Web service

capability [2] or the integration between a certain agent

platform and a Web service platform [6]. This paper

discusses the combination of SOA and AO architecture

at the conceptual level and presents a concrete

implementation based on CIR-Agent model extension

that uses JADE as the agent platform and Web services

as SOA implementation. Thus, it gives a high level and

broader view for future SOA and AO architecture

hybrid software engineering. The implementation is not

limited by a certain choice of platforms. Also the

agent’s survivability in the SO environment no longer

depends on the agent platform on which it resides.

3. SO-CIR-Agent

SOA has a higher encapsulation and abstraction

power than heterogeneous computational artifacts due

to its advantages of autonomy, loose coupling,

modularity, and interoperability. Thus it is an

appropriate paradigm for open computing environments.

However, the service itself is not automatically

autonomous. It is rather a desirable characteristic of

SOA’s conceptual model than the nature of it. On the

other hand, AO architecture is promising in realizing

complex interactions and coordination behaviors due to

its autonomy characteristics. Naturally, we can get a

Service-Oriented Agent Model (SOAM) by hybridizing

the SOA and AO architecture and benefit from both of

them as shown in Figure 1. In a SOAM, AO design

provides a focus and cohesive set of service capabilities.

The fundamental elements of the environment are

services. Software agents capture and implement

services as their functionalities and services consider

software agents as their owners. A SOAM can be

implemented in Web service in terms of service-

orientation and CIR-Agent in terms of agent orientation.

Control:

Autonomous

Coordination

Rationality

……

Agent Orientation

Functionality:

Heterogeneity

Encapsulation

Loose Coupling

Interoperability

……

Service Orientation

Service-Oriented

Agent

Model

Agent-Oriented

Architecture

Service-Oriented

Architecture

Design Paradigms in Open Cooperative Distributed Systems (CDS)

……

Figure 1. SOAM in Open CDS

The structure of a CIR-Agent is based on the mental

state as to achieving a goal. The CIR-Agent architecture

is composed of four major components: knowledge,

problem-solver, interaction and communication. The

knowledge component has the mental state of the goals,

local world history, coordination knowledge, models of

the other agents and communication knowledge. The

problem solver is responsible for working out solutions

to achieve a goal. The interaction component associates

the problems with the corresponding type of

interdependencies. The communication component

executes the plan so that the agent’s acts affect the

outside world. In the CIR-Agent model, no global

control is allowed, but agents use different interaction

devices to resolve the interdependency problem.

To make the CIR-Agent survivable in a SO

environment, a particular interconnection of agent

components is required to reflect the agent’s mental

2

state pattern related to the reasoning about goal

achievement. This requires the original CIR-Agent

model to be extended in its knowledge and

communication components.

3.1. Knowledge Component

The knowledge part is the agent’s mental state,

which is the information an agent has in its memory.

This information includes its business domain

knowledge, coordination knowledge, environment

knowledge, and communication knowledge as depicted

in Figure 2. Two components need to be enriched,

namely, external environment knowledge and

communication knowledge for service-oriented

extension. The external environment knowledge needs

to include: (1) the knowledge about other service

models, namely, their capability, location, parameters

needed to perform a service, and (2) the service

platform model that is the operation procedure

described in the platform specifications. The

communication knowledge model needs to include the

knowledge about service communication including

service communication languages and protocols.

Service-Oriented CIR-Agent Knowledge

Environment Knowledge

Communication
Knowledge

S
e
lf-M

o
d
e
l

O
th

e
r A

g
e
n
t’s

 M
o
d
e
l

Coordination
Knowledge

Local
Environment
Knowledge

External
Environment
Knowledge

D
o
m

a
in

 S
p
e
c
ific

a
tio

n

L
o
c
a
l W

o
rld

 H
is

to
ry

O
th

e
r S

e
rv

ic
e
 M

o
d
e
l

A
g
e
n
t C

o
m

m
u
n
ic

a
tio

n

S
e
rv

ic
e
 C

o
m

m
u
n
ic

a
tio

n

Business
Domain

Knowledge

G
o
a
l

D
o
m

a
in

 S
p
e
c
ific

a
tio

n

Agent

-Oriented

Environment

Service

-Oriented

Environment

A
g
e
n
t P

la
tfo

rm
 M

o
d
e
l

S
e
rv

ic
e
 P

la
tfo

rm
 M

o
d
e
l

Figure 2. SO-CIR-Agent Knowledge Model

The external environment knowledge of an agent

includes the information that an agent has about the

external environment, including the knowledge about

its AO environment and the knowledge about SO

environment.

