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Abstract 

Following the global lockown as a measure to contain the 

spread of the COVID-19 pandemic, the world has 

witnessed a temporary decline in energy usage, especially 

in the commercial building sector. However, the 

magnitude of decline in that sector was not as large as the 

expected decline for unoccupied spaces. Energy 

performance of low-/unoccupied commercial buildings 

coupled with the new minimum requirement for outdoor 

air intake is an intriguing research question. However, 

occupancy data is expensive to obtain and is challenging 

from a privacy standpoint. Instead, by comparing the 

business-as-usual electricity usage with that of the known 

unoccupied period during the early stage of the lockdown, 

a wide spectrum of hybrid work electricity usage can be 

estimated. In this study, two years of hourly energy 

(thermal load-free electricity) use data for 49 commercial 

buildings equipped with smart energy management 

systems are analyzed to quantify those changes. A linear 

regression predictive model to estimate low-occupancy 

electricity loads is conducted. Results indicate that the 

proposed model is promising and can be further improved 

for better repeatabilitiy.   

Highlights 

• Annual electricity usage was reduced by 5% and 6% 

in the first and second years following the pandemic 

lockdown order in studied government commercial 

buildings in Canada. 

• The proposed predictive model is developed to 

estimate partial occupancy electricity loads in case of 

absence of occupancy data, by using at least two 

distinctive cases where the occupancy fraction is 

known. 

• Linear regression predictive model was created to 

estimate partial and low-occupancy electricity usage. 

• The model identifies the baseload, typical occupancy 

loads, and the loads at any given occupancy fraction. 

