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Application of Ultrasound and Neural Networks in the
Determination of Filler Dispersion During Polymer
Extrusion Processes

Zhigang Sun, Cheng-Kuei Jen

Industrial Materials Institute, National Research Council, 75 de Mortagne Blvd., Boucherville,

Quebec J4B 6Y4, Canada

Jian Yan, Ming-Yuan Chen

Mechanical and Industrial Engineering Department, Concordia University, 1455 de Maisonneuve Blvd. W.,

Montreal, Quebec H3G 1M8, Canada

Mineral filler dispersion is important information for the

production of mineral-charged polymers. In order to

achieve timely control of product quality, a technique

capable of providing real-time information on filler dis-

persion is highly desirable. In this work, ultrasound, tem-

perature, and pressure sensors as well as an ampereme-

ter of the extruder motor drive were used to monitor the

extrusion of mineral-filled polymers under various ex-

perimental conditions in terms of filler type, filler con-

centration, feeding rate, screw rotation speed, and bar-

rel temperature. Then, neural network relationships

were established among the filler dispersion index and

three categories of variables, namely, control variables

of the extruder, extruder-dependent measured vari-

ables, and extruder-independent measured variables

(based on ultrasonic measurement). Of the three cate-

gories of variables, the process control variables and

extruder-independent ultrasonically measured variables

performed best in inferring the dispersion index through

a neural network model. While the neural network model

based on control variables could help determine the

optimal experimental conditions to achieve a dispersion

index, the extruder-independent network model based

on ultrasonic measurement is suitable for in-line mea-

surement of the quality of dispersion. This study has

demonstrated the feasibility of using ultrasound and

neural networks for in-line monitoring of dispersion dur-

ing extrusion processes of mineral-charged polymers.
POLYM. ENG. SCI., 45:764–772, 2005. © 2005 Society of Plastics

Engineers

INTRODUCTION

Mineral-reinforced polymers are widely used in today’s

industries for their improved mechanical properties in com-

parison with nonreinforced ones. Mineral filler dispersion is

an important factor affecting the properties of the filled

polymers. In order to achieve timely control of product

quality, a technique capable of providing real-time informa-

tion on filler concentration and dispersion during the fabri-

cation of mineral-filled polymers is highly desirable. Opti-

cal microscopy and scanning electron microscopy (SEM)

are two of the most widely used techniques for evaluating

the quality of filler dispersion [1–3]. Other techniques in-

clude electrical conductivity and dielectric measurements

[4], nuclear magnetic resonance (NMR) [5], and X-ray

scattering analysis [6]. All the methods mentioned above are

time consuming and cannot be used on-line to meet the need

of real-time control of the quality of manufactured products.

Ultrasound is one of the popular means for industrial

process monitoring and material characterization, owing to

its robustness, fast response, nondestructiveness, noninva-

siveness, and cost-effectiveness. As far as mineral-rein-

forced polymer processing is concerned, ultrasound is sen-

sitive to mineral filler concentration and the dispersion

condition of the filler in the molten polymer matrix [7–9].

This sensitivity makes it possible to use ultrasound to de-

termine filler concentration and dispersion. However, the

ultrasonic properties (i.e., ultrasound velocity and attenua-

tion) of a mineral-filled polymer depend not only on the

filler concentration and dispersion, but also on melt temper-

ature, pressure, molecular weight, and the shear rate of the

melt. If an explicit relationship between the ultrasonic prop-

erties, filler dispersion, and other intervening factors were

known, it would be trivial to determine the filler dispersion

through this relationship and ultrasonic measurements.
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However, at the current state of the art, such an explicit

relationship cannot be established easily, due to the lack of

thorough understanding of the interaction between ultra-

sound and filled polymers under flowing condition.

Artificial neural networks provide a way for modeling

the relationship among measured and controlled parameters

of a complex process without the need of thorough under-

standing of the process itself [10]. There has been work on

the use of neural networks and ultrasound for quantifying

the dispersion of mineral filler in a polymer [11]. The

current work is a continuation of the work carried out earlier

at our institute and presented in Ref. 11, and constitutes one

of our steps toward establishing a way of using ultrasound

for online determination of filler dispersion state. In this

work, attempts have been made to build neural networks

that relate the filler dispersion index to each of three cate-

gories of variables, namely, control variables of the ex-

truder, extruder-dependent measured variables, and extrud-

er-independent measured variables based on ultrasonic

measurement. The purpose is to show, through example

networks, that a combination of ultrasonic measurement and

neural networks could be a viable approach to in-line de-

termination of filler dispersion index. Although the structure

and training algorithm of a network can have crucial impact

on the performance of the network, we will focus on more

fundamental issues such as selections of input variables for

filler dispersion monitoring, and the physical reasons behind

these choices and their consequences, rather than on pure

technical issues as to how a network should be structured

and trained. That being said, and keeping in mind that there

are numerous ways to design the architecture of a neural

network and there are various ways to do the training, the

network presented in this work is by no means intended to

be the best performing one, but rather one that performs

reasonably well. The readers can certainly build their own

neural networks by respecting some of the considerations

discussed in this article.