Model of AO environment, denoted by

{ }miMAPMAMAE iii AgAgAg ≤≤= 1, , where iAg
MA are

the models of the other agents in the AO environment

and iAg
MAP is the model of the agent platform is

running on, and denotes the number of agents in the

environment.

iAg

m

Models of the other agents are denoted by

{ }limlmiMMA i

l

i Ag

Ag

Ag ≠≤≤≤≤= ,1,1 , where

iiii

l

Ag

x

AgAgAg

Ag XXXdefM ,...,, 21
 - the definition of

defines the parameters that agent might know

about agent , and m denotes the number of agents

in the environment. These parameters might include the

capability of managing information and the mental state

of an agent in achieving its goals. Such knowledge is

usually dynamic and kept in its memory by agents.

sX

iAg

lAg

An agent usually runs only on one agent platform.

The model of the agent platform is denoted by iAg
MAP .

This model is usually reflected in the user’s guide or

system specification of the agent platform. Information

might include the execution procedure that an agent

needs to know for registration, and the interface an

agent needs to follow to interact with the platform, etc.

Model of SO environment, denoted by

{ }miMSPMSMSE iii AgAgAg ≤≤= 1, , where are

the models of the other services in the SO environment

and is the model of the service platforms is

involved with, and m denotes the number of agents in

the environment.

iAg
MS

AgiAg
MSP i

Models of the other services are denoted by

{ }nlmiMMS i

l

i Ag

Sv

Ag ≤≤≤≤= 1,1 , where

iiii

l

Ag

y

AgAgAg

Sv YYYdefM ,...,, 21
 - the definition of

defines the parameters that agent might know

about service , and m denotes the number of agents

in the environment while n denotes the number of

services in the environment. These parameters that

agent might know about service include the

capability and location of a service, as well as

parameters needed to perform the service.

sY

iAg

Sv

lSv

iAg l

An agent might be involved in more than one service

platform. Model of the service platforms is denoted by

{ }rlmiMSPMSP i

l

i Ag

Sp

Ag ≤≤≤≤= 1,1 , where is the

model of a service platform that agent is involved

with, and m denotes the number of agents in the

environment while

i

l

Ag

SpMSP

iAg

r denotes the number of service

platforms that agent is involved with in the

environment.

iAg

Furthermore, the communication knowledge of an

agent includes: Models of agent-oriented

communication, denoted by { }piOALCA ii ≤≤= 1, ,

where p denotes the number of AO communication

languages existing in the environment, ALi denotes one

of the AO communication languages while Qi denotes

the ontology pairing with ALi. Models of service-

oriented communication, denoted by

{ } { }{ }rjqiPOSLCS jii ≤≤≤≤= 1,1,, , where q denotes

the number of SO languages existing in the

environment, r denotes the number of communication

protocols existing in the environment, SLi denotes the

SO communication language existing in the

environment while Qi denotes the ontology pairing with

SLi. Thus, there are two subsets of elements in the set of

SO communication model – the SO communication

language pair and the communication protocol.

3.2. Communication Component

3

Two components (Agent-NonAgent and Agent-

Environment communication) of the original model

need to be extended as depicted in Figure 3. This work

adds service as new types of NonAgent entity. Agents

need to follow the service communication languages

and protocols. This work also adds the SO environment

(or service platform) as a new type of environment. It is

related to a series of execution procedures whose

semantics is based on service platform specifications.

We need to address language, ontology and protocol

when talking about communication. The following

discussion is based on Web service communication.

Agent-Service Communication. Communication

Language – for agents running on a Web Service

Platform, they need to communicate with services in

SO communication languages, e.g. SOAP for

accomplishing a service, WSDL for describing the

agent’s problem solving capabilities, and UDDI for

describing the agents’ own locations. Communication

Ontology – for agents and services to understand each

other correctly, they need to refer to an associated

ontology, e.g. OWL, for encapsulation and embodiment

of the domain business concepts and rules.

Communication Protocol – communication networking

protocols, e.g. HTTP, and TCP/IP.