Introduction 

Following the global lockdown and work-from-home 

order for non-essential businesses and employees as a 

measure to contain the spread of the COVID-19 

pandemic, the world has witnessed a substantial decline 

in energy usage, especially in the commercial building 

sector (Beyer et al., 2021). The COVID-19 pandemic had 

disrupted economies worldwide (Beyer et al., 2021) due 

to several reasons, including imposed lockdown orders, 

forcing employees and businesses to either shutdown or 

work remotely from home. In order to contain the spread 

of the COVID-19 virus, various measures were taken, 

some of which are partial or complete lockdowns, some 

others include curfews, restrictions on public gatherings, 

and shutdown of unnecessary businesses (Santiago et al., 

2021). In 2020, right after COVID-19 was declared by the 

WHO as a global pandemic, researchers were motivated 

to use the trends in electricity usage right after the 

stringent containment measures to predict future demand 

given limited information on the long-term socio-

economic impacts of the pandemic and the duration of 

those impacts. Agdas & Barooah (2020) shed light on the 

heterogeneity of the variation in electric power demand 

during the COVID-19 pandemic, referring to the 

responses of the various states in the U.S. to the initial 

pandemic lockdown order. The variation is not only on 

the aggregate level, but also on the grid stress level, for 

example, peak demand, where some states indicated 

increased stress, others less stress, and still others no 

significant change. Leach et al. (2020) found that during 

the initial stage of the COVID-19 pandemic (i.e., March 

2020-June 2020), electricity demand in Canada dropped 

by 10% in Ontario, and about 5% in Alberta, British 

Columbia, and New Brunswick. In April 2020 alone, the 

electricity demand in the Province of Ontario dropped by 

14%, and particularly by 16% in Ottawa (the National 

capital of Canada) (Abu-Rayash & Dincer, 2020). Awad 

et al. (2022) studied the electricity performance of 27 

commercial smart buildings in the National Capital 

Region in Canada during the two years following the 

COVID-19 pandemic lockdown. Their study concluded 

an average reduction of 10% in commercial smart 

buildings during the first year following the COVID-19 

pandemic lockdown order, where the change rate was 

non-uniform across the different building archetypes. It is 

worth mentioning that in Ontario, the share of annual 

electricity demand for the building sector is 36%, 29%, 

and 31% for commercial, industrial, and residential 

buildings (Leach et al., 2020). Immediately after COVID-

19 had been declared as a global pandemic by the WHO,  

stay-at-home orders were set in place worldwide at 

different restrictive levels. Understanding the deviation in 

electricity demand during the initial response to the 

COVID-19 pandemic at the national level caught 

researchers’ attention, especially due to the shift of energy 

usage patterns and load profiles. In conclusion, the 



electricity demand at the building sector, municipal, 

national and international levels had been clearly affected 

by the socio-economic implications of the COVID-19 

pandemic. However, the extent and duration of disruption 

showed heterogeneity, depending on the building sector 

(e.g. housing, commercial, educational), degree of 

lockdown strictness, spread of the virus, as well as 

behavioral aspects and protective measures in buildings 

(e.g. increased outdoor air intake, limited capacity, 

mobility). It is critical that while we prioritize health and 

safety in buildings by, for example, maximizing outdoor 

air intake, we also ensure that actions against climate 

change are supported (Halbrügge et al., 2021). Energy 

demand is directly linked to people’s activities, in 

particular, work activities (Santiago et al., 2014). Existing 

commercial buildings have been traditionally designed 

and scheduled to accommodate full capacity “business as 

usual” operations, while considering weekday and 

weekend scheduling modes only. Other ad hoc and 

unplanned events, such as statutory holidays, 

maintenance, new organizational missions, natural 

disasters, and, as seen recently, pandemic response have 

not been considered in the past. By proposing new energy 

efficiency measures during low-to-no occupancy, further 

energy, as well as GHG emissions, savings could be 

achieved immediately. Since the COVID-19 pandemic 

spread globally in early 2020 up to the present date, and 

due to the government-imposed lockdowns and other 

operating restrictions, it was found that buildings have 

reacted with inhomogeneity to these restrictions. Reasons 

for differences could be behavioural, operational changes, 

the capability of legacy control systems, or energy 

efficiency measures in place. It is also noted that some 

older buildings may lack zoning, which results in full 

HVAC (and, in some cases, lighting) operation during 

partial occupancy. Previous studies aimed at 

undestanding occupancy and occupancy-driven 

operations and the associated energy demand in 

commercial buildings. Zou et al. (2017) investigated the 

use of Wi-Fi infrastructure to detect Wi-Fi-enabled 

mobile devices to count building occupants. Hobson et al. 

(2019) studied occupancy sensing via sensor fusion where 

available data included Wi-Fi, CO2 concentration, PIR 

motion detctors, and plug and light electricity load meters. 

They found that Wi-Fi-enabled device counts had high 

relevance for occupancy-count estimations compared to 

ground truth counts. However, due to the scarcity of 

occupancy data, especially in buildings that are highly 

secure (and access to WiFi data would violate privacy), 

and/or where the occupancy detection technologies 

required infrastructure that is expensive to implement 

(Zou et al., 2017), novel non-intrusive, blackbox methods 

are required to understand the correlation between user 

behaviour and electricity demand. This mandate has 

become even more critical post the COVID-19 pandemic 

due to the proposed flexible work environment, allowing 

employees to choose to work on-site, hybrid, or off-site. 

This “new normal” mode requires a thorough 

understanding of the sensitivity of occupancy ratios to 

electricity demands, so that the established relationship 

can be used in predicting electricity demand based on 

estimated occupancy ratio as a proxy.  The aim of this 

study is to perform a black-box sensitivity analysis on the 

effects of occupancy levels on electricity usage, where 

occupancy data is unavailable, taking the COVID-19 

stay-home period as a reference for unoccupied electricity 

performance, and the pre-COVID period as a reference 

for business-as-usual electricity performance. By 

comparing these performance points, a wide spectrum of 

hybrid work energy proportion can be estimated. 

Methods 

Building Automation System (BAS) data from 49 

commercial Smart Buildings located in Ontario, Canada 

is collected at 1-hour interval granularity for the periods 

before, during, and post the COVID-19 pandemic. The 

study utilizes metered electricity (lighting, plug loads, and 

fans), usage data for the full years of the pandemic from 

April 2019 – March 2022 with particular attention to 

systemic changes that occurred from March 2020 

onwards. The analysis includes time-series data analytics 

at several temporal resolutions, peak load and base load 

analysis, and rates of change in usage patterns. For annual 

energy aggregation accounting, since the national 

imposed lockdown in Canada took place on March 16th, 

2020, we simplify the comparison by counting the 

pandemic years from April 1st, 2020until March 31st 2021, 

and same for the following pandemic year 2021-22. 

Similarly, the pre-pandemic year starts on April 1st, 2019 

until March 31st, 2020. Since this set-up aligns with the 

Canadian Federal Government Fiscal Year (FY), we use 

FY instead as follows: FY 2019-20, FY 2020-21, FY 

2021-22 to reflect the pre-pandemic (during which 

COVID-19 had not been observed), post-pandemic, and 

recovery years. For hourly data analysis, e.g. peak and 

base load accounting, the COVID labelling reflected the 

actual lockdown start date (March 16th and thereafter is 

labelled as COVID, otherwise is labelled as pre-COVID). 