EXPERIMENTS

Polypropylene (PP) 6631 from Himont Canada, with

density � � 890 kg/m3 and melt flow rate (MFR) � 2.0

dg/min, was used in this study. Two grades of calcium

carbonate powders, Camel-Cal and Camel-Cal-ST, supplied

by Genstar, with specific gravity of 2.71 were used as fillers.

Both grades had a mean particle size of 0.7 �m, with 90%

of the particles finer than 2 �m, and 100% finer than 7 �m.

The grade with suffix ST was stearate-coated to allow for

better particle dispersion.

A Leistritz 34-mm corotating intermeshing twin-screw

extruder, composed of 12 barrel sections with a barrel-

length-to-diameter ratio (L/D) of 42, was used. Polypro-

FIG. 1. Schematic of the extruder and instrumented die used in the experiments. The locations of three pressure

sensors in the instrumented are indicated with P1, P2, and P3. The ultrasonic sensors are indicated with US, and

the melt thermocouple is indicated with Tmelt.
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TABLE 1. Experimental data.*

Sample

index Ftype

Cf

(%) Tprfl

VRPM

(RPM)

QFeed

(kg/h)

Vus

(m/s)

�us

(dB/cm)

Amps

(A)

Tmelt

(°C)

P1

(MPa)

P2

(MPa)

P3

(MPa)