Service-Oriented CIR-Agent Communication

Agent
-

None Agent Entity

Agent
-

EnvironmentAgent
-

Human

Agent
-

Agent

T
e
x
tu

a
l d

ia
lo

g

…
…

C
o
m

m
u
n
ic

a
tio

n
 P

ro
to

c
o
l

P
re

d
e
fin

e
d
 M

e
c
h
a
n
is

m

MessageInterface

D
a
ta

b
a
s
e
: N

a
m

e
 &

 A
d
d
re

s
s

O
p
e
ra

tin
g
 S

y
s
te

m
:

U
s
e
r M

a
n
u
a
l

Environment
- Oriented

Communication

Entity
- Oriented

Communication

O
b
je

c
t: O

b
je

c
t ID

, M
e
th

o
d

N
a
m

e
 &

 T
y
p
e
d
 P

a
ra

m
e
te

rs

S
e
rv

ic
e
: S

e
rv

ic
e
 C

o
m

m
u
n
ic

a
tio

n

L
a
n
g
u
a
g
e
s
 &

 P
ro

to
c
o
ls

…
…

S
e
rv

ic
e
-O

rie
n
te

d
 E

n
v
iro

n
m

e
n
t:

U
s
e
r M

a
n
u
a
l

A
g
e
n
t-O

rie
n
te

d
 E

n
v
iro

n
m

e
n
t:

U
s
e
r M

a
n
u
a
l

…
…

Execution
Procedure

Figure 3. SO-CIR-Agent Communication Model

Agent-ServicePlatform Communication.

Communication Language – for agents to communicate

with SO platforms in operations such as service

registration and service look up, in a way (or call it a

“language” literally) that the SO platform understands,

agents need to follow platform specifications.

Communication Ontology – usually the semantics of

the communication between any type of service

providers/requesters and the SO platform is implicitly

reflected in the documentations mentioned in

“Communication Language” above. Communication

Protocol – usually the SO platform would provide an

API for entities to connect with it, and this would serve

as the communication protocol between the agents and

the SO platforms.

The CIR-Agent communication model is divided

into four layers – Goal Layer, Conversion Layer,

Message Layer and Physical Layer – to cope with the

agent’s interaction with other entities. The Goal Layer

provides mapping between agent internal/external

goal(s) and the conversion layer. The Conversion Layer

is a structurally well-formed language used to ensure

sending/receiving the intended messages without

misunderstanding. The Message Layer provides

mapping between the conversion layer and the physical

layer, which involves outgoing message construction in

ACL and incoming message parsing. The Physical

Layer provides a uniform interface to the underlying

telecommunication physical layer.

Figure 4. SO-CIR-Agent Communication Layer Abstract

Model

Assuming that agents and services are working in the

same type of network, it is obvious that we need to have

the conversion layer and the message layer extended for

SO. The other two layers are not affected as depicted in

Figure 4.

Conversion Layer SO extension: The order-based

predefined conversion is not applicable in agent-service

communication because the commitment to such an

order cannot be ensured when agents communicate with

heterogeneous types of counterparts. The semantic-

based emergent conversion policy allows the agent to

use a dynamic order of messages and is based on the

interpretation of the received messages. Therefore, the

communication conversion mechanism solely relies on

the agent’s interpretation capability rather than the

counterparts’ commitment. As long as the agent is

equipped with such a message exchanging conversion

mechanism, the effectiveness and correctness are

ensured.

Message Layer SO extension: When an agent

needs to send out a message, the outgoing message is

dispatched according to the type of intended receiver

first. For a message to be sent to a service, it would be

passed to the message construction unit according to SO

communication languages, such as SOAP, WSDL and

UDDI for Web Services, and then passed to the

physical layer. When an agent receives a message from

the physical layer, it distinguishes whether the sender is

an agent or a service first. For a service type of sender,

the newly extended SO Communication Language-

based parser would be applied.

Goal Layer

Conversion Layer

Message Layer

Physical Layer

High

Low
Incoming Messages Outgoing Messages

Internal Goal External Goal

Interaction Device

Order-based

policy

Semantic-based

policy

Agent-Agent Conversion Agent-Service Conversion

Incoming Message

Semantic-based

policy

Outgoing Message

Incoming Message Dispatch

Outgoing Message DispatchService-

Oriented

Communication

Language

Parser

Agent

Communication

Language

Parser

Message

Construction in

Agent

Communication

Language

Message

Construction in

Service-Oriented

Communication

Language

4

4. Implementation

When an instance of a SO-CIR-Agent is deployed,

among the four components of the agent model, the

Knowledge component plays an essential role. The

remaining three components (Problem Solver,

Interaction Device and Communication) are deployed

based on an agent’s knowledge about itself and the

environment. Based on this insight, this work proposes

a Knowledge-Driven Self-Deployment Algorithm that

allows an instance of a SO-CIR-Agent being deployed

driven by its knowledge.