Data from FY 2019-20 is considered as the control period 

to compare the pandemic energy performance in FYs 

2020-21 and 2021-22 to the pre-pandemic energy 

performance. The terms “post-pandemic” and “recovery” 

do not imply or indicate the end of the pandemic as a 

public health matter. Actual country-wide lockdown for 

federal employees took place on March 16th, 2020 where 

all non-essential commercial activities were shut down 

and the majority of office workers worked from home. 

For more accurate results on pre- and post- lockdown 

energy usage, we focus on comparing the 2-year period of 

the pandemic onset in FY 2020-21 and FY 2021-22 

against the corresponding period from FY 2019-20 as a 

non-pandemic control year. 

Changes in electricity usage due to the COVID-19 

pandemic lockdown 

In a previous study, multiple comparative methods were 

addressed to quantify the impacts of the COVID-19 

pandemic on energy usage in commercial buildings with 

focus on electricity only (Awad et al., 2021, 2022), where 

methods included baselining, multilinear regression, and 

time-series decomposition. In this article, an expansion of 



the previous analysis includes electricity loads for a 

different, larger set of the building stock (49 buildings). 

To determine the deviation in electricity usage in FYs 

2020-21 and 2021-22 with respect to the reference FY 

2019-20, Eq.1 is used to calculate the deviations for each 

building. 

 

𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝑒,𝐹𝑌(%) = [𝐸𝑒,𝐹𝑌 − 𝐸e,ref] ∗ 100/𝐸e,ref (1) 

 

where e represents the energy type (electricity, steam, 

chilled water, gas), E is the annual aggregate of the given 

energy type, FY represents the fiscal year under 

investigation, and ref indicates the reference year. Here, 

since we focus on electricity only, e and E denote electric 

energy. While considering the pre-pandemic reference 

year as the benchmark, an average drop of 5% and 6% in 

electricity usage in FYs 2020-21 and 2021-22, 

respectively, was observed. The mild reduction can be 

due to aggressive ventilation and other protective 

measures suggested by building operators, which may 

have offset larger reductions elsewhere.  

 

 

Figure 1. Annual electricity usage intensity during the 

two years following the pandemic lockdown order with 

reference to pre-pandemic levels. 

 

Figure 1 compares the pre-pandemic electricity usage 

intensity (EUI) levels for each of the study buildings 

against their corresponding electricity EUI levels during 

the two years following the pandemic lockdown order. 

The red marker represents the pre-pandemic levels, and, 

the blue and green markers represent the post-pandemic 

levels. Blue and/or green markers exceeding the red 

marker’s value, simply means that this building’s 

pandemic electricity EUI exceeded its pre-pandemic 

levels, and the opposite is also true. Table I summarizes 

the deviation in electricity EUI during both pandemic 

years as compared to the reference pre-pandemic year. 

The variance in response to the complete and/or partial 

lockdown is found to be large spanning between a 

minimum of -92% in building P and maximum of +230% 

in building AT, both in FY 2021-22. The Coefficients of 

Variance (CV) for the deviatione(%)  are calculated as -

8% and -137% for FYs 2020-21 and 2021-22, 

respectively. Future studies will address in detail the 

building performance behaviour during the pandemic. 

 

Table I. Building-level deviation in annual electricity 

usage in FYs 2020-21 and 2021-22 as compared to pre-

pandemic FY 2019-20.  

Name Deviatione(%) Name Deviatione(%) 