Pus

(MPa) Dx

1 Non_ST 15 1 100 8.8235 886.71 17.096 26.48 231.36 2.7618 1.8339 0.9636 3.7362 0.6906

2 Non_ST 10 1 300 8.3333 845.26 15.636 18.679 233.25 2.3071 1.5397 0.8203 3.1129 0.7085

3 Non_ST 20 2 300 9.375 863.12 18.901 20.343 212.06 2.8641 1.9170 1.0038 3.8587 0.7623

4 Non_ST 15 1 175 8.8235 865.96 15.763 22.228 232.05 2.6226 1.7405 0.9160 3.5489 0.7635

5 Non_ST 5 2 100 7.8947 942.02 6.5622 24.082 204.73 2.8826 1.9427 1.0182 3.8695 0.7763

6 Non_ST 5 1 100 7.8947 899.16 7.628 23.113 231.07 2.4695 1.6415 0.8741 3.339 0.7802

7 Non_ST 15 2 300 8.8235 872.49 16.238 19.487 210.27 2.7163 1.8206 0.9592 3.6567 0.7864

8 Non_ST 20 2 100 4.375 921.8 14.964 18.758 205.66 2.5777 1.7353 0.9013 3.4623 0.7976

9 Non_ST 20 1 175 4.375 851.05 17.808 16.75 230.75 2.0531 1.3570 0.7105 2.7842 0.8

10 Non_ST 5 2 100 3.6842 945.68 6.3547 15.718 205.37 2.2566 1.5214 0.7991 3.0286 0.8093

11 Non_ST 20 1 300 4.375 825.03 20.586 15.603 232.3 1.9411 1.2926 0.6814 2.6222 0.8115

12 Non_ST 10 2 100 3.8889 937.15 8.8756 16.579 205.42 2.3407 1.5776 0.8269 3.1421 0.8196

13 Non_ST 20 2 175 4.375 896.66 15.265 17.557 207.26 2.4783 1.6652 0.8632 3.3322 0.8254

14 Non_ST 15 1 100 4.1176 881.97 15.125 17.353 230.57 2.0424 1.3503 0.7139 2.7693 0.827

15 Non_ST 20 2 300 4.375 859.95 18.29 15.463 209.14 2.1764 1.4534 0.7636 2.9357 0.8283

16 Non_ST 15 2 175 4.1176 903.88 12.901 16.677 206.75 2.3535 1.5854 0.8289 3.16 0.8331

17 Non_ST 5 1 300 3.6842 851.39 8.7336 13.323 230.6 1.5441 1.0323 0.5581 2.0815 0.8498

18 Non_ST 5 1 175 3.6842 879.97 8.1665 13.912 230.65 1.7764 1.1864 0.6380 2.396 0.8517

19 Non_ST 10 2 300 3.8889 877.86 11.66 13.988 204.82 1.9236 1.2907 0.6845 2.5882 0.8599

20 Non_ST 5 2 175 3.6842 919.95 7.4962 14.768 206.2 2.1121 1.4262 0.7497 2.8324 0.8632

21 Non_ST 10 1 300 3.8889 841.28 13.075 14.479 231.31 1.6806 1.1225 0.6029 2.2667 0.8754

22 ST 10 1 100 8.3333 890.77 10.826 23.155 230.21 2.3865 1.6746 0.9119 3.1341 0.7223

23 ST 15 1 100 8.8235 884.17 14.888 23.903 230.41 2.4850 1.7446 0.9440 3.2626 0.7543

24 ST 5 1 100 7.8947 897.08 6.5878 22.285 229.97 2.2826 1.6031 0.8772 2.9962 0.7809

25 ST 20 1 100 9.375 877.28 18.053 24.6 231.21 2.5719 1.8005 0.9671 3.3819 0.7829

26 ST 20 1 175 9.375 855.18 15.817 21.408 231.22 2.3470 1.6713 0.9044 3.0567 0.7909

27 ST 15 2 100 8.8235 921.48 11.479 22.931 205.28 2.7991 1.9826 1.0438 3.6565 0.8119

28 ST 10 1 175 8.3333 869.49 10.566 20.653 229.54 2.0577 1.5594 0.8567 2.581 0.8183

29 ST 5 2 300 7.8947 882.6 10.336 19.854 204.76 2.2824 1.6121 0.8505 2.9863 0.8267

30 ST 15 1 300 8.8235 833.49 15.774 18.542 233.47 2.2280 1.5632 0.8474 2.9262 0.8368

31 ST 20 2 100 9.375 914.18 14.632 24.007 205.62 2.9091 2.0517 1.0808 3.8095 0.8371

32 ST 20 1 300 9.375 826.71 17.115 18.576 233.42 2.3022 1.6133 0.8703 3.0256 0.8445

33 ST 20 1 175 4.375 850.6 13.121 16.267 230.76 1.7504 1.2762 0.6570 2.2486 0.8482

34 ST 20 1 100 4.375 871.25 13.44 15.357 229.24 1.8510 1.3569 0.7268 2.3698 0.8531

35 ST 10 1 300 8.3333 842.03 13.642 18.933 232.97 2.1696 1.5248 0.8302 2.8468 0.8549

36 ST 10 2 100 8.3333 929.95 8.0875 22.098 204.88 2.6981 1.9144 1.0087 3.5212 0.8554

37 ST 10 2 300 3.8889 873.89 8.8515 13.923 205.41 1.7902 1.2790 0.6690 2.3271 0.8628

38 ST 5 1 175 3.6842 875.6 6.8962 14.714 230.3 1.5565 1.1469 0.5969 1.9866 0.864

39 ST 15 1 175 4.1176 858.51 10.984 15.519 230.68 1.6741 1.2251 0.6327 2.1456 0.8671

40 ST 15 2 175 4.1176 901.31 10.083 15.12 205.01 2.0562 1.4589 0.7596 2.6833 0.8678

41 ST 15 2 300 8.8235 864.57 13.88 20.396 208.34 2.4750 1.7439 0.9178 3.2428 0.8689

42 ST 20 2 300 4.375 855.23 13.196 14.679 206.29 1.9440 1.3830 0.7189 2.5334 0.8708

43 ST 15 1 100 4.1176 880.27 11.199 14.704 228.93 1.7819 1.3122 0.7075 2.275 0.872

44 ST 5 2 175 3.6842 920.38 6.6897 14.338 204.31 1.9353 1.3754 0.7171 2.5234 0.8735

45 ST 10 2 175 8.3333 908.79 8.3866 21.11 206.49 2.5726 1.8059 0.9471 3.3778 0.8812

46 ST 5 2 100 3.6842 942.93 5.5136 15.395 202.93 1.9904 1.4407 0.7597 2.5678 0.883

47 ST 10 1 300 3.8889 835 9.4031 14.917 231.23 1.4522 1.0699 0.5652 1.8538 0.903

48 Non_ST 10 1 100 8.3333 892.7 12.486 24.585 231.15 2.6153 1.7375 0.9200 3.537 0.6999