For a SO-CIR-Agent , it is represented as: iAg

{ }iii AgAgAg

i IDPSKAg ,,= iAg
C, , where iAg

K is

the Knowledge component, denoted by

where

is the Goal knowledge,

⎪
⎭

⎪
⎬

⎫
iAg

MS ,

,

i

⎪
⎩

⎪
⎨

⎧

=
ii

iii

iii

i

AgAgAg

AgAgAg

AgAgAg

Ag

CAMSP

MALH

SKCKDG

K

,

,,

,,

iAg
G

Ag

i

iAg

CS

MAP

,

,

,

D is the Domain

Specification knowledge, is the Coordination

Knowledge, denoted by

,where

is the Resource Scheduling knowledge,

is the Conflict Resolution knowledge,

is the Synchronization knowledge,

iAg

⎪⎩

⎪
⎨
⎧

=
i

i

i

Ag

Ag

Ag

KUKAKRAK

SCKCRKRSK
CK

,

,

iAg
RSK

iAg
CRK

iAg
SCK

CK

i

i

Ag

Ag

,

,

⎪⎭

⎪
⎬
⎫

i

i

Ag

Ag
,

iAg
RAK

is the RedundancyAvoidance knowledge, iAg
AK is the

Assignment knowledge, is the Knowledge

Update knowledge, is the Self Model

knowledge, it points to SO-CIR-Agent instance ,

iAg

iAg
L

KUK
iAg

SK

iAg

H is the Local History knowledge, iAg
MA

Ag

is the

Model of other Agent knowledge, iMAP is the

Model of Agent Platform knowledge, MS is the

Model of other Service knowledge, MSP is the

Model of Service Platform knowledge, CA is the

Agent Communication knowledge, is the Service

Communication knowledge, is the Problem

Solver component which takes self model for

initiation,

iAg

iAg

iAg

iAg
SK

iAg
CS

iAg
PS

iAg
ID

⎪⎩

⎪
⎨
⎧

=
i

i

Ag

Ag

Ag

ARA

CRRS
ID

,

iAg
RS

iAg
SK

iAg

is the Interaction Device component,

denoted by , where

is the Resource Scheduling device which takes

for initiation, CR is the Conflict Resolution

device which takes SK for initiation, S is the

Synchronization device which takes SK for

initiation,

⎪⎭

⎪
⎬
⎫

i

ii

Ag

Ag

KU

S ,,

i

i

Ag

Ag

,

,

iAg

iAg
iAg

iAg

RA
iAg

SK

is the RedundancyAvoidance device

which takes for initiation, iAg
A is the

Assignment device which takes for initiation,

is the Knowledge Update device which takes

for initiation, is the Communication

component, denoted by

iAg
SK

iAg
KU

iAg
SK iAg

C

{ }iiiii AgAgAgAgAg
AECASCAACAHCC ,,,=

iAg
AHC

iAg
SK AAC

iAg
ASC

iAg
AEC

,

where is the Agent-Human Communication

device which takes for initiation, is

the Agent-Agent Communication device, is the

Agent-Service Communicaton device, is the

Agent-Environment Communication device, denoted by

iAg

{ }iiii AgAgAgAg
SPCAPCOSCAEC ,,=

iAg
OSC

iAg

iAg
APC

iAg
SPC

, where

is the Agent-OS Communication device which

is the only default component of , and it has a

read() method, read() takes knowledge name as input

and returns with the corresponding knowledge,

is the Agent-AgentPlatform Communication

device, is the Agent-ServicePlatform

Communication device. Some Knowledge component

member is necessary for agent deployment while others

are not. Instead, they are essential for an agent to be

functional during its life cycle. Assuming the agent’s

deployment capability is guaranteed when necessary

knowledge is available, the logical relationship between

the deployment necessary member of a Knowledge

component and the member of the rest of a SO-CIR-

Agent components according to their semantics and

intended use are represented as follows:

() (iiiii AgAgAgAgAg
APCAACMAPCAOSC ∧→∧∧

(1)

() iAgiAg →iAg
OSC ∧ ASCCS (2)

() iAgiAg →iAg
OSC ∧ SPCMSP (3)

() iAg
PSii Ag

D∧iAg
GOSC ∧ Ag → (4)

() iAgiAg
RSKiAg

OSC ∧ RS→ (5)

() iAgiAgiAg
OSC ∧ CRCRK → (6)
() iAgiAg

SCKiAg
OSC S→∧ (7)

() iAgiAg
RAKiAg

OSC ∧ RA→ (8)
() iAgiAg

AKiAg
OSC A→∧ (9)

() iAgiAgiAg
OSC ∧ KU→KUK (10)
{ }()()iAg

→
⎟⎟
⎟
⎟

⎠

⎞
ii

i

Ag

Ag

Ag

Ag

K

CA

G

KUKxx

⎜⎜
⎜
⎜

⎝

⎛

∧

∧

∈∃ ,

i

ii

Ag

AgAg

MSP

AKRAK ,,

i

SCK

∧ii

i

ii

AgAg

Ag

AgAg

CSMAP

D

CRKRSK

∧∧

∧

,,

(11)