20_21 21_22 20_21 21_22 

A -11.68 -79.46 AA 1.0286 -1.764 

B -11.14 -7.726 AB -18.26 -11.8 

C -25.75 -10.22 AC 11.231 2.1653 

D -19.58 -10.67 AD 11.9 11.947 

E -16.39 -24.9 AE -13.74 -16.35 

F -36.87 13.808 AF -6.454 3.1328 

G -14.84 -5.26 AG -12.11 -6.26 

H 1.2815 -1.558 AH 0.9017 -6.232 

I -0.822 4.7256 AI -23.47 -3.415 

J 4.2982 -53.5 AJ -31.53 0.8112 

K -3.806 -3.178 AK -19.48 -13.82 

L -81.15 -90.16 AL -6.115 9.8291 

M 4.496 11.428 AM -43.18 -4.407 

N 17.544 22.947 AN -7.262 4.5003 

O -13.72 -9.674 AO -0.101 3.965 

P 1.881 -92.26 AP -7.231 -9.92 

Q -20.58 -18.73 AQ -4.654 -14.58 

R -7.963 -18.91 AS -16.07 7.4246 

S -15.68 -23.71 AT 176.91 230.31 

T -15.32 -10.11 AU 3.53 0.3325 

U -1.117 5.7985 AV -4.756 -6.637 

V -3.534 -3.97 AW -11.75 5.1035 

X -8.957 -13.27 AX 110.77 227.18 

Y 0.9336 1.3097 AY -12.02 -1.528 

Z  -14.37 -11.73       

 



  Estimating electricity EUI during partial occupancy 

Since the initial COVID-19 pandemic lockdown order in 

March 16th, 2020 had resulted in ad hoc shutdown in 

commercial buildings, followed by a series of step-wise 

ease of restrictions based on the spread of the virus, we 

took advantage of the confirmed lockdown period (i.e., 

within 2 weeks following the initial lockdown order) to 

represent the no-occupancy operation period (we assume 

the building was unoccupied during all hours due to 

immediate pandemic restrictions). On the other hand, the 

typical full occupancy “business-as-usual” operation was 

extracted from the pre-pandemic reference year. Here, 

“full” occupancy does not mean occupancy at maximum 

design capacity, or every seat occupied, but rather means 

typical pre-pandemic daytime occupancy. In order to 

control for other possible parameters that may affect 

electricity usage we applied data filters to exclude 

possible electric thermal loads, weekends, holidays, and 

pre- and post-occupancy conditioning periods (typically 2 

hours directly before and after normal operation). 

Therefore, we selected weekday peak operation loads 

(i.e., 8:00 am to 4:00 pm) during shoulder seasons (i.e., 

spring and fall). Similarly, base loads were selected 

between 10:00 pm and 4:00 am. Linear regression was 

then used to establish the relationship between no-

occupancy (pandemic lockdown) and typical full 

occupancy (pre-pandemic) electricity usage intensity.  

 

 

Figure 2. Methodology for predicting occupancy-driven 

electricity usage intensity during partial occupancy. 

Extrapolation from the linear regression equation was 

then deployed to predict partial occupancy electricity 

usage intensity. Figure 2 presents the methodology in 

detail. Eq. 2 denotes the multilinear regression (MLR) 

equation that was developed to quantify the impacts of the 

lockdown order on electricity use while controlling for 

other parameters such as the daytype (weekday, weekend, 

holiday) dt, month of year m, hour of day h, hours of 

operation h, outdoor temperature T, direct normal 

irradiance DNI, daylight hours ALT, and reported 

provincial death statistics (Ontario Agency for Health 

Protection and Promotion (Public Health Ontario), 2022) 

linked to the Covid-19 pandemic D. Eq. 3 was deployed 

to estimate the electricity EUI 𝑒𝑖𝑑, 𝑓,𝑑𝑡  for any given 

fraction of occupancy 𝑓𝑖𝑑,𝑑𝑡 (0-1)  where 𝑒𝑖𝑑, 𝑏,𝑑𝑡 denotes 

the base load b for building id and daytype dt, K is the 

intercept, s is the slope that indicates the electricity load 

intensity due to occupancy, and 𝑓𝑖𝑑,𝑑𝑡  is the fraction of 

occupancy (in this study, 0 for the occupancy shortly after 

the pandemic lockdown order and 1 for the typical pre-

pandemic full occupancy). 

 

𝑒𝑖𝑑, 𝑑𝑡 = 𝐶 + 𝛼. 𝑚 + 𝛽. ℎ + 𝜃. 𝑐𝑣𝑑 + 𝛾. 𝑜ℎ + 𝛿. 𝑇 +

𝜀. 𝑇2 + 𝜇. 𝐴𝐿𝑇 + 𝜔. DNI + 𝜕. 𝐷   

(2) 

𝑒𝑖𝑑, 𝑓,𝑑𝑡 =  𝑒𝑖𝑑, 𝑏,𝑑𝑡 + 𝐾 + 𝑠. 𝑓𝑖𝑑,𝑑𝑡 (3) 

 

Results and Validation 

In order to validate the proposed model, additional 

information, such as occupancy count during at least two 

distinct periods (i.e., during full occupancy and during no 

occupancy), as well as major changes in ventilation 

protocols was critical. Instead, the model was tested on 

two case studies of other buildings with occupancy 

information. Case study #1 is an office building in 

Ottawa, Canada where hourly electricity usage and 

occupancy count were both available between January 

and June 2020. Case study #2 is an office building in 

Ottawa, Canada with hourly electricity and access badge 

swipe-in data were available. 