49 Non_ST 20 1 300 9.375 827.32 21.721 20.039 233.9 2.5553 1.6980 0.8895 3.4556 0.7499

50 Non_ST 5 1 300 7.8947 854.27 10.817 17.419 232.2 2.1360 1.4279 0.7636 2.8796 0.7605

51 Non_ST 20 1 175 9.375 857.94 19.462 23.264 232.54 2.7771 1.8374 0.9566 3.7639 0.7624

52 Non_ST 15 2 100 8.8235 928.54 14.553 27.405 206.26 3.1531 2.1248 1.1087 4.233 0.7772

53 Non_ST 10 2 100 8.3333 934.65 10.406 25.419 205.34 2.9989 2.0211 1.0575 4.0257 0.7809

54 Non_ST 20 2 175 9.375 892.57 17.649 24.538 206 3.1007 2.0864 1.0772 4.1659 0.7818

55 Non_ST 10 1 175 8.3333 873.26 12.158 21.319 231.65 2.4774 1.6463 0.8737 3.3502 0.7836

56 Non_ST 15 2 175 8.8235 900.75 13.946 23.306 204.88 2.9419 1.9843 1.0302 3.9475 0.7901

57 Non_ST 20 1 100 3.75 876.06 17.906 18.611 230.98 2.1980 1.4502 0.7615 2.9834 0.7938

58 Non_ST 15 1 300 8.8235 836.76 18.138 18.952 233.16 2.4028 1.6010 0.8467 3.2447 0.7989

59 Non_ST 5 2 300 7.8947 891.48 10.866 17.645 208.02 2.4438 1.6387 0.8689 3.2893 0.8036

60 Non_ST 5 1 175 7.8947 881.16 8.0002 20.179 231.25 2.3421 1.5571 0.8307 3.1664 0.811

61 Non_ST 5 2 300 3.5526 887.26 8.2033 13.243 206.43 1.7709 1.1889 0.6350 2.3821 0.8176

62 Non_ST 15 1 175 3.6765 857.84 14.832 15.971 229.76 1.9124 1.2680 0.6709 2.589 0.8189
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pylene pellets and calcium carbonate powder were fed sep-

arately by two high-precision gravimetric feeders at the

same feed throat location. A slit die instrumented with two

5-MHz ultrasonic sensors, a melt thermocouple, and three

pressure transducers, all flush-mounted in the die channel,

was used (Fig. 1). The die channel had a 3.0 mm high by

40.0 mm wide rectangular cross-section. The ultrasonic and

pressure sensors were installed perpendicular to the

40.0-mm wide surface of the slot. Two ultrasonic sensors

were axially aligned, but on the opposite sides of the slot,

separately. During measurements, one of the ultrasonic sen-

sors was used as a transmitter to send ultrasonic waves to

the molten polymer. The other ultrasonic sensor was used as

a receiver. The ultrasonic waves were reflected back and

forth several times between the two ultrasonic sensors be-

fore completely dying out. By measuring the time delay and

amplitude difference between consecutive echoes, the ultra-

sonic velocity and attenuation coefficient in the molten

polymer were obtained [7]. Please note that this instru-

mented die could be installed at the exit of a variety of

extruders.

The experimental data are given in Table 1. These are

rearranged data reproduced from an early work carried out

at our institute by D. Binet and presented in Ref. 11. The

experiments were designed on a full 23
� 31 factorial plan

for 5 levels of filler concentration [12]. The controlled

parameters of the process were feeding rate Qfeed (2 levels:

3.5 and 7.5 kg/h), screw rotation speed VRPM (3 levels: 100,

175, and 300 rpm), barrel temperature profile Tprfl (2 pro-

files: one, represented by 1 in Table 1, starting at 185°C at

the feed throat, with a gradual increase of 5°C from barrel

to barrel, up to 225°C at the ninth, with that set-point

constant for the remaining barrels and the die; another one,

represented by 2 in Table 1, with a constant set-point of

200°C imposed for all sections), the type of filler fed into

the extruder Ftype (2 types: one with stearate coating and

denoted as ST in Table 1, and one without coating and

denoted as Non_ST in Table 1), and the filler concentration

Cf (5 levels: 0, 5, 10, 15, and 20 wt%). The measured

parameters are divided into two categories. The first cate-

gory is extruder-dependent measured variables, which in-

cludes the melt pressure profile defined by pressures P1, P2,

and P3 at three pressure probe locations at the instrumented

die shown in Fig. 1, the amperage of electric current Amps

required to drive the screws of the extruder. The category of

extruder-independent measured variables is composed of

variables measured locally at (or near) the ultrasonic probe

location. These variables are ultrasonic velocity Vus and

TABLE 1. (Continued)