{ }() ii AgAg
KUxx ∈∃ , i ID→ii AgAg

ARA ,,ii AgAg
CRRS ,,

Ag
S (12)

{ } ii AgAg
SPCAHC ,, iAg

C→iAg
APCOSC ,iAgii AgAg

ASCAAC ,, (13)
() i

AgAg
CK iAg

ID i ∧Ag
PS ii ∧ Ag→∧

(14)

The objective of this algorithm is to take K as

input, and generate the rest of a SO-CIR-Agent

components (,

iAg

iAg
PS iAg

ID and). The expected

output should be a component collection in the

normalized form of

iAg
C

{ }iAgii Ag
ID ,,

i

ii

ii

i

Ag

AgAg

AgAg

AgAg

APCASC

RAS

MSP

SCK

,

,,

,,

,

iAg
PSK ,

∈∃

∈∃

i

i

i

ii

ii

ii

i

ii

AgAg

Ag

Ag

AgAg

AgAg

AgAg

Ag

AgAg

AACAHC

RSxx

PS

CSCA

MAPMA

LHSK

RSKxx

DG

,

,

,

,,

,,

,,

,

,,

Ag

i

CR

MS

CRK

,

i CAg = , like:

{ }()()

⎪
⎪
⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪
⎪

⎨

⎧

=

i

ii

iii

Ag

AgAg

Ag

i

SPC

A

KUKRAK

Ag

,

,,

,,,

{ }()()
i

i

i

Ag

Ag

AgAg

KU

AK

,

,

5

6

5. Conclusions

This paper presents SO-CIR-Agent as a Service-

Oriented agent model in solving the three design issues

of Open CDS, namely, autonomy, distribution and

heterogeneity. This work involves a number of

emerging technologies including Web services and

intelligent agents. The research starts from a conceptual

level investigation of service-oriented agent model as

an infrastructure to carry out services in open CDS. The

advantages of such an agent model include: (1) AO

design empowers the model with autonomy; (2) SOA

endows the model with heterogeneity, encapsulation,

loose coupling and interoperability; (3) most

importantly, agents are robust so that individual agents

can survive in both AO and SO environments.

Considering the concrete implementation based Web

service and CIR-Agent model, this work proposes a

Knowledge-Driven Self Deployment algorithm to guide

the agent deployment progress. The proposed SO-CIR-

Agent is generic and can be applied to many open CDS

application domains, such as intelligent personal

assistant services, e-business, healthcare, and resource

management. In future work, we intend to validate the

proposed model through comprehensive scenarios in

different application domains and on different agent

platforms.

6. References

[1] Ghenniwa, H., Kamel, M., 2000. Interaction Devices for

Coordinating Cooperative Distributed Systems,

Automation and Soft Computing, 6(2), 173-184.

[2] Greenwood, D., Calisti, M., 2004. An Automatic, Bi-

Directional Service Integration Gateway, IEEE Systems,

Cybernetics and Man Conference, 10-13 October, The

Hague, Netherlands.

[3] Jennings, N., Wooldridge, M., 2001. Agent-Oriented

Software Engineering, Handbook of Agent Technology, J.

Bradshaw (Eds.), AAAI/MIT Press.

[4] Li, Y., Ghenniwa, H., Shen, W., 2004. Agent-Based Web

Services Framework and Development Environment,

Computational Intelligence, 20(4), 678-692.

[5] Marik, V., Muller, J., Pechoucek, M., Eds., 2003. Multi-

Agent Systems and Applications, Springer-Verlag

Heidelberg, pp. 626-635.

[6] Nguyen, X.T., Kowalczyk, R., 2007. WS2JADE:

Integrating Web Service with Jade Agents, Service-

Oriented computing: Agents, Semantics, and Engineering,

Springer Berlin/Heidelberg, pp. 147-159.

[7] Rao, A.S., Georgeff, M.P., 1995. BDI agents: From theory

to practice, Proceedings of ICMAS-95, pp. 312-319,

Menlo Park, California, June, AAAI Press.

[8] Wooldridge, M., 2002. An Introduction to Multi-Agent

System, John Wiley & Sons.

[9] Wang, Y.D., Ghenniwa, H., Shen, W., 2008. An

Amphibian Service-Oriented Agent Model for

Cooperative Distributed Systems, IEEE International

Conference on e-Business Engineering, Xian, China, 22-

24 October.