Case Study #1 – with Actual Occupancy Count 

Building 1 (B1 thereafter) is an 8,250 m2 post-secondary 

institution’s office building in Ottawa, Canada. 

Occupancy counts ranged between 4 (minimum) and 265 

(peak occupancy) (Hobson & Gunay, 2022). Occupancy 

count was normalized to fractions between 0 and 1 where 

the pre-pandemic occupancy (January 1st – March 16th, 

2020) was defined as the typical full occupancy period, 

and the post-pandemic occupancy (April 1st – June 30th, 

2020) as the 0% occupancy. Later on, the model was 

calibrated, since the lowest occupancy record during 

operating hours was 4 individuals (not 0). Filters were 

applied to exclude weekends and holidays, as well as 

durations where thermal loads existed (i.e., cooling 

loads). First, the linear regression model was deployed 

using only electricity usage data (without occupancy 

input), then, occupancy data was used to compare the 

calculated slope with the actual slope.  Figure 3 presents 

Time-series smart meter 
electricity data 𝑒𝑖𝑑,𝑑𝑡(𝑘𝑊ℎ)

Extract peak loads 
𝑒𝑖𝑑,𝑝,𝑑𝑡 and base loads 

𝑒𝑖𝑑,𝑏,𝑑𝑡

Find the mean peak 
σ1

𝑛 Τ𝑒𝑖𝑑,𝑝,𝑑𝑡
𝑛 and base loads 

σ1
𝑛 Τ𝑒𝑖𝑑,𝑏,𝑑𝑡

𝑛

Multi-linear regression (find 
coefficients of correlation)

(Eq. 2)

Predict scenarios for 
changes in electricity usage 

based on occupancy

(Eq. 3)

Evaluate buildings based on 
expected output (e.g. 10% 
increase in baseload due to 

ventilation as a baseline

Model validation (Proof of 
concept)



both calculated and actual occupancy fractions based on 

electricity EUI above baseload. The value of interest here 

is the slope s, since it defines the electricity EUI. The 

calculated and actual slopes for building B1 are 0.119 and 

0.127, respectively. At this point of model development, 

since electricity usage is known and occupancy fraction is 

unknown (except for the initial estimators 0 and 1), the 

electricity EUI is considered the predictor (x-axis) and the 

occupancy fraction is considered the response (y-axis). 

 

 

Figure 3. Calculated and actual occupancy fraction 

based on electricity usage intensity (EUI). Here, the 

slope determines the EUI. 

 

Later on (e.g. Figure 7), once the regression equation is 

determined and validated, the predictor and response 

variables will be switched, since the value of interest is 

the electricity EUI given a specific occupancy fraction. 

The third point on the plot is the occupancy/electricity 

usage during the second year of the pandemic where 

partial occupancy is expected. The deviation between the 

actual and calculated occupancy fraction is considerably 

large and more data points and calibration are required to 

testify the method. 

Case Study #2 – with Badge-in Data 

The model was also tested at one other commercial 

building (B2) in Ottawa, Canada, where only electricity 

and access badge swipe-in data was available, while 

actual occupancy count was not. Data for this building 

was available for the timeframe between October 2014 

and October 2015. In such case, the COVID-19 pandemic 

lockdown period, which was previously used to represent 

the no-occupancy electricity EUI had not yet occurred. 

Instead, confirmed unoccupied (no badge swipes) 

weekdays were selected, for example, statutory holidays 

occurring on a typical weekday (to avoid planned 

weekend operating schedules). Like the many secure 

commercial buildings, only personnel with valid badge 

Ids are allowed to access the building. On the other hand, 

they may not be required to badge-out upon exiting the 

building. Several assumptions were made to extract 

meaningful information from the badge-in data. The 

badge-in data was completely anonymized, to access only 

timestamp and the condition to access “permitted or 

denied”. First, as mentioned earlier, holidays occurring on 

weekdays were selected to represent the no-occupancy 

electric loads, while typical occupancy weekdays were 

selected to represent typical electric loads. Hours of 

operation, as confirmed by the building operators, are 

typically between 8:00 am to 4:00 pm; however, 

occupants may show up as early as 6:00 am (also 

confirmed by badge-in data). That said, occupancy count 

start time was set at 6:00 and stopped at 11:00 am. It is 

assumed that at 11:00 am peak occupancy is reached, 

while later at noon, a portion of the employees may leave 

for lunch and therefore it becomes difficult to keep track 

of occupancy counts.  