Sample

index Ftype

Cf

(%) Tprfl

VRPM

(RPM)

QFeed

(kg/h)

Vus

(m/s)

�us

(dB/cm)

Amps

(A)

Tmelt

(°C)

P1

(MPa)

P2

(MPa)

P3

(MPa)

Pus

(MPa) Dx

63 Non_ST 5 1 100 3.5526 897.02 7.3819 15.302 230.31 1.8628 1.2376 0.6641 2.5194 0.8254

64 Non_ST 5 2 175 7.8947 922.32 7.1746 20.16 206.24 2.7381 1.8343 0.9711 3.6873 0.8255

65 Non_ST 10 1 100 3.6111 889.66 11.388 16.213 230.52 1.9470 1.2924 0.6872 2.6345 0.8268

66 Non_ST 15 1 300 3.6765 833.03 17.094 14.952 231.73 1.7882 1.1924 0.6357 2.4137 0.834

67 Non_ST 10 2 175 8.3333 908.94 10.593 22.369 203.36 2.7942 1.8861 0.9829 3.7478 0.837

68 Non_ST 10 2 300 8.3333 881.56 13.98 18.821 209.24 2.5875 1.7349 0.9173 3.4828 0.845

69 Non_ST 15 2 100 3.6765 928.27 12.113 17.763 205.58 2.4565 1.6551 0.8643 3.298 0.8523

70 Non_ST 10 2 175 3.6111 911.3 10.061 15.566 206.43 2.2032 1.4871 0.7801 2.9551 0.8552

71 Non_ST 15 2 300 3.6765 868.29 14.433 14.632 206.3 2.0013 1.3390 0.7044 2.6968 0.8634

72 Non_ST 5 1 225 3.5526 866.41 8.4376 13.706 230.99 1.7439 1.1655 0.6271 2.3513 0.8676

73 ST 15 1 175 8.8235 862.27 13.474 21.237 230.16 2.2293 1.6247 0.8857 2.8641 0.7096

74 ST 5 1 175 7.8947 877.28 7.3736 20.332 228.55 2.0166 1.5000 0.8284 2.5592 0.776

75 ST 5 2 100 7.8947 939.46 5.3675 21.52 204.65 2.6470 1.8799 0.9911 3.4526 0.8119

76 ST 20 2 175 9.375 890.99 13.766 22.415 207.11 2.8086 1.9643 1.0266 3.6954 0.8274

77 ST 15 2 175 8.8235 900 10.766 21.696 206.73 2.6948 1.8884 0.9895 3.5416 0.8309

78 ST 20 2 100 3.75 912.72 12.233 16.285 204.22 2.1434 1.5438 0.8114 2.7731 0.8372

79 ST 5 1 100 3.5526 898.66 6.1621 13.973 228.68 1.6749 1.2401 0.6719 2.1316 0.8484

80 ST 10 2 300 8.3333 872.7 11.972 19.865 207.06 2.3828 1.6815 0.8874 3.1192 0.8513

81 ST 20 2 175 3.75 892.35 12.073 15.846 205.32 2.1299 1.5084 0.7828 2.7827 0.8532

82 ST 20 1 300 3.75 818.25 13.786 15.52 231.91 1.5704 1.1533 0.5964 2.0085 0.8574

83 ST 5 2 300 3.5526 883.42 6.8909 13.55 204.62 1.7405 1.2469 0.6563 2.2588 0.8602

84 ST 20 2 300 9.375 856.82 16.362 20.571 209.54 2.5767 1.8115 0.9497 3.3803 0.863

85 ST 15 2 100 3.6765 922.37 10.296 15.792 203.99 2.0766 1.4992 0.7897 2.6829 0.8645

86 ST 5 1 300 3.5526 845.26 6.9809 14.591 230.67 1.3543 1.0133 0.5335 1.7123 0.8683

87 ST 15 2 300 3.6765 864.14 10.964 14.387 205.88 1.8885 1.3456 0.7015 2.4586 0.8704

88 ST 5 2 175 7.8947 918.18 6.2375 20.795 206.22 2.5260 1.7738 0.9311 3.3159 0.8715

89 ST 10 2 100 3.6111 933.15 7.5239 15.569 203.55 2.0110 1.4543 0.7661 2.5957 0.8725

90 ST 5 1 300 7.8947 848.9 10.998 19.375 232.04 2.0067 1.4194 0.7795 2.6233 0.8743

91 ST 15 1 300 3.6765 826.38 12.065 15.37 231.5 1.5066 1.1117 0.5797 1.9215 0.8777

92 ST 10 1 100 3.6111 888.97 8.6863 14.409 228.67 1.7307 1.2782 0.6915 2.206 0.882

93 ST 10 2 175 3.6111 910.54 8.5258 14.737 204.59 1.9883 1.4121 0.7356 2.5934 0.8906

*Source: Binet [11].
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attenuation coefficient �us in the material being extruded.