  

 

 

 

 

Figure 4. Scatter plots showing the correlation between 

badge-in data and electricity usage intensity during each 

season. 
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Second, like in the previous example (B1), durations 

when weather-dependent trends are observed, were 

excluded.  Figure 4 shows scatter plots of calculated 

occupancy fraction (y-axis) and electricity EUI (x-axis) in 

each season. Cooling loads appear to have a major 

contribution to the summer electricity EUI and a minor 

contribution to that of shoulder seasons. To avoid 

weather-driven electricity loads, the winter season was 

selected for the model development. 

The plots in Figure 4, especially during the winter season, 

do suggest a linear relationship between occupancy 

fraction and electricity EUI. Finally, cumulative sum of 

badge-in signals between 6:00 am and 11:00 am is 

calculated and peak operating electricity usage intensity 

is determined at exactly 11:00 am. Since we are interested 

in occupancy fraction, occupancy count is normalized to 

values between 0 and 1, where 0 represents no-occupancy 

and 1 represents the peak measured occupancy. Figure 5 

(left) shows the cumulative sum of occupancy fraction 

between midnight (12:00 am) and 11:00 am. It is clear that 

occupants started entering the building at 6:00 am and 

occupancy count continued to rise until 11:00 am. On the 

other hand, electricity usage started to rise at nearly 2:00 

am and stabilized at 10:00 am. Therefore, baseload value 

was extracted at the duration between 8:00 pm and 12:00 

am to avoid pre- and post-occupancy conditioning 

periods, whereas typical full occupancy period is captured 

at exactly 11:00 am. 

Figure 6 presents calculated (linear regression model), 

actual (from badge-in data), and calibrated (corrected 

badge-in data) occupancy fractions based on electricity 

EUI above the baseload. Calibration was carried out by 

re-normalizing the occupancy fractions during typical full 

occupancy period (i.e., from 0.85 to 1.00). 

 

 

 

 

 

Figure 5. Top: cumulative sum of occupancy fraction 

extracted from badge-in data. Bottom: corresponding 

weekday electricity EUI, grouped by season. Winter 

season is most preferred due to weather independence. 

 

While calculating the average of the peak-hour electricity 

EUI, the corresponding average occupancy fraction was 

0.85 (versus the absolute peak occupancy electricity EUI), 

hence, the average peak occupancy fraction value was 

corrected to 1.00 instead of 0.85, and the linear equation 

function was calibrated accordingly.  With calibration, we 

see that the linear regression fit is promising since it 

clearly aligns with the calculated occupancy fractions. 

 

 

Figure 6. Calculated and actual occupancy fraction 

based on electricity usage intensity (EUI) where actual 

occupancy is calculated from badge-in data. 

 

The badge-in occupancy estimation method, with 

calibration, indicated promising results and can be easily 

adapted to different buildings at scale, and applied to 
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buildings that require occupants to tap/swipe their badges 

upon entry.  It should be noted that there are possibilities 

of over- and under-estimation associated with this method 

for a number of reasons (1) occupants do not badge-out, 

hence, we cannot estimate the time when each individual 

had left the building, (2) one occupant could enter the 

building multiple times for shipping/delivery, this will 

count as multiple  occupants, (3) multiple occupants may 

enter the building with one swipe, this will count as one 

occupant, and (4) temporary visitors may not be counted 

as well. In the future, with proper proof of concept data, 

confidence intervals associated with the abovementioned 

uncertainties will be calculated and added to the model. 

Conclusions & Future Work 

After validation, the electricity demand sensitivity to 

occupancy model was finally deployed on all 49 

demonstration buildings without occupancy data. By 

knowing the base (night-time), no-occupancy and typical 

full-occupancy electricity EUIs, and slope (calculated), 

we were able to establish a relationship between the 

electricity EUI and occupancy fraction, given that 

occupancy count data is not available. That said, 

electricity demand can be estimated at any given fraction 

of occupancy using the generic methodology summarized 

in Figure 2.  