Since Vus and �us measure the mechanical properties of the

material and take no account of how the material has been

processed, they are extruder-independent variables. It

should be pointed out that the sound velocity and attenua-

tion are also functions of melt temperature, pressure. Fur-

thermore, not only the degree of filler dispersion, but also

the shear rate, which determines the degree of deformation

of polymer chains under flowing condition, can affect the

acoustic properties of the polymer. As a consequence, the

melt pressure at the ultrasonic probe location Pus, the melt

temperature Tmelt read from a melt thermocouple, and the

melt shear rate at the ultrasonic probe location �̇, should be

used with ultrasonic measurement in order to infer filler

dispersion state from the ultrasonic data. The shear rate is

not easily measurable on-line; however, given the material

and the geometry of the melt flow channel of the instru-

mented die, the shear rate is uniquely determined by the

feed rate. This means that the feed rate, Qfeed, can be used

in place of �̇ as an input of the neural network, even though

the explicit relationship between the two parameters is

unknown. Note that the feed rate Qfeed is not only a control

variable of the process, but can be a measured variable as

well. For the instrumented die used in this work, Pus is an

extrapolated value of the pressure readings P1, P2, and P3.

The parameter of interest to this study was filler dispersion

index Dx.

The following definition of the dispersion index, as pro-

posed by Suetsugu [2], was adopted in this study:

Dx � 1 �
�

4A�
� di

2ni ,

where A is the area of observation, � the volume fraction of

filler, di the diameter of agglomerates greater than a critical

value [2], and ni the number of agglomerates with diameter

di. The best dispersion is obtained when no agglomerate is

detected (Dx � 1). In the case of worst dispersion, all the

particles remain in the form of agglomerates and Dx takes

the value of 0. In the present study, the dispersion index was

determined through SEM analysis and the critical diameter

was set to 7 �m, which was the upper limit of the diameters

of the CaCO3 particles used in the study. The size of the

examined area by SEM was 1.125 by 1.125 mm. Details on

laboratory measurements of filler concentration and disper-

sion can be found in Ref. 12.

ARTIFICIAL NEURAL NETWORK MODELING

Artificial neural network approach is a mapping process

that translates a set of measured variables (inputs to the

network) into the material property of interest (output of the

network). Three network models have been developed for

estimating the dispersion index. Except for the inputs, all

the networks share the same structure and have the disper-

sion index Dx as a single output. The first network, shown

in Fig. 2, has as inputs only control variables, namely, the

filler type Ftype, the feed rate Qfeed, the filler concentration

Cf, and the screw speed VRPM. The second network, shown

in Fig. 3, has as inputs the filler type Ftype, the pressures

measured at three locations P1, P2, and P3, the melt tem-

perature Tmelt, the feed rate Qfeed, and the amperage Amps.

In the third network, shown in Fig. 4, we want to use the

ultrasonic velocity Vus and attenuation coefficient �us to

infer the dispersion index. Note that both Vus and �us are

not only functions of the state of filler dispersion, but also

functions of melt pressure, temperature, and shear rate

(which is determined by the feed rate for a given material

and die geometry). As a consequence, the melt temperature

Tmelt, the melt pressure at the ultrasonic probe location Pus,

and the feed rate Qfeed are used as inputs of the network as

well.

FIG. 2. A four-layer feed-forward network for the estimation of filler dispersion. The network uses only

process control variables as inputs.

768 POLYMER ENGINEERING AND SCIENCE—2005



Table 2 shows the correlations between some of the

variables listed in Table 1 and the dispersion index Dx. As

can be seen in Table 2, the ultrasonic velocity, Vus, is

practically not correlated to the dispersion index. However,

we still use Vus as one of the inputs of the third neural

network. This is because the ultrasonic velocity is particu-

larly sensitive to the thermal degradation (determined by

polymer thermal history during the process) of the polymer

[13] and the polymer degradation can also affect the ultra-

sonic attenuation �us. As a matter of fact, Vus and �us are

physically interrelated. From Table 1, the correlation coef-

ficient between Vus and �us is calculated as –0.54, which is

much more significant than the value of 0.009 between Vus

and Dx. Introducing Vus in the network model can help

reduce the influence of thermal history on the estimation of

distribution index.

Our analysis of Table 1 has shown that the surface

condition, i.e., with or without stearate coating, of fillers,

has strong effects on the quality of dispersion. More pre-

cisely, under similar processing conditions, the coated filler

performed consistently better than the noncoated one in

terms of dispersion index. Therefore, the filler type Ftype

was used as an input to all of the three networks. The filler

type was coded as 1 for the stearate-coated filler and 2 for

the noncoated filler. Obviously, the effects of the two filler

types on the process could not be represented with these two

rather arbitrarily chosen simple values. We used a two-

neuron layer to represent the effect of the filler type. With

this layer, each filler type was characterized by two output

numbers of which the values were to be determined by the

network training process.

The neural networks were implemented using a commer-

cial MATLAB� Neural Network Toolbox. The networks

used a hyperbolic tangent sigmoid transfer function for the

FIG. 3. A four-layer feed-forward network for the estimation of filler dispersion. No ultrasonically measured

variables are used as inputs.

FIG. 4. A four-layer feed-forward network for the estimation of filler dispersion based on ultrasonic attenuation

and velocity measurement.
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neurons (i.e., processing unit) at the hidden layers, and a

linear transfer function for the output layer. However, only

the first hidden layer had a bias connection. The weight

factor associated with each interconnection between an in-

put and a neuron or between two neurons as well as the

biases of the first layer were adjusted (in other words, the

networks were trained) according to Levenberg-Marquardt

back-propagation optimization. To overcome the overfitting

problem inherent to the back-propagation algorithm, we

utilized a validation data set and an early stopping strategy

by which the training stopped after a minimal mean squared

error of the network output with respect to the validation

data had be achieved.

Of the available 93 dispersion index measurements (47

for stearate-coated filler and 46 for noncoated filler), 47

were chosen to form a data set for network training, and the

rest were used to form a validation-testing data set. Because

of the limited number of samples, for each training, one-half

of the data samples were chosen randomly from the valida-

tion-testing data pool to form a validation data set, and the

remaining data for the testing data set. A total of 30 pairs of

thusly-formed data sets were used in the training process,

resulting in 30 trained networks. Each of the 30 trained

networks was the best result of trainings for 1000 different

initial weight and bias conditions. The best result was de-

fined as the one with the smallest maximum error on the 93

estimated Dx compared with the measured ones. Among the

93 estimates of Dx, 47 were from training, 23 from valida-

tion, and 23 from testing. A comparison of the 30 trained

networks allowed us to evaluate the robustness of the net-

work models.

RESULTS AND DISCUSSIONS

Table 3 shows the errors on the estimates of the disper-

sion indices generated by the networks depicted in Figs. 2,

3, and 4, respectively. In Table 3, �max_mean represents the

average of the maximum errors generated by the 30 trained

networks, �rms_mean the average of the root-mean-square

errors of the estimates produced by the 30 trained networks

with regard to the measured values of the samples, and

�max_best5 the maximum of the errors generated by the

average of the estimates provided by the five best trained of

the 30 networks compared with the measured dispersion

indices. In this work, we used the average of the estimates

provided by the five best trained of the 30 networks as the

final estimate produced by the model. For the network of

Fig. 2, where only the control parameters were used as

inputs, the estimation error �max_best5 on dispersion index

was less than 0.033 on a scale of 0 to 1 for the case in which

a constant set point of 200°C was imposed for all barrel

sections. This error was less than 0.046 for the case where

the temperature profile of the extruder barrel temperature

was set at 185°C at the feed throat, with a gradual increase

of 5°C from barrel to barrel up to 225°C at the ninth, and at

225°C for the remaining barrels and the die. Given that even

the SEM utilized in this study had a 10% chance of pro-

ducing an error of larger than 0.05 on dispersion index

measurement (of course these errors were mostly filtered

out in the averaged data used in this study), the performance

of this network is excellent. Deviations of estimated disper-

sion indices, produced by the present as well the other

networks presented in this work, from the measured ones

could result from insufficient data size in the network train-

ing, and the network structure that may not reproduce the

exact process. The instability of the process itself, discrep-

ancy between the readings and the real values of the process

and measured variables, limited accuracy on dispersion

index measurement, could also result in deviations of the

network estimates from the measured results. The excellent

prediction of the dispersion index through application of the

control variables of the process to the network suggests a

deterministic nature of the dependency of the state of filler

dispersion on the operating conditions of the extrusion

process. The neural network model established could be

used as a simulation tool to determine the optimal process

conditions to achieve a desired and practically achievable

dispersion quality. However, since the effects of a given

process control condition depends largely on the status and

configuration of the screws and barrel, the neural network

model based on control variables is extruder-dependent. In

other words, for the model to be valid, it has to be retrained

upon every change made to the screw and barrel. This

obviously limits the usefulness of such a model.