 

 

Figure 7. Estimated electricity EUI based on occupancy 

fraction. 

 

This methodology will allow building operators to apply 

occupancy fraction (i.e., hybrid work environment, 

shutdowns, over-occupancy) as a proxy to predict and 

keep track of electricity demand. Figure 7 summarizes the 

average (per building archetype) estimated electricity EUI 

(y-axis) based on occupancy fraction (x-axis) at 10% 

increments of occupancy fraction. Highlighted in dashed 

black are the case studies of the two office buildings (B1 

and B2) that we used as proof-of-concept. For the purpose 

of comparing the case studies to the demonstration 

buildings of similar functionality, the calculated average 

office building performances from the demonstration 

buildings are highlighted in solid black line for easy 

comparison of the case studies (B1 and B2). It is clear that 

base load varies widely across the different building 

archetypes, depending on their lighting, plug loads, and 

HVAC requirements. Office buildings with large server 

rooms can be highly load intensive compared to typical 

office buildings. Dining facilities may have fairly low 

base loads outside of the hours of operation, but 

substantially high electricity loads prior to and during 

service hours. However, certain outliers may require the 

building operator’s attention, such as (1) buildings with 

base loads exceeding the statistically acceptable boundary 

range (i.e., mean ± std), such as those with base loads 

above 40 W/m2, and (2) Also, flat horizontal lines in 

Figure 7 indicating lack of zoning, especially for lighting 

and HVAC electric loads. In other words, seeing the same 

occupancy-driven electricity loads at both 10% and 100% 

occupancy.  

For the demonstration buildings, since no information on 

the actual number of occupants (we only assumed 

fractions based on typical pre-pandemic occupancy), 

there could be multiple explanations for the slope defining 

electricity usage intensity: (1) typical occupancy could be 

originally quite low and less effective compared to plug 

loads (e.g. maintenance buildings could be electric load 

intensive and hence, electric loads are less sensitive to 

occupant behaviour), (2) lack of zoning for lighting and 

electric HVAC components may result in a full operation 

regardless of the number of occupants, (3) some buildings 

may have been fully or partially operated remotely (e.g. 

data centres, departments with large server rooms). This 

may validate the reason why only a 5% reduction during 

the first year following the COVID-19 pandemic 

lockdown order was observed.  

 The model was developed using nearly black box 

methods, shedding light on the impacts of occupancy on 

electricity usage intensity and allowing us to estimate 

future partial occupancy scenarios, while using very 

limited information. It also allows us to identify buildings 

that may need smart sensor retrofits for improved zoning 

moving forward, for example, motion sensors for lighting, 

demand-controlled ventilation, etc.  

The strength of the proposed method is that it is applicable 

and repeatable widely given accessible information. In 

our study, we took advantage of the COVID-19 pandemic 

lockdown period to measure the electricity usage at 

durations when buildings are clearly unoccupied, and 

compared it with the typical full occupancy electricity 

loads while subtracting baseloads from both scenarios. An 

alternative could be a holiday occurring on a weekday 

(non-weekend) when buildings are unoccupied, but also 

scheduled for normal weekday operation.  

Future work will include the following: 

• application of time-series decomposition method to 

filter out noise, seasonality and residuals, and only 

compare the highest and lowest points on the trend 

(Awad et al., 2021). It is critical to isolate weather and 

other possible parameters that may affect the 

electricity usage trends.  
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• it is critical to disaggregate the electricity loads to user 

dependent (e.g., kitchen appliances, personal devices, 

lighting intensity) and user-independent (e.g., security 

systems, lab equipment, servers, baseloads for 

minimum HVAC operation, especially in winter 

months), in order to fully capture the effects of 

occupancy on electricity usage intensity. The method 

we proposed was able to capture user-independent 

baseloads during the COVID-19 pandemic ad hoc 

lockdown period. In the future, we aim to cross 

validate those findings by conducting either field 

visits, questionnaires, or, if possible, submetering for 

major plug loads.  

• cross validate the proposed method with occupancy 

data from one or more demonstration buildings. 

Proxies for occupancy such as badge-in (combined 

with badge-out) or CO2 concentration have proven to 

be useful at varying degrees of accuracy. 

• expand the model to include all-season data, not only 

shoulder seasons 
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