The neural network of Fig. 3 has generated an estimation

error of less than 0.055 and can be considered good as well.

TABLE 2. Correlation coefficients between variables listed in Table 1 and the dispersion index.

Variables Cf VRPM Qfeed Vus �us Amps Tmelt P1 P2 P3 Pus

Correlation coefficient �0.13 0.22 �0.57 0.009 �0.39 �0.65 �0.29 �0.54 �0.48 �0.51 �0.56

TABLE 3. Errors on the estimates of dispersion indices generated by

three neural networks.

Neural network models �max_mean �rms_mean �max_best5

Network with process control

variables as inputs (Fig. 2)

Temperature profile 1 0.0527 0.0117 0.0456

Temperature profile 2 0.0363 0.0093 0.0323

Network with extruder-dependent

non-ultrasonically measured

variables as inputs (Fig. 3)

0.0631 0.0141 0.0548

Network with extruder-independent

ultrasonically measured

variables as inputs (Fig. 4)

0.0595 0.0127 0.0487
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This shows that the filler dispersion can be monitored rea-

sonably well even without using ultrasound. However, since

this network uses pressure profile in the melt channel as

well as the amperage as inputs, and the pressure profile and

amperage are determined by the status and configuration of

the screw and barrel, this neural network model is also

extruder-dependent. This means that the model is not trans-

portable from one extruder to another, and it has to be

recalibrated upon every change made to the screw and

barrel. This calibration will require new experiments on the

modified extruder and new SEM analysis of extrudates in

order to establish a relationship between those measured

input variables of the neural network and the quality of

dispersion.

The neural network model depicted in Fig. 4 has pro-

duced excellent estimates on dispersion indices, with an

estimation error of less than 0.049. Figure 5 shows a com-

parison between the estimated dispersion index generated

by the neural network model of Fig. 4 and those measured

with SEM. This network has produced better results than

those provided by the non-ultrasonic measurements shown

in Fig. 3. This suggests that ultrasonic measurement is more

sensitive to the state of dispersion than the pressure and

amperage measurements. In fact, unlike the ultrasonic mea-

surement, the pressure and amperage can only provide in-

formation on process conditions which dictate the final state

of the filler dispersion rather than measuring directly the

state of filler dispersion itself. Since all the inputs of the

ultrasonic network model shown in Fig. 4 are related solely

to the status of the melt at the probed location, this model is

extruder-independent and transportable to other extruders of

the same or different types and sizes. The transportability is

the most important feature of the ultrasonics-based models.

Since the establishment of these models require large

amount of calibration work, the transportability means enor-

mous savings of resources in the future for model develop-

ment once the models have been successfully established

and this makes the models practically useful for in-line

monitoring of filled-polymer extrusion processes. However,

it should be pointed out that, like any expert or database

systems, the neural networks do not generate more knowl-

edge than what they received during training. In order to

apply neural networks successfully, the user has to make

sure that the input variables fall in the ranges in which the

networks have been trained. It is also important to remem-

ber that the network is valid only for the material system for

which it has been trained, although the approach could be

generalized to other material systems.

CONCLUSION

In this work, three artificial neural networks have been

established and tested for the determination of the disper-

sion of calcium carbonate powder in a polypropylene ma-

trix. Among the three networks, one uses process control

variables as inputs, one uses extruder-dependent measured

variables as inputs, and the remaining one uses ultrasonic

measurement data as well as other extruder-independent

measured variables as inputs. All of the three networks

performed well in the estimation of filler dispersion index.

However, neural network models with ultrasonic measure-

ment data as inputs are most promising for in-line monitor-

ing of filler dispersion owing to their transportability. This

study has demonstrated the feasibility of using ultrasound

and neural networks together for in-line monitoring of dis-

FIG. 5. Comparison between measured (dots) and the average of 5 estimated dispersion indices produced by

5 best-performed networks (triangles).
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persion during extrusion processes of mineral-charged poly-

mers.
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